
Cost-Performance Analysis of Heterogeneity
in Supercomputer Architectures*

Daniel Menas& Virg%o Almeida

Departamento de Informdtica Departamento de Ci6ncia da Computa$o

Pontificia Universidade Cat6lica

22453, Rio de Janeiro, Brazil

Menasce@BRLNCC.BITNET

Abstract

Heterogeneity has appeared as a cost-effective ap-
proach to design high performance computers. This
paper analyzes cost-performance of heterogeneity in
supercomputer architectures. Queueing models are
used to study performance of homogeneous and het-
erogeneous supercomputer models. Grosch’s Law,
which states that computer performance increases
as the square of its cost, is used to analyze cost as-
pects of the models. The results of this paper show
that heterogeneity in supercomputer architectures is
a quite promising design approach that deserves fur-
ther investigation.

1 Introduction

Advances in VLSI technology have caused a dra-
matic change in cost-performance trade-offs for de-
signing high performance computer systems. Per-
formance has been increased by architectural inno-
vations and progress in semi-conductor technology.
Currently, computer systems consisting of up to tens
of hundreds of relatively inexpensive microprocessors
can be built. A number of machine architectures
with a large number of processors have been im-
plemented in an attempt to provide supercomputer
power at a fraction of supercomputer cost (e.g., In-
tel iPSC, Ncube, Connection Machine, etc [17]).
On the other hand, a supercomputer such as the
NEC SX2 [17], consisting of a single processor is con-
sidered one of the most powerful machines available
today.

Both design approaches, parallel and sequential
processing, present some limitations. Powerful se-
quential processors are very expensive and their per-
formance cannot be improved much further because

*This research was partially supported lay a grant from
IBM Brasil

CH2916-5/90/0000/0169/$01.00 0 IEEE

Universidade Federal de Minas Gerais

30161, Belo Horizonte, Brazil

VirgilioQBRLNCC.BITNET

they are reaching the ultimate limit, represented by
the speed of light. Parallel systems circumvent this
limitation by harnessing many relatively inexpensive
VLSI processors together. More important, there
is no foreseeable limit to the computing power that
may be achieved through parallel processing. How-
ever, the sequential fraction of a computation places
a rather significant constraint on the effectiveness
with which any particular algorithm can make use
of a large number of processors [9, 7, lo].

This paper analyzes heterogeneity in supercom-
puter architecture as a cost-effective approach to
combine the best features of sequential and par-
allel processing: speed of sequential computation
and unlimited growth of computing power in par-
allel processing. In parallel processing, heterogene-
ity concerns the use of different processors, that are
dedicated to specific tasks and cooperate closely on
the same job. Performance of heterogeneous paral-
lel architectures is studied through the use of mod-
els based on queueing theory. This paper also an-
alyzes cost aspects of heterogeneous architectures.
In evaluating cost of computer systems, we refer
to Grosch’s Law [4, 1, lo], which states that com-
puter performance increases as the square of its cost.
This Law has been verified extensively with empiri-
cal data over generations of computers. Ein-Dor [l]
points out that Grosch’s Law is still valid if families
of computers, such as supercomputers, mainframes,
minicomputers and microcomputers are considered.
There are economies of scale within any given com-
puter category, but there are diseconomies in tran-
sition from one family to another. This paper uses
Grosch’s Law in order to construct heterogeneous
models with the same cost of homogeneous parallel
ones.

Ercegovac [3] d iscusses some approaches to het-
erogeneous architectures in order to achieve cost-
effective performance and programmability. Wal-

169

lath [18] also sugests that in the future high per-
formance parallel systems will be built with hetero-
geneous processors as contrasted to homogeneous
ones. However, no quantitative results are pre-
sented in those references [3, 181. Queueing net-
work models have been successfully used to inves-
tigate and compare hypothetical architectures. For
instance, Heidelberg [6] uses queueing network mod-
els to study the performance of a hypothetical multi-
microprocessor back-end database machine relative
to that of a mainframe database system. Menasce
and Almeida [2] also used analytic models to pro-
pose variations in supercomputer architectures. We
are not aware of any paper that studies the cost-
performance tradeoffs of heterogeneity in supercom-
puter architectures using analytic models.

2 Homogeneous and Hetero-
geneous Parallel Processing
Paradigms

Rather than studying specific machines, this pa-
per takes a more abstract view, and explores cost-
performance trade-offs of heterogeneous versus ho-
mogeneous supercomputer architectures. In order
to carry the analysis, two basic models of process-
ing, which underlie the whole spectrum of high per-
formance systems, are defined. The two models
of processing that constitute the basic comput,ation
paradigms are the following: centralized and paral-
lel processing. In the first model, a single processor
performs the sequential execution of all ta.sks of a
job. In a parallel processing system, a number of
processors is organized in such a way that they coop-
eratively execute a single job, where each processor
is assigned to execute a task. The models are a.ua-
lyzed in a context of a specific application doma.iu,
namely high volume on-line transaction processing.
The Input/Output subsystem will not be cousidered
here, since in this study we are basically interested
in contrasting processor power versus cost in va.rious
architectures.

The centralized model assumes the existence of a,
central processing facility, consisting of a single pro-
cessor, to which jobs are submitted for execution.
Jobs that arrive and find the central facility busy
have to wait in a queue. Machines such as the Iii-
tachi S810/20, Fujitsu VP-200, a.nd IBM 3090/180-
VF [14] to name a few fall into this ca.tegory.

Parallel processing architectures are divided iuto
two classes: homogeneous and heterogeueous sys-
tems. The homogeneous parallel processing pa,ra-

digm assumes the existence of a set of P (P > 1)
identical processors which collectively process one
job at a time. Jobs arrive from an infinite population
source; those which find the set of P processors busy
working on a given job will have to wait in a queue.
It is assumed that a fraction Fp of the instructions
of a job may be executed in parallel by the P proces-
sors (each one will execute $ of the total number of
instructions that can be executed in parallel), and,
a fraction F, (equal to 1 - Fp) of the instructions
of the job must be executed sequentially by any one
of the P processors. We will assume that the paral-
lelizable part of the job can make simultaneous use
of all P processors (i.e. logical parallelism is at least
equal to the physical parallelism). Different portions
of the same job may be executing in parallel in a co-
operative fashion implying in an overhead associated
with the necessary synchronization, communication
and any other contention for shared resources (e.g.
memory contention delays in shared memory multi-
processors). Amdahls’s Law has demonstrated that
the serial fraction of processing dominates the exe-
cution time for any large parallel ensemble of pro-
cessors, limiting the advantages of parallel architec-
tures.

In sea.rch for higher speed and more cost effective
designs, heterogeneity in parallel processing system
is analysed in this paper as a viable approach to
construct general purpose supercomputers. Hetero-
geneity has appeared at different levels in high per-
formance system design [3]. In this work we consider
heterogeneity at the system level, where classes of
processors of different speed are dedicated to spe-
cific tasks and cooperate closely on the same job.

In this paper, we analyze heterogeneous systems
with two different classes of processors. A heteroge-
neous supercomputer architecture consists of P - 1
identical processing elements and a single more pow-
erful processing element. The former are called par-
allel processors, which execute the fraction of the
computation that can be partitioned among the P
processors. The latter processing element, called se-
quential processor, is designated to process the
serial fraction of the computation. The rationale for
this proposed architecture stems from the fact that
more powerful processors can reduce the processing
time of serial fractions and improve the speedup up-
per bound of parallel architectures. Heterogeneous
parallel architectures make use of the best of two
worlds; they combine the speed of powerful single
processor with the unlimited growth of a set of ho-
mogeneous and cheap lower capacity processors.

170

3 Performance Models 3.2 Performance Model for the Ho-

The basic parameters and assumptions for the per-
formance models used here are:

mogeneous Parallel Computa-
tion Paradigm

l P Number of processors.

l C Capacity (in MIPS) of each processor in the
homogeneous case.

l C, Capacity (in MIPS) of the sequential proces-
sor in the heterogeneous case.

In the parallel computation case, the total processing
time of a job is given by the sum of its sequential
processing time (i.e. part of the job that cannot
be broken up into parallel portions of code) and of
its parallel part. The appropriate queueing model in
this case is an M/G/l model (see [ll]) which requires
the first and second moments of the total processing
time.

l C, Capacity (in MIPS) of each parallel proces-
sor in the heterogeneous case.

l X Average job arrival rate (jobs/second).

l f random variable that indicates the number of
instructions of a job.

Let 2 be the random variable that measures the
total processing time of a job, is be the random
variable that indicates the time spent to process
the sequential part of the code, and & the random
va.riable that measures the time spent in the par-
allel part of the program. The time &, includes all
the overhead due to synchronization, communication
and contention for any shared resource. Hence,

l F, fraction of the total number of instructions
of a job that must be executed serially.

l F’ fraction of the total number of instructions
of a job that may be executed in parallel.

tl = is + fp (2)

Some relationships between the first and second
moments of the above defined random variables are
given below.

s=g+q (3)

7 = E[f] and F = E[fz2] are, respectively, the first
and second moments of i.

Assumptions:

l Jobs arrive from a Poisson Process.

l The r.v. i is exponentially distributed.

The performance measure of interest in all ca.ses
will be the average job response time, denoted by T.

3.1 Performance Model for the Cen-
tralized Computation Paradigm

t2=P+z5+2cq s P (4)

Notice that equation (4) above assumes that is
and ip are independent random variables. This as-
sumption takes into account that in a parallel sys-
tem, probabilistic computing times for tasks are
more appropriate when modeling the execution of
real programs. The source of randomness in com-
puting time are the hardware and software of the
system, and the computation itself [8].

Let us first consider the case where the paral-
lel system is made up of homogeneous processors.
Hence,

Since the number of instructions f is assumed to be
exponentially distributed, the processing time of a

job at the central facility is given by g and is also
exponentially distributed. Thus, T cau be directly
obtained from the results of the queue M/M/l [ll]
as follows

T=-L
1 _ ti (1)

c

t;, = E(P) + S(P) (6)

where E(P) is a function that gives the total time
to execute the parallel portion of a job and S(P)
is the time spent due to synchronization, communi-
cation and any other resource contention overheads.
Three forms for S(P) are discussed in [12]:

S(P) = c log, P (7)

171

S(P) =c; (8)
S(P) = ; P log:, P (9)

We consider here the expression for $ given
in (lo), which assumes that the total number of in-
structions to be executed in parallel, Fp r”, are broken
up into P instruction streams, each stream being ex-
ecuted by one of the P processors. The total time
to execute the P parallel streams is the time it takes
to process the longest one. The first and second
moments of a random variable defined as the maxi-
mum of P exponentially independent and identically
distributed random variables can be found in [lG].
Hence,

ip =max{&,...,Zp} (10)

where the &‘s are independent and identically
distributed r.v.‘s, with distribution equal to the

r.v. $$. Thus,

g’=
F? F? p1 2-JJp=L
CP CP .&a c (12)

Notice that the harmonic number Hp which a.p-
pears in expression (12) is reasonably dose to the
natural logarithm of P [16].

From (3), (11) and (12) it follows that the avera.ge
processing time is given by,

&Fs; + - FpI p 1

CP i=l i c

Now,

(13)

04)

Finally, the average response time T can be given

by

3.3 Performance Models for the
Heterogeneous Parallel Compu-
tation Paradigm

The results of section 3.2 may be modified in a
straightforward manner in order to account for a het-
erogeneous parallel architecture composed of a pro-
cessor (generally more powerful than the remaining
P - 1 processors) which will be assigned to execute
the sequential part of the computation.

Thus, the average processing time for the hetero-
geneous architecture is

?= Fs7 Fp? p-1 1

c, + cp (P - 1) i=l : c (18)

and its second moment is given by

Finally, the average response time T for the het-
erogeneous case is given by equation (17) where ?
and p are given by equations (18) and (19).

4 Cost Considerations

Therefore the second moment of i can be obtained
directly from (4), (ll), (12), (14) and (15) as indi-
cated below.

Cod(f, C) = Kf co.45 (20)

where Cost(f, C) is the average cost of a system
2 F, Fp (7)’ p 1

C2P c T
i=l

2
(1~)of fa.mily f and capacity C. Ii’f is a family depen-

dent constant. Let D be the total system cost (in

172

Issues of economies of scale in computing came to
consideration after an intuitive statement made by
Herbert Grosch and published in [4]. This state-
ment, which became known as Grosch’s Law, was
later revisited [5] and re-revisited by Ein-Dor [l].
The essence of Grosch Law is that the average cost
of a computer system is proportional to the capac-
ity of the processor raised to the power 0.45. The
proportionality constant depends on the family of
the processor: supercomputers, large mainframes,
sma.11 mainframes, minicomputers and microcom-
puters. So, in general

US$l,OOO.OO) and KH* the constant relative to the
processor family used to implement a homogeneous
parallel architecture. Thus

D = P KHm Co.45 (21)

From (21) and the results given in section 3 one
can state the following theorem (see proof in the Ap-
pendix).

Theorem 1 The response time is an in,creasing

function of the number of processors for Ihe paral-
lel computation paradigm, provided that system cost
is kept constant when the number of processors is

increased (this implies that the capacity of each pro-
cessor must be reduced).

Theorem 1 implies that it is better performa.nce-
wise in parallel systems to have a smaller number
of more powerful processors than a larger number of
less powerful processors, provided that the system
cost remains unchanged.

5 Modeling Results

Using the analytic models developed in section three
we are now able to draw curves that compare the an-
erage response time of a transaction processing work-
load submitted to two different computer systems or-
ganized under the two basic computation pa.ra.digms.
The total system cost is assumed to be the sa.me for
the two systems. The centralized system is assumed
to be implemented by a single powerful processor
from the family of supercomputers and the pa.rallel
architecture is built out of several microprocessors.
The characterization of these families of machines
was described in section four and is based on cost
performance considerations.

Theorem 1 of section four establishes tl1a.t in order
to minimize response time in the parallel case, one
should use less processors of higher capacity a.s op-
posed to more processors of lower capacity, provided
that total system cost is kept constant. Assuming a
fixed total system cost and based on the revised ver-
sion of Grosch’s Law [l], we can have a centralized
system consisting of only one supercomputer of 25
MIPS or a parallel system composed of 1119 micro-
processors of 0.8 MIPS each. Two classes of transac-
tions are considered for the latter case. One exhibits
the maximum possible degree of parallelism, i.e. the
fraction of sequential processing (F,) is equal to 0,
and the other has an F, = 10% of the total process-
ing requirement. F’g 1 ure 1 displays the variation of
the average transaction response time a.s a function
of the average transaction arrival rate.

200 -

E 150 -

t

- Centralized

I Parallel Fs = 0.0
I

--
l Parallel Fs = 0.1

T
100 - I

I

A-J 50-
/

e / J
. . /--/..

1 5 9 13 17 21 25

Arrival Rate (transactions/set.)

Figure 1:
Paradigms

Performance of the Computation

The best performance is obtained for the paral-
lel computation model processing transactions with
F, = 0. However it is a well known fact that real
programs from diverse application fields exhibit a
non zero sequential processing fraction [7, 81. The
best case for real programs turns out to be the cen-
tralized model which exhibits a very low response
time as compared to the other architectures. It
should be noted that in order to upgrade the perfor-
mance of a centralized system, one must use a more
powerful processor, which implies in using more ad-
va.nced component technologies. As indicated by
Hack in [12], reductions in high performance ma-
chine cycle times have been coming at a much slower
pace in recent years, a problem that is expected
to become more accute as signal propagation con-
stra.ints, which limit the physical size of the cen-
tral processing unit, become the limiting technolog-
ica.1 factor. Optimistic projections suggest that cy-
cle times in the vicinity of one nanosecond may be
the limit for existing technologies. Current existing
machines already present a cycle time close to that
limit; NEC-SX3 [13] h as a cycle time of 2.1 nanosec-
ond. Therefore, the centralized approach for design-
ing high performance machines is reaching its limit.
Parallel processing has been proposed as a means to
circumvent the technological growth limitations of
single-processor architectures. Systems composed of
several hundreds or even thousands of processors are
becoming a commonplace these days [17].

Figure 1 shows also the behavior of a parallel sys-

173

tern when real programs, characterized by non-zero
fraction of serial computing, are executed. As it can
be noted in the figure there is a dramatic perfor-
mance degradation in this case, which confirms the
critical role of the sequential portion of the code on
the overall performance of a system. This was first
stated by Amdahl[9]. Therefore, the mere use of sev-
eral identical processors in parallel does not a.ppea.r
to be the best solution to achieve high performance
general-purpose computing. This paper proposes in
the next section a heterogeneous approach to pa.ral-
le1 processing.

5.1 Performance Comparisons

The performance metric used in the comparisons is
the architecture speedup, which is defined a.s the ra.-
tio of the response time when executing a tra.nsac-
tion on a homogeneous parallel architecture to the
response time when the transaction executes on the
heterogeneous parallel architecture of the sa.me cost.
The Processor Power Ratio (PPR) represents the
degree of heterogeneity of the architecture. It is the
ratio of the capacity of the sequential processor over
the capacity of each identical parallel processor (e).

This ratio equals to one in the homogeneous case.
Consider now a heterogeneous and a homogeneous

parallel architecture of the same cost D, processing
a workload defined by an average arrival rate X a.nd a
computing demand 7, which is the average number
of instructions to be executed in each tra.nsa.ction.
This section analyzes the relative performance of the
two computation paradigms.

- Fs 0.3 . . =
16- -- --. ;; z g:j
14- - Fs=o .----_

12 ./
.NY

- z

$
lo- /

./
d 8-

;: 6-
*/ /=-------

/, ’ ’ -_ -------
4-),,-- ---- --

2-K” /
OS .1.1..........,.........,,,....

I I 1 I I I I I I
1 3 5 7 9 11 13 15 17 19

Power Processor Ratio

Figure 2: Heterogeneous versus Homogeneous

Figure 2 plots the architecture speedup as calc.u-

lated by the queueing models (sections 3.2 and 3.3)
a.s a function of the processor power ratio (PPR).
In this figure, the average arrival rate is 3600 trans-
a.ctions per hour and the average number of instruc-
tions executed per transaction is one million. The
homogeneous parallel architecture consists of 1106
identical 0.8 MIPS processors.

In order to specify the parameters of the hetero-
geneous architecture model (i.e., number of paral-
lel processing elements and capacity and family of
the sequential processor), a fraction of the total cost
of a homogeneous system is assigned to the sequen-
tial processor of the selected family. Using Grosch’s
Law [I], we can determine the capacity of this pro-
cessor, as well as the number of parallel processors to
be removed. Varying the fraction of cost used to cal-
cula.te the capacity of the sequential processor, sev-
eral models of heterogeneous architecture are built
a.nd analyzed with the queueing models. Consider
now a homogeneous parallel architecture and sev-
eral configurations of heterogeneous parallel archi-
tectures, all of them with the same cost. Workloads
with different fractions of serial processing are used
to compare the types of architecture. First, notice
tha.t for workloads with non-zero serial processing
fraction the heterogeneous architecture outperforms
the homogeneous architecture, no matter the pro-
cessor power ratio. For these workloads the speedup
always remains greater than one and increases with
the fraction of serial computing. The bigger the se-
quential fraction, the better the performance of the
heterogeneous architecture.

The analysis now focus on the performance of the
heterogeneous architectures when compared to that
of centralized systems. For this purpose, consider a
heterogeneous and a centralized architectures of the
same cost D, processing identical workloads, spec-
ified by an average arrival rate X and a computing
dema.nd ?. Although the workload places the same
computing demand on both architectures, an addi-
tional parameter, the fraction of serial processing, is
ta.ken into consideration for the performance analy-
sis of heterogeneous architectures.

The centralized architecture consists of a powerful
25 MIPS single processor, whereas the heterogeneous
pa,rallel architecture has three different models, with
440, 329, and 773 identical parallel processors re-
spectively. The capacity of the sequential processor
in each model is represented by the Processor Power
Ra.tio (PPR), which are 9.86, 13.9 and 7.06 respec-
tively.

Figure 3 plots the architecture speedup as calcu-
la.ted by the performance models, as a function of the
seria.1 processing of the workload. For the centralized

174

e
e
d
U
P

PPR = 7.06

--- PPR = 9.86
--I- PPR = 13.9

0 I I I 1 1 1 I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of Sequential Processing

Figure 3: Heterogeneous x Centralized

architecture the response time does not vary with
this parameter. The speedup plotted in this figure
is the response time when a transaction is executed
on the centralized system over the response time the
when the transaction executes on a configumtion of
the heterogeneous parallel architecture.

The line corresponding to speedup one divides fig-
ure 3 into two regions: the one where the heteroge-
neous architecture performs better than the central-
ized system and the other region where the position
inverts. The former region is located on the portion
of the figure where the workload presents sma.11 fra,c-
tions of serial processing. An interesting a.nalysis
consists of selecting a heterogeneous configuration
and comparing its relative performance to a. single
processor of the same cost. Then, the performance of
a cost equivalent homogeneous configuration is com-
pared to the same single processor. Table 1 shows
such a comparison for several values of the sequent&l
processing fraction (F,) .

Table 1: Speedup of Parallel Architectures

Fraction(Fs) Speedup
Homogeneous Heterogeneous

0.00 4.9 2.3
0.10 0.28 1.4

0.20 0.12 1.1

0.30 0.07 0.8

For the unrealistic case of F, = 0, the speeclup of
the homogeneous configuration is greater tha.n that

of the heterogeneous case. However, it can be seen
from the table 1 that in all other cases, which resem-
ble to real workloads, the heterogeneous configura-
tion exhibits superior speedup.

6 Heterogeneity Issues

The models presented in this paper helped to show
the cost-effectiveness of building heterogeneous su-
petcomputers with two classes of processors. One
ca.n certainly imagine a more general situation in
which there are several classes of processors of differ-
ent speeds. An interesting and important problem
that a.rises in such an environment is how to op-
timally schedule tasks to different processors. The
criterium of optimality in this case would be the min-
imization of the execution time of a parallel applica-
tion running on the architecture.

A parallel application is composed of a certain
number of tasks which must be executed according
to a. ceratin precedence order, specified by a task
gra.ph [15]. Since task execution times are not deter-
ministic, due to several delays imposed by contention
on shared resources, such as common memory, or in-
tercommunication network, it is not feasible to imag-
ine scheduling algorithms that will always give the
optimum schedule. Therefore, one must settle for
nea.r-optimal solutions.

The scheduling problem has been discussed in ho-
mogeneous environments in the work of Sevcik [15].
In a heterogeneous architecture, the problem be-
comes more complex due to the even greater di-
versity of scheduling alternatives, created by several
cla.sses of processors with different speeds. Prob-
lems such as scheduling of concurrent tasks, parallel
algorithm design for heterogeneous architectures, to
na,me a few, are entirely open research topics.

7 Conclusions

Amda.hl’s Law [9] I las demonstrated that the serial
fraction of processing dominates the execution time
for a.ny large parallel ensemble of processors, limiting
the advantages of parallel supercomputers.

In search for higher speed and more cost effec-
tive designs, heterogeneity [3] in supercomputer ar-
chitect,ures was introduced in this paper as a viable
a.pproach to construct general purpose high perfor-
ma.nce pa.rallel systems. A heterogeneous parallel
a.rchitecture consists of P - 1 identical processing
elements and a. single more powerful processing ele-
ment. The rationale for this proposed architecture
stems from the fact that more powerful processors

175

can reduce the processing time of seria.1 fra.ctions
and improve the upper bound speedup of parallel
architectures. Heterogeneous parallel architectures
make use of the best of two worlds; they combine
the speed of a powerful single processor with the un-
limited growth of a set of homogeneous and cheap
lower capacity processors.

All performance comparisons carried out in this
paper consider that the cost of the compared sys-
tems is the same. Grosch’s Law, in its revised ver-
sion [l], was used in order to relate cost and capa,city
of processors of the same family. Queueing mod-
els were developed in order to analyze the perfor-
mance of homogeneous and heterogeneous computa-
tion paradigms. The results show that the hetero-
geneous architecture exhibits higher speedup when
compared with cost equivalent homogeneous a.rchi-
tectures. Results were derived and presented for var-
ious classes of applications characterized by differ-
ent degrees of parallelism. Also, different configu-
rations of heterogeneous architectures, represented
by sequential processors of different capacities, were
analyzed.

The results of this paper show that heterogeneity
in supercomputer architectures is a quite promising
design approach that deserves further investiga.tion.

References

[l] Ein-Dor, Phillip, Grosch’s law re-re,visited:
CPU power and the cost of computation, Com-
munications of the ACM, Vol. 28, no. 2 (Feb
1985), pp 142-151.

[2] Menasce, Daniel and Almeida, Virgilio, Ana-
lytic Models of Supercomputer PerformaIIce in
Multiprogramming Environments, The Int~erna-
tional Journal of Supercomputer Applicat.ions,
Vol. 3, No. 2, Summer 1989, MIT Press.

[3] Ercegovac, Milos D., Heterogeneity in super-
computer architectures, Parallel Comput#ing 7
(1988), North-Holland, pp 367-372.

[4] Grosch, H. A., High speed arithmetic: the digital
computer as a research tool, J. Opt. Sot. Am.
Vol. 43, No. 4, April 1953.

[5] Grosch, H. A., Grosch’s law revisited, Comput-
erworld, Vol. 8, April 16, 1975.

[6] Heidelberger P., A performance comparison of

multimien, and mainframe database archilec-
tures, IEEE Transactions on Software Engineer-
ing, Vol. 14, No. 4, April 1988.

[7] Eager, D., Zahorjan J., Lazowska, E. Speedup
versus eficiency in parallel systems, IEEE
Transactions on Computer Systems, Vol. 38,
No. 3, March 1989.

[8] Flatt, H., Kennedy, K. Performance of parallel
processors, Parallel Computing, No. 12, 1989,
North Holland.

[9] Amdahl, G, Validity of the single processor ap-
proach to achieving large scale computing ca-
pability, in: Proc. AFIPS Spring Joint Comp.
Conf. 30, 1967.

[lo] Kleinrock, L. Distributed Systems, Computer,
Vol. 18, No. 11, November 1985.

[ll] Kleinrock, L. Qzleueing Systems, Volume I:
Theory, Wiley-Interscience, 1975.

[12] Hack, J. On the promise of general purpose par-
allel computing, Parallel Computing, 10 (1989),
North Holland, pp 261-275.

[13] Vector Register, Vol. 2, No. 5, June 1989, Insti-
tute for Supercomputing Research, Japan.

[14] Hackney, R. and Jesshope, C. Parallel Comput-
ers 2, Adam Hilger, Bristol and Philadelphia,
1988.

151 Sevcik, K. Characterizations of parallelism and
their use in scheduling, Performance Evaluation
Review, Vol. 17, No. 1, May 1989.

161 Trivedi, K. Probability and Statistics with Reli-
ability, Queueing, and Computer Systems Ap-
plications, Prentice Hall, 1982.

[17] Bell, G or d on The future of high performance
computers in science in engineering, Commu-
nications of ACM, Vol. 32, No. 9, September
1989.

[18] Wallach S., What will the next generation super-
computer look like ?, Supercomputing Review,
Ja.nuary 1990.

Appendix: Proof of Results

Proof of Theorem 1

From equation (17) we know that the average re-
sponse time T is given by

(22)

176

Let cp denote a constant value. Arithmetic oper-
ations involving ‘p and other constants will give as
result another constant which will be denoted by cp
no matter what its value is.

From the constant cost assumption we have that

Pp Ic, cp = 'p

Thus, from (23) we have that

c;, 1 -E-
p2.22...

P

In order to prove the theorem let us prove the
following lemmas:

Lemma 1 t is an increasing function of Pp.

From equation(13), we have that

From (24) and (25) it follows that

(25)

The lemma follows directly from equation (26)

Lemma 2 F is an increasing fundion of Pp.

From equation (16) we have that

From (24) and (27) we have that

F = ppy- + 'PP; 244... (HA +$) +

pP;.44- Hpp (28)

The lemma follows directly from equation (28).
The theorem proof follows immediately from the

inspection of equation (22) and lemmas 1 and 2.
Q.E.D.

177

