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Abstract 

Heterogeneity has appeared as a cost-effective ap- 
proach to design high performance computers. This 
paper analyzes cost-performance of heterogeneity in 
supercomputer architectures. Queueing models are 
used to study performance of homogeneous and het- 
erogeneous supercomputer models. Grosch’s Law, 
which states that computer performance increases 
as the square of its cost, is used to analyze cost as- 
pects of the models. The results of this paper show 
that heterogeneity in supercomputer architectures is 
a quite promising design approach that deserves fur- 
ther investigation. 

1 Introduction 

Advances in VLSI technology have caused a dra- 
matic change in cost-performance trade-offs for de- 
signing high performance computer systems. Per- 
formance has been increased by architectural inno- 
vations and progress in semi-conductor technology. 
Currently, computer systems consisting of up to tens 
of hundreds of relatively inexpensive microprocessors 
can be built. A number of machine architectures 
with a large number of processors have been im- 
plemented in an attempt to provide supercomputer 
power at a fraction of supercomputer cost (e.g., In- 
tel iPSC, Ncube, Connection Machine, etc [17]). 
On the other hand, a supercomputer such as the 
NEC SX2 [17], consisting of a single processor is con- 
sidered one of the most powerful machines available 
today. 

Both design approaches, parallel and sequential 
processing, present some limitations. Powerful se- 
quential processors are very expensive and their per- 
formance cannot be improved much further because 
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they are reaching the ultimate limit, represented by 
the speed of light. Parallel systems circumvent this 
limitation by harnessing many relatively inexpensive 
VLSI processors together. More important, there 
is no foreseeable limit to the computing power that 
may be achieved through parallel processing. How- 
ever, the sequential fraction of a computation places 
a rather significant constraint on the effectiveness 
with which any particular algorithm can make use 
of a large number of processors [9, 7, lo]. 

This paper analyzes heterogeneity in supercom- 
puter architecture as a cost-effective approach to 
combine the best features of sequential and par- 
allel processing: speed of sequential computation 
and unlimited growth of computing power in par- 
allel processing. In parallel processing, heterogene- 
ity concerns the use of different processors, that are 
dedicated to specific tasks and cooperate closely on 
the same job. Performance of heterogeneous paral- 
lel architectures is studied through the use of mod- 
els based on queueing theory. This paper also an- 
alyzes cost aspects of heterogeneous architectures. 
In evaluating cost of computer systems, we refer 
to Grosch’s Law [4, 1, lo], which states that com- 
puter performance increases as the square of its cost. 
This Law has been verified extensively with empiri- 
cal data over generations of computers. Ein-Dor [l] 
points out that Grosch’s Law is still valid if families 
of computers, such as supercomputers, mainframes, 
minicomputers and microcomputers are considered. 
There are economies of scale within any given com- 
puter category, but there are diseconomies in tran- 
sition from one family to another. This paper uses 
Grosch’s Law in order to construct heterogeneous 
models with the same cost of homogeneous parallel 
ones. 

Ercegovac [3] d iscusses some approaches to het- 
erogeneous architectures in order to achieve cost- 
effective performance and programmability. Wal- 
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lath [18] also sugests that in the future high per- 
formance parallel systems will be built with hetero- 
geneous processors as contrasted to homogeneous 
ones. However, no quantitative results are pre- 
sented in those references [3, 181. Queueing net- 
work models have been successfully used to inves- 
tigate and compare hypothetical architectures. For 
instance, Heidelberg [6] uses queueing network mod- 
els to study the performance of a hypothetical multi- 
microprocessor back-end database machine relative 
to that of a mainframe database system. Menasce 
and Almeida [2] also used analytic models to pro- 
pose variations in supercomputer architectures. We 
are not aware of any paper that studies the cost- 
performance tradeoffs of heterogeneity in supercom- 
puter architectures using analytic models. 

2 Homogeneous and Hetero- 
geneous Parallel Processing 
Paradigms 

Rather than studying specific machines, this pa- 
per takes a more abstract view, and explores cost- 
performance trade-offs of heterogeneous versus ho- 
mogeneous supercomputer architectures. In order 
to carry the analysis, two basic models of process- 
ing, which underlie the whole spectrum of high per- 
formance systems, are defined. The two models 
of processing that constitute the basic comput,ation 
paradigms are the following: centralized and paral- 
lel processing. In the first model, a single processor 
performs the sequential execution of all ta.sks of a 
job. In a parallel processing system, a number of 
processors is organized in such a way that they coop- 
eratively execute a single job, where each processor 
is assigned to execute a task. The models are a.ua- 
lyzed in a context of a specific application doma.iu, 
namely high volume on-line transaction processing. 
The Input/Output subsystem will not be cousidered 
here, since in this study we are basically interested 
in contrasting processor power versus cost in va.rious 
architectures. 

The centralized model assumes the existence of a, 
central processing facility, consisting of a single pro- 
cessor, to which jobs are submitted for execution. 
Jobs that arrive and find the central facility busy 
have to wait in a queue. Machines such as the Iii- 
tachi S810/20, Fujitsu VP-200, a.nd IBM 3090/180- 
VF [14] to name a few fall into this ca.tegory. 

Parallel processing architectures are divided iuto 
two classes: homogeneous and heterogeueous sys- 
tems. The homogeneous parallel processing pa,ra- 

digm assumes the existence of a set of P (P > 1) 
identical processors which collectively process one 
job at a time. Jobs arrive from an infinite population 
source; those which find the set of P processors busy 
working on a given job will have to wait in a queue. 
It is assumed that a fraction Fp of the instructions 
of a job may be executed in parallel by the P proces- 
sors (each one will execute $ of the total number of 
instructions that can be executed in parallel), and, 
a fraction F, (equal to 1 - Fp) of the instructions 
of the job must be executed sequentially by any one 
of the P processors. We will assume that the paral- 
lelizable part of the job can make simultaneous use 
of all P processors (i.e. logical parallelism is at least 
equal to the physical parallelism). Different portions 
of the same job may be executing in parallel in a co- 
operative fashion implying in an overhead associated 
with the necessary synchronization, communication 
and any other contention for shared resources (e.g. 
memory contention delays in shared memory multi- 
processors). Amdahls’s Law has demonstrated that 
the serial fraction of processing dominates the exe- 
cution time for any large parallel ensemble of pro- 
cessors, limiting the advantages of parallel architec- 
tures. 

In sea.rch for higher speed and more cost effective 
designs, heterogeneity in parallel processing system 
is analysed in this paper as a viable approach to 
construct general purpose supercomputers. Hetero- 
geneity has appeared at different levels in high per- 
formance system design [3]. In this work we consider 
heterogeneity at the system level, where classes of 
processors of different speed are dedicated to spe- 
cific tasks and cooperate closely on the same job. 

In this paper, we analyze heterogeneous systems 
with two different classes of processors. A heteroge- 
neous supercomputer architecture consists of P - 1 
identical processing elements and a single more pow- 
erful processing element. The former are called par- 
allel processors, which execute the fraction of the 
computation that can be partitioned among the P 
processors. The latter processing element, called se- 
quential processor, is designated to process the 
serial fraction of the computation. The rationale for 
this proposed architecture stems from the fact that 
more powerful processors can reduce the processing 
time of serial fractions and improve the speedup up- 
per bound of parallel architectures. Heterogeneous 
parallel architectures make use of the best of two 
worlds; they combine the speed of powerful single 
processor with the unlimited growth of a set of ho- 
mogeneous and cheap lower capacity processors. 
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3 Performance Models 3.2 Performance Model for the Ho- 

The basic parameters and assumptions for the per- 
formance models used here are: 

mogeneous Parallel Computa- 
tion Paradigm 

l P Number of processors. 

l C Capacity (in MIPS) of each processor in the 
homogeneous case. 

l C, Capacity (in MIPS) of the sequential proces- 
sor in the heterogeneous case. 

In the parallel computation case, the total processing 
time of a job is given by the sum of its sequential 
processing time (i.e. part of the job that cannot 
be broken up into parallel portions of code) and of 
its parallel part. The appropriate queueing model in 
this case is an M/G/l model (see [ll]) which requires 
the first and second moments of the total processing 
time. 

l C, Capacity (in MIPS) of each parallel proces- 
sor in the heterogeneous case. 

l X Average job arrival rate (jobs/second). 

l f random variable that indicates the number of 
instructions of a job. 

Let 2 be the random variable that measures the 
total processing time of a job, is be the random 
variable that indicates the time spent to process 
the sequential part of the code, and & the random 
va.riable that measures the time spent in the par- 
allel part of the program. The time &, includes all 
the overhead due to synchronization, communication 
and contention for any shared resource. Hence, 

l F, fraction of the total number of instructions 
of a job that must be executed serially. 

l F’ fraction of the total number of instructions 
of a job that may be executed in parallel. 

tl = is + fp (2) 

Some relationships between the first and second 
moments of the above defined random variables are 
given below. 

s=g+q (3) 

7 = E[f] and F = E[fz2] are, respectively, the first 
and second moments of i. 

Assumptions: 

l Jobs arrive from a Poisson Process. 

l The r.v. i is exponentially distributed. 

The performance measure of interest in all ca.ses 
will be the average job response time, denoted by T. 

3.1 Performance Model for the Cen- 
tralized Computation Paradigm 

t2=P+z5+2cq s P (4) 

Notice that equation (4) above assumes that is 
and ip are independent random variables. This as- 
sumption takes into account that in a parallel sys- 
tem, probabilistic computing times for tasks are 
more appropriate when modeling the execution of 
real programs. The source of randomness in com- 
puting time are the hardware and software of the 
system, and the computation itself [8]. 

Let us first consider the case where the paral- 
lel system is made up of homogeneous processors. 
Hence, 

Since the number of instructions f is assumed to be 
exponentially distributed, the processing time of a 

job at the central facility is given by g and is also 
exponentially distributed. Thus, T cau be directly 
obtained from the results of the queue M/M/l [ll] 
as follows 

T=-L 
1 _ ti (1) 

c 

t;, = E(P) + S(P) (6) 

where E(P) is a function that gives the total time 
to execute the parallel portion of a job and S(P) 
is the time spent due to synchronization, communi- 
cation and any other resource contention overheads. 
Three forms for S(P) are discussed in [12]: 

S(P) = c log, P (7) 
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S(P) =c; (8) 
S(P) = ; P log:, P (9) 

We consider here the expression for $ given 
in (lo), which assumes that the total number of in- 
structions to be executed in parallel, Fp r”, are broken 
up into P instruction streams, each stream being ex- 
ecuted by one of the P processors. The total time 
to execute the P parallel streams is the time it takes 
to process the longest one. The first and second 
moments of a random variable defined as the maxi- 
mum of P exponentially independent and identically 
distributed random variables can be found in [lG]. 
Hence, 

ip =max{&,...,Zp} (10) 

where the &‘s are independent and identically 
distributed r.v.‘s, with distribution equal to the 

r.v. $$. Thus, 

g’= 
F? F? p1 2-JJp=L 
CP CP .&a c (12) 

Notice that the harmonic number Hp which a.p- 
pears in expression (12) is reasonably dose to the 
natural logarithm of P [16]. 

From (3), (11) and (12) it follows that the avera.ge 
processing time is given by, 

&Fs; + - FpI p 1 

CP i=l i c 

Now, 

(13) 

04) 

Finally, the average response time T can be given 

by 

3.3 Performance Models for the 
Heterogeneous Parallel Compu- 
tation Paradigm 

The results of section 3.2 may be modified in a 
straightforward manner in order to account for a het- 
erogeneous parallel architecture composed of a pro- 
cessor (generally more powerful than the remaining 
P - 1 processors) which will be assigned to execute 
the sequential part of the computation. 

Thus, the average processing time for the hetero- 
geneous architecture is 

?= Fs7 Fp? p-1 1 

c, + cp (P - 1) i=l : c (18) 

and its second moment is given by 

Finally, the average response time T for the het- 
erogeneous case is given by equation (17) where ? 
and p are given by equations (18) and (19). 

4 Cost Considerations 

Therefore the second moment of i can be obtained 
directly from (4), (ll), (12), (14) and (15) as indi- 
cated below. 

Cod(f, C) = Kf co.45 (20) 

where Cost(f, C) is the average cost of a system 
2 F, Fp (7)’ p 1 

C2P c T 
i=l 

2 
(1~)of fa.mily f and capacity C. Ii’f is a family depen- 

dent constant. Let D be the total system cost (in 
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Issues of economies of scale in computing came to 
consideration after an intuitive statement made by 
Herbert Grosch and published in [4]. This state- 
ment, which became known as Grosch’s Law, was 
later revisited [5] and re-revisited by Ein-Dor [l]. 
The essence of Grosch Law is that the average cost 
of a computer system is proportional to the capac- 
ity of the processor raised to the power 0.45. The 
proportionality constant depends on the family of 
the processor: supercomputers, large mainframes, 
sma.11 mainframes, minicomputers and microcom- 
puters. So, in general 



US$l,OOO.OO) and KH* the constant relative to the 
processor family used to implement a homogeneous 
parallel architecture. Thus 

D = P KHm Co.45 (21) 

From (21) and the results given in section 3 one 
can state the following theorem (see proof in the Ap- 
pendix). 

Theorem 1 The response time is an in,creasing 

function of the number of processors for Ihe paral- 
lel computation paradigm, provided that system cost 
is kept constant when the number of processors is 

increased (this implies that the capacity of each pro- 
cessor must be reduced). 

Theorem 1 implies that it is better performa.nce- 
wise in parallel systems to have a smaller number 
of more powerful processors than a larger number of 
less powerful processors, provided that the system 
cost remains unchanged. 

5 Modeling Results 

Using the analytic models developed in section three 
we are now able to draw curves that compare the an- 
erage response time of a transaction processing work- 
load submitted to two different computer systems or- 
ganized under the two basic computation pa.ra.digms. 
The total system cost is assumed to be the sa.me for 
the two systems. The centralized system is assumed 
to be implemented by a single powerful processor 
from the family of supercomputers and the pa.rallel 
architecture is built out of several microprocessors. 
The characterization of these families of machines 
was described in section four and is based on cost 
performance considerations. 

Theorem 1 of section four establishes tl1a.t in order 
to minimize response time in the parallel case, one 
should use less processors of higher capacity a.s op- 
posed to more processors of lower capacity, provided 
that total system cost is kept constant. Assuming a 
fixed total system cost and based on the revised ver- 
sion of Grosch’s Law [l], we can have a centralized 
system consisting of only one supercomputer of 25 
MIPS or a parallel system composed of 1119 micro- 
processors of 0.8 MIPS each. Two classes of transac- 
tions are considered for the latter case. One exhibits 
the maximum possible degree of parallelism, i.e. the 
fraction of sequential processing (F,) is equal to 0, 
and the other has an F, = 10% of the total process- 
ing requirement. F’g 1 ure 1 displays the variation of 
the average transaction response time a.s a function 
of the average transaction arrival rate. 
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Figure 1: 
Paradigms 

Performance of the Computation 

The best performance is obtained for the paral- 
lel computation model processing transactions with 
F, = 0. However it is a well known fact that real 
programs from diverse application fields exhibit a 
non zero sequential processing fraction [7, 81. The 
best case for real programs turns out to be the cen- 
tralized model which exhibits a very low response 
time as compared to the other architectures. It 
should be noted that in order to upgrade the perfor- 
mance of a centralized system, one must use a more 
powerful processor, which implies in using more ad- 
va.nced component technologies. As indicated by 
Hack in [12], reductions in high performance ma- 
chine cycle times have been coming at a much slower 
pace in recent years, a problem that is expected 
to become more accute as signal propagation con- 
stra.ints, which limit the physical size of the cen- 
tral processing unit, become the limiting technolog- 
ica.1 factor. Optimistic projections suggest that cy- 
cle times in the vicinity of one nanosecond may be 
the limit for existing technologies. Current existing 
machines already present a cycle time close to that 
limit; NEC-SX3 [13] h as a cycle time of 2.1 nanosec- 
ond. Therefore, the centralized approach for design- 
ing high performance machines is reaching its limit. 
Parallel processing has been proposed as a means to 
circumvent the technological growth limitations of 
single-processor architectures. Systems composed of 
several hundreds or even thousands of processors are 
becoming a commonplace these days [17]. 

Figure 1 shows also the behavior of a parallel sys- 
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tern when real programs, characterized by non-zero 
fraction of serial computing, are executed. As it can 
be noted in the figure there is a dramatic perfor- 
mance degradation in this case, which confirms the 
critical role of the sequential portion of the code on 
the overall performance of a system. This was first 
stated by Amdahl[9]. Therefore, the mere use of sev- 
eral identical processors in parallel does not a.ppea.r 
to be the best solution to achieve high performance 
general-purpose computing. This paper proposes in 
the next section a heterogeneous approach to pa.ral- 
le1 processing. 

5.1 Performance Comparisons 

The performance metric used in the comparisons is 
the architecture speedup, which is defined a.s the ra.- 
tio of the response time when executing a tra.nsac- 
tion on a homogeneous parallel architecture to the 
response time when the transaction executes on the 
heterogeneous parallel architecture of the sa.me cost. 
The Processor Power Ratio (PPR) represents the 
degree of heterogeneity of the architecture. It is the 
ratio of the capacity of the sequential processor over 
the capacity of each identical parallel processor (e). 

This ratio equals to one in the homogeneous case. 
Consider now a heterogeneous and a homogeneous 

parallel architecture of the same cost D, processing 
a workload defined by an average arrival rate X a.nd a 
computing demand 7, which is the average number 
of instructions to be executed in each tra.nsa.ction. 
This section analyzes the relative performance of the 
two computation paradigms. 
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Figure 2: Heterogeneous versus Homogeneous 

Figure 2 plots the architecture speedup as calc.u- 

lated by the queueing models (sections 3.2 and 3.3) 
a.s a function of the processor power ratio (PPR). 
In this figure, the average arrival rate is 3600 trans- 
a.ctions per hour and the average number of instruc- 
tions executed per transaction is one million. The 
homogeneous parallel architecture consists of 1106 
identical 0.8 MIPS processors. 

In order to specify the parameters of the hetero- 
geneous architecture model (i.e., number of paral- 
lel processing elements and capacity and family of 
the sequential processor), a fraction of the total cost 
of a homogeneous system is assigned to the sequen- 
tial processor of the selected family. Using Grosch’s 
Law [I], we can determine the capacity of this pro- 
cessor, as well as the number of parallel processors to 
be removed. Varying the fraction of cost used to cal- 
cula.te the capacity of the sequential processor, sev- 
eral models of heterogeneous architecture are built 
a.nd analyzed with the queueing models. Consider 
now a homogeneous parallel architecture and sev- 
eral configurations of heterogeneous parallel archi- 
tectures, all of them with the same cost. Workloads 
with different fractions of serial processing are used 
to compare the types of architecture. First, notice 
tha.t for workloads with non-zero serial processing 
fraction the heterogeneous architecture outperforms 
the homogeneous architecture, no matter the pro- 
cessor power ratio. For these workloads the speedup 
always remains greater than one and increases with 
the fraction of serial computing. The bigger the se- 
quential fraction, the better the performance of the 
heterogeneous architecture. 

The analysis now focus on the performance of the 
heterogeneous architectures when compared to that 
of centralized systems. For this purpose, consider a 
heterogeneous and a centralized architectures of the 
same cost D, processing identical workloads, spec- 
ified by an average arrival rate X and a computing 
dema.nd ?. Although the workload places the same 
computing demand on both architectures, an addi- 
tional parameter, the fraction of serial processing, is 
ta.ken into consideration for the performance analy- 
sis of heterogeneous architectures. 

The centralized architecture consists of a powerful 
25 MIPS single processor, whereas the heterogeneous 
pa,rallel architecture has three different models, with 
440, 329, and 773 identical parallel processors re- 
spectively. The capacity of the sequential processor 
in each model is represented by the Processor Power 
Ra.tio (PPR), which are 9.86, 13.9 and 7.06 respec- 
tively. 

Figure 3 plots the architecture speedup as calcu- 
la.ted by the performance models, as a function of the 
seria.1 processing of the workload. For the centralized 
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architecture the response time does not vary with 
this parameter. The speedup plotted in this figure 
is the response time when a transaction is executed 
on the centralized system over the response time the 
when the transaction executes on a configumtion of 
the heterogeneous parallel architecture. 

The line corresponding to speedup one divides fig- 
ure 3 into two regions: the one where the heteroge- 
neous architecture performs better than the central- 
ized system and the other region where the position 
inverts. The former region is located on the portion 
of the figure where the workload presents sma.11 fra,c- 
tions of serial processing. An interesting a.nalysis 
consists of selecting a heterogeneous configuration 
and comparing its relative performance to a. single 
processor of the same cost. Then, the performance of 
a cost equivalent homogeneous configuration is com- 
pared to the same single processor. Table 1 shows 
such a comparison for several values of the sequent&l 
processing fraction (F,) . 

Table 1: Speedup of Parallel Architectures 

Fraction(Fs) Speedup 
Homogeneous Heterogeneous 

0.00 4.9 2.3 
0.10 0.28 1.4 

0.20 0.12 1.1 

0.30 0.07 0.8 

For the unrealistic case of F, = 0, the speeclup of 
the homogeneous configuration is greater tha.n that 

of the heterogeneous case. However, it can be seen 
from the table 1 that in all other cases, which resem- 
ble to real workloads, the heterogeneous configura- 
tion exhibits superior speedup. 

6 Heterogeneity Issues 

The models presented in this paper helped to show 
the cost-effectiveness of building heterogeneous su- 
petcomputers with two classes of processors. One 
ca.n certainly imagine a more general situation in 
which there are several classes of processors of differ- 
ent speeds. An interesting and important problem 
that a.rises in such an environment is how to op- 
timally schedule tasks to different processors. The 
criterium of optimality in this case would be the min- 
imization of the execution time of a parallel applica- 
tion running on the architecture. 

A parallel application is composed of a certain 
number of tasks which must be executed according 
to a. ceratin precedence order, specified by a task 
gra.ph [15]. Since task execution times are not deter- 
ministic, due to several delays imposed by contention 
on shared resources, such as common memory, or in- 
tercommunication network, it is not feasible to imag- 
ine scheduling algorithms that will always give the 
optimum schedule. Therefore, one must settle for 
nea.r-optimal solutions. 

The scheduling problem has been discussed in ho- 
mogeneous environments in the work of Sevcik [15]. 
In a heterogeneous architecture, the problem be- 
comes more complex due to the even greater di- 
versity of scheduling alternatives, created by several 
cla.sses of processors with different speeds. Prob- 
lems such as scheduling of concurrent tasks, parallel 
algorithm design for heterogeneous architectures, to 
na,me a few, are entirely open research topics. 

7 Conclusions 

Amda.hl’s Law [9] I las demonstrated that the serial 
fraction of processing dominates the execution time 
for a.ny large parallel ensemble of processors, limiting 
the advantages of parallel supercomputers. 

In search for higher speed and more cost effec- 
tive designs, heterogeneity [3] in supercomputer ar- 
chitect,ures was introduced in this paper as a viable 
a.pproach to construct general purpose high perfor- 
ma.nce pa.rallel systems. A heterogeneous parallel 
a.rchitecture consists of P - 1 identical processing 
elements and a. single more powerful processing ele- 
ment. The rationale for this proposed architecture 
stems from the fact that more powerful processors 
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can reduce the processing time of seria.1 fra.ctions 
and improve the upper bound speedup of parallel 
architectures. Heterogeneous parallel architectures 
make use of the best of two worlds; they combine 
the speed of a powerful single processor with the un- 
limited growth of a set of homogeneous and cheap 
lower capacity processors. 

All performance comparisons carried out in this 
paper consider that the cost of the compared sys- 
tems is the same. Grosch’s Law, in its revised ver- 
sion [l], was used in order to relate cost and capa,city 
of processors of the same family. Queueing mod- 
els were developed in order to analyze the perfor- 
mance of homogeneous and heterogeneous computa- 
tion paradigms. The results show that the hetero- 
geneous architecture exhibits higher speedup when 
compared with cost equivalent homogeneous a.rchi- 
tectures. Results were derived and presented for var- 
ious classes of applications characterized by differ- 
ent degrees of parallelism. Also, different configu- 
rations of heterogeneous architectures, represented 
by sequential processors of different capacities, were 
analyzed. 

The results of this paper show that heterogeneity 
in supercomputer architectures is a quite promising 
design approach that deserves further investiga.tion. 
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Appendix: Proof of Results 

Proof of Theorem 1 

From equation (17) we know that the average re- 
sponse time T is given by 

(22) 
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Let cp denote a constant value. Arithmetic oper- 
ations involving ‘p and other constants will give as 
result another constant which will be denoted by cp 
no matter what its value is. 

From the constant cost assumption we have that 

Pp Ic, cp = 'p 

Thus, from (23) we have that 

c;, 1 -E- 
p2.22... 

P 

In order to prove the theorem let us prove the 
following lemmas: 

Lemma 1 t is an increasing function of Pp. 

From equation( 13), we have that 

From (24) and (25) it follows that 

(25) 

The lemma follows directly from equation (26) 

Lemma 2 F is an increasing fundion of Pp. 

From equation (16) we have that 

From (24) and (27) we have that 

F = ppy- + 'PP; 244... (HA +$) + 

pP;.44- Hpp (28) 

The lemma follows directly from equation (28). 
The theorem proof follows immediately from the 

inspection of equation (22) and lemmas 1 and 2. 
Q.E.D. 
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