51

WHY SOFTWARE DEVELOPMENT IS INHERENTLYNON-MONUPONIC:"
: A FORMAL JUSTIFICATION. oo

ARMANDO M. HAEBERER
and -

- PAULO A. S.VELOSO

Depto. Informatica, Poni.Univ. Catblica do Rio de Janeiro,Rua Mq. de S. Vicente 225
co AR, Rio de Janeiro, RJ 22453, Brasil

. " Abstract oo ,
We analyze the software process within ‘a formal framework based on Carnap's

Two-Level Theory of the Language of Science and.the Algebraic Theory of Pro-
blems. As a result, we establish:in-a precise way: some:facts generally believed
on intuitive grounds only, as well as the inherent non-monotonicity of soft-
ware development.))

1. Introduction ! T
) SoftWare'dev_elbpmént involves four main objects: the application concept

(requiirements); reflecting the real problem extension; the verbalization (requirement ~
' specification), as the informal description of the requirements; the: formal specifica-
tion, as its formal description; and the program giving rise to a virtual machine, as
‘the final product of the process. The specification divides the path'from verbalization
to program into two “legs"®, called abstraction and reification, respectively. . i

"~ Our formal analysis Tequires a formal framework for dealing with SDP (short
for software development process) and its components at any level of abstraction, and
'sheds light on concepts Aike .validation; ‘verification,’ formal specification, abstrac-
tion; etc. We will use as formalism the ‘Algebraic Theory of Problems!!+ 4 and as for-
‘mal structure Carnap's Two-Level Theory of the Language of Sciencel2: 8, We will
analyze rélations such as ndescribes"; "realizes an engineering model", "is correct”,
etc., as well as the validation and proof obligations involved in factorizing SDP.

2. The Software Process and its Synthetic Content . :
) “The goal of SDP is the ‘construction of a software artifact (SA, for short), starting
from a description of some real problem. The SA, together with a given target machine,
is to behave as an engineering model of the real problem. Notice that the starting point
is generally 1ll-defined, whereas the end product is a co;r’xple;c“s‘yntactlcobj’ect be-
‘longing to’ a formal language. Thus, -SDP ranges over a'wide spectrumi of activities:
formalization, abstraction, interpretation, construction of solutions, development of
algorithms; validation, verification; etc.’ e R R b
.-~ By-application concept A we ‘mean the extensional knowledge about the real pro-
blem that serves as refererice point of SDP. By its verbalization we mean a meta-linguis-
tic description ¥, of A. Since A is an extensional object, it cannot be informal; it is an
observable object, which can be ill-determined because of lack of knowledge about its

52

extension. SDP starts from ¥, the informal and ambiguous object that is often mis-
taken for A itself.

We will say that an input 8 belongs to the domain of A , denoted BSA , iff & designa-
tes an acceptable input for A, and that the ordered pair (3, p) is an instance of A, denoted
ISpA , iff BSA and p designates an acceptable output for A corresponding to input d. We
will accept as input and output any pair of observable events related by the application,
in the sense of belonging to the extension of the real problem.

An SA is a program or a set of programs in some programming language that,
upon interpretation by a target machine, realizes a device that accepts inputs § and
produces outputs p. By target machine we mean a device H, made out of hardware and
software, that is capable of interpreting a program p. By virtual machine we mean the
device m - constructed by interpreting a software artifact p on H. By the result of m -

for data$ at instantt, denoted m - t(5), we mean the output p produced by m - at instant t
after being fed data 8, provided that it halts. We will use the notations Am pHS for "m - is

applied to input §" and Hm__ 8t for "m o1 O1L input § halts at instant t".

We shall be dealing with analytically determinate and synthetic statements. We
gloss over some polemical issues and assume that every meaningful scientific state-
ment can be classified as either one or the otherS. :

We now try to state in precise terms the meaning of "being-an-engineering-mo-
del", denoted by m PH Z A. It is natural to try to use the operational definition:

My, £ A & (VO(BIA A Am,,,5 — GOCFHn, 8t A Bom A) 1)

But, as Carnap showed!, operational definitions fail to accomplish their goal,
because a conditional with a false antecedent turns out to be true. Thus, Eq. (1) implies
that a virtual machine that has never been tested with respect to A turns out to be an
engineering model of A! So, it is replaced by the pair of sentences (where the first one is
a reductive sentence)

(V3)(BSA A ﬁlmpﬂa - (mpH LA ((Eit)(ihianSt A IZSm,JH t(®A))) 2)

m . ZA & (VO(BA - my, L5 A) : &)

Notice the factual character of these formulations which stems from the

universal quantification over the set of inputs 8 belonging to the application domain.

Except in rare cases, this set is not exhaustible, so one cannot fulfill the condition "for

every input 8" . One generally induces it from a certain sample. Hence, these formulas

are in fact synthetic statements in the sense of empirical science, which is not surpri-
sing since Z relates directly observable objects.

3. The Two Level Theory : Observational and Theoretical Objects

Some difficulties in introducing dispositions. in the language of science led
Carnap to abandon both the need to introduce them only by means of reductive sen-
tences and the idea of a global empiricist language L in favor of the Two-Level Theory
of the Language of ScienceB.

~ In our context, the most serious of these difficulties stems from the confirmabi-
lity and refutability in principle of the observable terms. Observationally decidable
terms are introduced by definitions providing explicit criteria for confirming or refu-
ting a property; the remaining terms are observationally undecidableS. Thus, the pre-
dicate GO(Hm 5t A I'(‘BmpH t(8)A) is not observationally decidable, due to the exis-
tential quantifier.

53

8.1 Obseruational and Theoretical Levels

~» Carnap:proposed:to split the, language ‘of science into two: the basic empiricist
language. Lo, understandable by itself, and Ly, the language. for formulating a theory.
t andable by itself and does not_have a complete empirical in-

,te retation a partial one being 'given by means of a set C of correspondence rules..
The ‘observational [anguage Ly'is: extensional, completely interpreted and its
predicates designate- observable properties of events or things. Here, we'use an extén-
ded Lg*,-which allows the introduction of L-definable ‘dispositional predicates. Some
requirements ‘are imposed2: 8 on L*. The symbols of its vocabulary, Vo*, have no
formal denotation, their meaning being reduced to observation. - -

+v3: The' thebretical language Ly is designed to ‘have all the freedom rieeded. Its pnmitive
‘desériptive (or extralogical) symbols are not’ required to be explicitly defined onthe
basis of Ly*. A Theory Tin Ly consists of a ﬂnite number of postulates in it, thus ‘being
ann ninterpreted calculus.”
A ‘Correspondence rules are formulas: involving descriptive symbols both of LT and
ofiLg*, thereby providing-a partial interpretation of Ly in terms of Lg*. Now, theory T,
together with.C, becomes. an interpreted calculus.;The:rules in C-establish. deductive
connections:between Lg*: and Ly ithus.in deriving a.sentence of Ly* from sentences.of
Lyt weican:go via Ly : We will use:C(-.). to express the result of. applying the rules of C to
an object belonging either to: L-r orto Lg*. , :

3 2 3 Obseruational and Theoretwal ObJecls in the SqﬁwareProcess
"¢ -.The observational’ level for, SDP comprises A and m ;. ‘Their inputs § and outputs

p belong to an observable universe WWe also have in this level a denumerable ordered set
called time:. So;; statements such-as:B3A.and: ﬂmpHS belong to Lg*. Statements like

mi i 2 Aand Hm, Starealso formulated in'Le* but must be dealt-with in L.+

: The:theoretical level is split into two layers; the. syntactical and the semantical
one The syntactical layer has programs and specifications; the semantical layer
¢omprises their denotations, problems, as ‘will be explained shortly. Then, the Alge-
braic Theory of Problems, Set Theory, the Fixpoint Theory of programs etc will all be
paxt of the theoretical level.::
| “The" correspondencexrules relate observational inputs S and outputs p to their
‘theoretical counterparts d and r. Thus, they correlate denotations of ‘specifications
andobservational objécts :(i.e. -application concepts). H plays a special role'in that it
provides a setH.of correspondence rules that connect a program p.to: M like'an inter-

p eter So, My .gives the extensional behavior of p.which is a description by compre-
h nsion of m . Likewise a specification tries to describe by comprehension an
application concept. .

4. A Problem-theoretic Approach to Software Development

A General Theory of Problems!! was developed from the ideas of G. Polya7 asa
formal, tool-for: reasoning: about: problem' solving .anhd modeling warious- strategies, te-
methods, -etc. On this basts, an Algebraic Theory of Problems? was develo-
- el iming ata tool, th e formal treatment. of SDP.at various-leyels, ranging from

th purely epistemic one of] process explication3 through those of prescribing diffe-

T Nt process ‘obli ations d modeling programmlng methods’, to a"calculus for pro-
grati-derivation®. In the' sequel ‘we will- outline asversion’of the Algebraic Theory of
Problems. for. more details, see::

54 .

4.1 The Algebraic Theory of Problems

A problem over a theoretical universe U is a 3-tuple P = (Dp, Ry, P) where Dp and D,
are subsets of and 2 < D x R. This mathematical structure captures the three ques-
tions suggested by Polya in approaching a problem: what are the data? what are the re-
sults? and what is the problem condition? , in that Dy is the data domain, Ry the result do-
main and. P the problem condition (also denoted by qp). We say that problem
P = (Dp, Ry, P) is viable, denoted by VifP, iff (Vd)(deDp - @Ar)(reR; A P (d, 1))). Notice
that VifP is equivalent to the equality of Dom Pand Dp. -

The 3-tuple representation captures the idea of choice associated with obtaining
an acceptable result for each given data in a stated, but still unsolved, problem. Then,
a solution should be an object that eliminates- this choice and, therefore, solving a
problem should mean constructing such an object. :

Given problems P and Q, we define their sumP + Q=Dpu Dy, Rp v Ry Py Q),
their productP ¢ Q = (Dp . Ro. 7/ Q) (where / stands for the relative product of relations)
and their direct product P x Q = {Dp X Dg, Rp X Ry, {(d, 1), d,) {d, NeP A, e Q)). We
will denote by P *™ the product of P by itself n times. By resorting to the generalized
union and Cartesian product, we extend the binary operations sum and direct product
to classes of problems, ylelding summation () and generalized direct product. We will use P
X0 1, denote the direct product of n copies of P . Along these lines, P** and P** denote -
the closure of P under product and direct product, respectively.

Given P and Q, we define their difference P — Q = (Dp -Dg. Rp Rq, (2-Q N ((Dp -
Dg)% (Rp ~ Ry)) (where - stands for set difference) and the inverse P 1o Rp, Dp, P“),
where P “is the converse® of 2.

Some important relations between problems were defined. Given problems P and
Q. we say that Pis a refaxation of Q (denoted P .1 Q) iff Dy < Dp and 2| R cQPisa

suﬁpmﬁkm of Q (denoted P'c Q) iff there exists a problem R such that P + R = Q,andPis
a complete subproblem of Q (denoted P o Q) ff P < Q and Dp = Dy The relations ., c and
c are transitive. Notice that ccand = (equahty between problems) are special cases of

relaxation, deserving attention due to their better monotonicity properties. The de-
cision of restricting the correctness relation to one of them is part of the particular
software construction strategy being used.

Let be given a set ¥ of special problems, which will be called easy problems, and a

set C of distinguished problems. By the afgebra of problems over # and C we mean the al-

gebra 4=(P,C, 8, {+. o, X, -, L, -1 >@ x* *% where Pis the set of all the problems over
u. : .

4.2. Specifications, problems, programs and solutions

A general-purpose target machine interprets a finite, and usually not too large,

set of constant symbols over problems ; their denotations form our set 8.
Problems are on the semantical layer. We obtain the syntactical layer by

introducing symbols for the constants and operations of the algebra A. We will consi-
der a language L, called global language, with symbols for the constants and operations
of A (we also use variables over problems in our program derivation calculus?, but we
do not need them here). Let us denote by T the set of terms of £ and by /4 the corres-
ponding algebra of terms generated from 4 U C. There is a unique homomorphism

55

Wi /£ —- A, assigning a problem to each term. Such a term TeT is a specification and
- the semantic function p assigns to T the problem it describes

A constant symbol f, denoting a problem p[f], is said to be easy wlth respect to H

iff f appears in some correspondence rule of a subset. H of C, which includes the

instructions of H, ‘as well as the fetching and decodmg mechanism3, We call a term

a(gontﬁmzc iff all its operation symbols correspond to ‘algorithmic operations, +, e, X,

X0 X% ** and target ff it is algorithmic and all its constant symbols are easy with res-
pect to H. We will denote by T,_l the set of target terms and by Lﬂthe corresponding tar-
get language.

‘We can now consider notions of correctness between speciﬁcations. by lifting se-

mantical notions to the syntactical layer. We refer to specifications, rather than to
‘programs, to encompass the entire construction. process; throughout specifications

and (nondeterministic) programs. Given terms Fand G of L, we say that Fis partially
‘orrect with respect to G (denoted F< @) #ff pF 1 J PG]; F terminates (denoted TR if Vib
pIFl and Fis tatal[y correct with respect to G {denoted F< G) ff TFand F< G. Given
terms p and G of L, we say that i is a sa[utwnfor G, with respect to H, denoted p ¢ G. iff

p<Gand peTH Then, a sofution for a problem P, with respect to H, is a is a target term
ps such that plpl P and plpl is viable we denote this by p “ P. These definitions of "

solution capture the idea of constructwn of an object for H. :

*-An important tool for the analysis of the connection between A and Spe will be
the following substitutivity result relating relaxation and solution. '
Theorem. " L rgFa u[G]Ju[f]—)p<=§ , S @

8. Oonnecting the Theoretical and Obsemtional Levels of the Software Process

.ixoi-- In our, framework we. ‘have data' d and results r in the theoretical universe U,
whereas inputs § and outputs p are in the observable universe W. The distinction bet-
ween u and ‘W should be kept in mind. The only connection between them 1s provided
by a ‘funiction f : W- U In such a context, any attempt to treat A as a problem must be
ba_sed on an explicit connection. So, we state:

Postulate. ‘Every application concept Ain Lg*is caextanswe with a problem C(A) 1n L
ir extensions are congruent up to the correspondence rules C).-

This desideratum can be interpreted as stating that our extended Lo” will con- -
tain only application concepts that can be apprehended by means of Polya's three
questions.-(As Ludwig Wlttgenstein states in his Tractatus Logico- -Philosophicus: was
sichiiiberhaupt sagen [ift, [aﬁt sich f([ar .fugen, und wauon man mcﬁt reden Kann, d'aruﬁer muﬁ
il hn*sCHWetgert)

Thus. ‘Arand C(A) are connected by the following natural correspondence Tules:

deDgyy © EOA=AE A BA) o K
(33)(BSA A IBpA) - f(p) GRC(A) - “©
“Ad, 1) E qegay © (35)(3p)(d—f(5) ar=f(p) A BOA ATpA) @

Notlce that we aré not claiming knowledge of C(A), but only its existence .
‘Now let us make expllcit the connection between p and m e . ' which is provided by

the subset H of C. If plf] € ¥, H is able to choose for every data 8, such that f(8e Dulfl ,

56

result p, so that (f(d), flp)) e qu[f]. Similarly for p. Thus, p and m are connected by the
following correspondence rules: -

ﬂmPHS - (@3 }ﬁnpﬁ&) <—a‘ Gr)(re Ru[pl A{d, ne qmpl)] ()]
Am . 8 — (@O, Bt A p=1m,tB) ((3), TN qyq) (10)

Call 2 the conjunction of the preceding 6 formulas. We now have: ‘
Z}—p<§C(A)—§mwAA (1

Recall that Eq. (2) involves two crucial aspects: halting of m pH and appropria-
teness of the outputs. We examine halting first.

5.1. The Need for Theoretical Reasoning

The crucial difference between 7p and @(Hm PHSt) resides in that the former is a
predicate of Ly, hence amenable to formal proof, whereas the latter is in Ly*, but is not
Lo*-decidable. Thus, one can try to prove the termination of p.

Predicates 7, of Ly , and %, of Ly*, are connected by the rule derived from Z:

Tp — (VO(Am pHS'—) @O(Hm pHSt)) (12)

We can Skolemize (3t)(Hm PHSt) by introducing a function symbol { so that {(3)
means "the instant the machine halts after the introduction of the data 3", in the
following sense: .

+ (Bt)(ﬂ-&npﬂ&) - MnPHSC(S) (13)

Hence, we can solve our Lg*-undecidability problem, by means of a formal proof
of Tp, which ensures that in .8t will hold for some finite t= {(8), since

Z A Tp b (VOBOA A Am 8= Hin B A gy £ A B LO®A) (14

Now we are able to formulate an experiment8 for Hy;: m i L A. We add an auxd-

liary theoretical hypothesis Hy: Vibulpl and a descriptive observational statement H;:

_/r{l'BSiA A}l\ lﬂm Pﬂai. By proving Vifulpl and using the previous correspondence rules,
1= 1= i

we define Oc as /Q 1ISim o LBPA. If Oc fails, we can reject Hy. or doubt the truth of a
i=

statement like B3;A. On the contrary, if Oc holds, we can consider it only as a good in-
ductive support for Hy;. ' ‘ '

5.2. The Fundamental Factorizatibn of Software Development

The weakest requirement one can impose on Spe to ensure that one is solving the
correct problem is plSpd - C(A). Now, from Egs. (4) and (11) we derive the fundamental
factorization theorem for £. '

Theoren. plSpd S CA) A p &g Spe D my LA (15)

This theorem states formally the general belief of the working software engi-
néer: one can be sure that m,, £ A provided that (i) one constructs Spe whose deno-
tation is a relaxation {up to the correspondence rules) of A, and (i) one derives from
Spe a program p, in Ly, that is totally correct with respect to Spe.

57

6. The Inherent Non-monotonicity of the Software Development Process

Notice that Eq. (15) relates'two synthetic formulas. it factorizes the synthetic
character of ' m i £ A into a synthetic. part, plSpe]) C(A), and-an. analytically de-

terminate one, p & Spe. So, we can validate: p[Spd} - C(A) by a hypothetico deductive
experiment and prove p s Spe, instead of directly validating m - ZA.

Let us develop an experiment Exp to test the hypothesis u[Spe] < C(A). We:set
Hyg: lSpel 4 CCA); H: VibC(A) A VifulSpel; Hy: B, < {8t 8e V" A B3A). Now, by using T
(the Algebraic Theory' of Problems) we: derive that Hy 1s equivalent to Hyat Deca)
c Du[Spdl and Hy: quj Spd lDC(A) c qc< A Now, we caleulate o= {d: d=f(8) A ScE,},

goR c m"qul.Spc}' and #qc qu[.S‘pc]l , so that we have ‘VzﬁP °for P °=(@p, P £).

Then. we prove that Pp< DIJ-I Spel] The correspondence rules will be Z, and the obser-
vational consequence Oc: (VS)(Vp)(Se Eyxn f(p)e PrA (UGN fip))e g ISpA)

‘ Ifwe fail to prove g, < Duis; Spe] ‘then we must. reject Hyrei and if Exp falsifies Oc
vthen we must reject HMz.rejecting HM in' either case. Otherwise, we can accept only that
..l P° o Then. we should ¢ hoose other sets E A.. ,Ek, construct pmblems Pl ..., Pk,

and' va]idate them by iising’ Exp again. If these expenments do'not falsify Hy, then we
- will accept Hy;, until some new evidence happens to falsify it. i

' Consider a set P of k+1 non-rejecting experiments involving problems P °,
,P k, assumed for simplicity to have pairwise disjoint data domains. All we are en-
u[Spc] o ZP Now. assume that rE .Spc. The prcvious results gua.rantee

‘only that o AC(ZP) Consider now an’ experiment with set of data’ E‘j\“ that falsifies
HM Then, we will have P k+1 such that DP k+1-C DHISPC] v qP k+1 qulspc] | dOCS npt

hold3:: ‘Hence, after being sure of rg Spe, no. matter how much one has validated Spe,
ild be’ repeatedly validated with respect to A like any construction in empiri-
ence. In particular the case of DC(AYS DM \ failing to hold is one in; which m

' may fail to halt even'though p € 5p:: is guaranteed In addition, one must -verify ter-

m atl "n{of p ‘to-be "convinced " that m will ‘halt: In: fact, one should prov theoreti-

‘ counterparts for every disposition non Lo* -decidable. Therefore, vall ation and
veriﬁcation are deeply imbricated and their use in a given.order is.not only a heuristic

R

strategr ‘but a formal necessity.
wi-wvoBefore the appearance of P ksl both premises of. Eq (15) were true. But after

acquiring this new knowledge about A ulSpe] 4 C(A)-becomes false. This is a flagrant

‘ease of non-monotonicity. In' view ‘of the inherent syntheticity of u[Spc] 4 C(A), this”
" glb af non-monotonicity is inherent to SDP itself. .
“'We now analyze the decomposition -of the reification leg of SDP into steps10
swhich bridges the gap between Spe and p by introducing intermediate terms F, ..o Fy of
L. So. we can write Eq. (15} in the form

o Spd ST A F<Spea . AT Fa AP T -—)mPHAA o e
fi:hen, we can decompose the _preceding,statement into:

58

pISpd A CLA) A F, <Spe = MF] < CCADY.....; jIF,q) < CA) A F,< F,.qy - WIF] L CA);
' HEIICWApg F, Hmy LA (17)
The previous argument now applies to each one of these statements. So, no mat-

ter how "microscopic" the development steps, this focal non-monotonicity will spread to
all of them. ‘

7. Conclusions

We have analyzed the software development process by using Carnap's Two-level
Theory of the Language of Science and the Algebraic Theory of Problems, which shows
that many of Carnap's ideas on empirical science improve our understanding of soft-
ware development. i

On the observational level one has application concepts and machines; on the
theoretical level one has formal specifications and programs. This separation, in
addition to its heuristic value, is a matter of necessity. This necessity arises from the
fact that most interesting properties of machines turn out to be dispositions that are
non-confirmable or non-refutable in principle. : .

This formal framework is quite advantageous. It enables us to state and esta-
blish, in a precise way, some facts that are believed on intuitive grounds only. It also
paves the way to some important new facts. Thus, we have proved the synthetic cha-
racter of correctness with respect to an application concept, as well as the inevita-
bility of validation and verification, and the deep imbrication of both techniques. We
have also formally proved that the software development process is inherently non-
monotonic at any level of decomposition.

Acknowledgements

Research reported herein has been partly sponsored by ETHOS Project
(Argentine-Brazilian Program for Research and Advanced Studies in Computer
Sciences) and the Brazilian agencies FINEP and FAPERJ.

References

1. R. Carnap, "Testability and Meaning", Philosophy of Science 3 (1936), 4 (1937).

2. R. Carnap, "The Methodological Character of Theoretical Concepts", Minnesota
Studies in the Philosophy of Science, (Minneapolis 1956).

3. A. M. Haeberer and P. A. S. Veloso, "The Inevitability of Program Testing: A Theo-
fetlca)l Analysis",Proc. of the IX Intern. Conf. Chilean Computer Sci. Soc., 208-240

1989).

4. A. M. Haeberer, P. A. S. Veloso and P. Elustondo, "Towards a Relational Calculus -

for Software Construction”, Pont. Univ. Catélica; Res. Rept. MCC 19/89, (Rio de

Janeiro,1989). :]

C. Hempel, "Aspects of Scientific Explanation and Others Essays in the Philo-

sophy of Science", Free Press, (New York, 1965}, . :

M. Lehman, "A Further Model of Coherent Programming Process", IEEE Procee-

dings of Software Process Workshop, UK Feb 1984, (IEEE C. S.,1984).

G. Polya, "How to Solve it: a new Aspect of the Mathematical Method", Princeton

Univ, Press, (Princeton, 1957).))

W. Stegmiiller, "Probleme und Resultate der Wissenschaftstheorie und Analytis-

chen Philosophie" 2, Springer-Verlag, (Heilderberg, 1970).

A. Tarski, "On The Calculus of Relations", Journal of Symbolic Logic 8, 73-89

(1941). .

10. W. M. Turski and T. S. E. Maibaum, "The Specification of Computer Programs",
Addison-Wesley, (Wokingham, 1987). : ‘

11, P. A. S. Veloso, "Outlines of a mathematical theory of general problems" Philosop-
hia Naturalis 21, 354-362 (1984).

® ® N o @

