

ISSN 0103-9741

Monografias em Ciência da Computação

n° 18/05

Nested Context Model 3.0
Part 1 – NCM Core

Luiz Fernando Gomes Soares

Rogério Ferreira Rodrigues

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 2

Monografias em Ciência da Computação, No. 18/05 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena

Nested Context Model 3.01

Part 1 – NCM Core

Luiz Fernando Gomes Soares
Rogério Ferreira Rodrigues

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br, rogerio@telemidia.puc-rio.br

Abstract. This technical report describes the basic entities of the Nested
Context Model (NCM) version 3.0. NCM is a conceptual model focused on the
representation and handling of hypermedia documents.

1 This report has a version in Portuguese, under the same title.

 3

Nested Context Model 3.0

Part 1 – NCM Core

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados
Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-
Rio). As informações estão sujeitas a alterações sem notificação prévia.
Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento
são marcas registradas dos respectivos detentores.
Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são
de propriedade dos respectivos autores ou editoras referenciados.
Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso
pessoal, constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225, Prédio ITS - Gávea
22453-900 – Rio de Janeiro – RJ – Brasil
http://www.telemidia.puc-rio.br

 4

Table of Contents

1. Introduction 5
2. NCM Core Entities 7

2.1. Entities and Properties 7

2.2. Nodes and Anchors 8

2.3. Content Nodes 9

2.4. Composite Nodes 10

2.5. Context Nodes 12

2.6. Switch Nodes (Node Alternatives) 12

2.7. Events 14

2.8. Links 16

2.8.1. Connectors 17
2.8.2. Link Binds 22

2.9. Data Objects versus Presentation Objects 25

2.10. Generic Descriptors, Descriptors and Descriptor Switches 27

2.11. Trails 28

2.12. Public Hyperbase and Private Bases 29

3. Final Remarks 31

References 32

Appendix A : Examples of Link Usage 33

 5

Nested Context Model 3.0: Part 1 – NCM Core

1. Introduction

This report describes the basic entities of NCM (Nested Context Model) version 3.0.
NCM is a conceptual model focused on the representation and handling of hypermedia
documents.

 A hypermedia conceptual model should represent the data structural-concepts,
as well as events and relationships concerning these data. The model should also define
the structuring rules and the operations on data for manipulating and updating the
structures.

 The first NCM definitions [SoCR91] relied mostly on aspects related to the data
structures of the basic model and the structuring rules. The structures and operations for
version control were subjects of the subsequent specification [SoCR95, SSRM99].
Afterwards, the previous definitions were revised and updated, adding to the basic
model operations for creating, editing and presenting the document structure [Soar00].
The NCM 2.2 specification also added new data structures for defining spatial and
temporal document synchronization relationships, as well as operations for defining and
presenting these synchronization relationships.

 Version 2.2 reviewed the original class hierarchy entirely, incorporating some
new classes [SoCR95]. Moreover, some original classes were redefined, especially the
link class, through the definition of new attributes and the redefinition of existing ones.
Actually, all model classes that could be instantiated were partially or significantly
modified.

 This new version of NCM, called NCM 3.0, makes a new review of the NCM
class hierarchy. Again, the link class is one of the main model entities affected by the
revision. Indeed, it is completely redefined. New support for document and presentation
adaptations is also introduced.

 In NCM 3.0, a novel specification approach is also adopted. In order to offer a
scalable hypermedia model, with characteristics that shall be progressively incorporated
in hypermedia system implementations, NCM was divided in several parts:

• Part 1 – NCM Core
concerned with the main model entities, which should be present in all NCM
implementations2.

• Part 2 – NCM Virtual Entities
concerned mainly with the definition of virtual anchors, nodes and links.

• Part 3 – NCM Version Control
concerned with model entities and attributes to support versioning.

2 It is also possible to have NCM implementations that ignore some of the basic entities, but this is not so
relevant so as to deserve a minimum-core definition.

 6

• Part 4 – NCM Cooperative Work
concerned with model entities and attributes to support cooperative document
handling.

 NCM is the model underlying NCL (Nested Context Language), an XML
application language for authoring hypermedia documents. The NCL specification is
composed of Parts 5 to 12 of the collection:

• Part 5 – NCL (Nested Context Language) Full Profile
concerned with the definition of an XML application language for authoring and
exchanging NCM-based documents, using all NCL modules, including those for
the definition and use of templates, and also the definition of constraint
connectors, composite-connectors, temporal cost functions, transition effects and
metainformation characterization.

• Part 6 – NCL (Nested Context Language) XConnector Profile Family
concerned with the definition of an XML application language for authoring
connector bases. One profile is defined for authoring causal connectors, another
one for authoring causal and constraint connectors, and a third one for authoring
both simple and composite connectors.

• Part 7 – Composite Node Templates
concerned with the definition of the NCL Composite-Node Template
functionality, and with the definition of an XML application language
(XTemplate) for authoring template bases.

• Part 8 – NCL (Nested Context Language) Digital TV Profiles
concerned with the definition of an XML application language for authoring
documents aiming at the digital TV domain. Two profiles are defined: the
Enhanced Digital TV (EDTV) profile and the Basic Digital TV (BDTV) profile.

• Part 9 – NCL Live Editing Commands
concerned with editing commands used for live authoring applications based on
NCL.

• Part 10 – Imperative Objects in NCL: The NCLua Scripting Language
concerned with the definition of objects that contain imperative code and how
these objects may be related with other objects in NCL applications.

• Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with NCL
Code in NCL Documents
concerned with the definition of hypermedia objects that contain declarative
code (including nested objects with NCL code) and how these objects may be
related with other objects in an NCL application.

• Part 12 – Support to Multiple Exhibition Devices
concerned with the use of multiple devices for simultaneously presenting an
NCL document.

 This technical report deals with basic model entities that comprise the NCM
core, as discussed throughout all subsections of Section 2.

 7

2. NCM Core Entities

NCM is based on the usual concepts of nodes and links. Nodes represent information
fragments and links are used to define relationships among nodes. However, links are
not the only entity available for defining relationships, as will be clarified in this
section.

 The model distinguishes two basic classes of nodes, called content nodes and
composite nodes, the latter being the NCM central point to define other types of
relationships. Figure 1 offers a basic overview of the model class hierarchy3, which will
be detailed along the rest of this section following a top-down approach.

GenericDescriptor

ContentNode

TextNode ImageNode AudioNode VideoNode ApplicationNode

ContextNode
linkSet
presentationCollection

CompositeNode
portList

Node
content
anchorList
descriptor

SwitchNode
ruleList
nodeDefault
presentationCollection
defaultPresentationCollection

Link
bindSet
connector

DescriptorSwitch
ruleList
descAlternatives
defaultDescriptor

Descriptor
player
eventDescriptions

Entity
id
name
description
owner
date
extendedProperties

TimeNode

PrivateBase
linkSet
descriptorSet

Trail
currentNode
view

PublicHyperbase
descriptorSet

SettingsNode

GenericDescriptor

ContentNode

TextNode ImageNode AudioNode VideoNode ApplicationNode

ContextNode
linkSet
presentationCollection

CompositeNode
portList

Node
content
anchorList
descriptor

SwitchNode
ruleList
nodeDefault
presentationCollection
defaultPresentationCollection

Link
bindSet
connector

DescriptorSwitch
ruleList
descAlternatives
defaultDescriptor

Descriptor
player
eventDescriptions

Entity
id
name
description
owner
date
extendedProperties

TimeNode

PrivateBase
linkSet
descriptorSet

Trail
currentNode
view

PublicHyperbase
descriptorSet

SettingsNode

GenericDescriptor

ContentNode

TextNode ImageNode AudioNode VideoNode ApplicationNode

ContextNode
linkSet
presentationCollection

CompositeNode
portList

Node
content
anchorList
descriptor

SwitchNode
ruleList
nodeDefault
presentationCollection
defaultPresentationCollection

Link
bindSet
connector

DescriptorSwitch
ruleList
descAlternatives
defaultDescriptor

Descriptor
player
eventDescriptions

Entity
id
name
description
owner
date
extendedProperties

TimeNode

PrivateBase
linkSet
descriptorSet

Trail
currentNode
view

PublicHyperbase
descriptorSet

SettingsNode

Figure 1 – Overview of NCM class hierarchy4.

2.1. Entities and Properties
Every NCM entity has as attributes: a unique identifier (ID), a name, a description, a
date of creation and an owner5. Besides this basic collection of attributes, an NCM
entity maintains a list of extended attributes to allow extensions not only by means of
class inheritance. In NCM, most of the attributes are called properties and should be
wrapped by an NCM property class. The reason for this is that NCM foresees the
support for maintaining, for each entity property (basic or extended), information about
access rights, the user that last modified its value, the date of this modification, whether

3 It must be emphasized that, although it follows an object-oriented specification, NCM does not oblige
an object-oriented implementation. NCM is just a hypermedia model.
4 In order not to pollute the class diagram figures, class operations were hidden.
5 NCM just defines a user type, whose implementation is left for hypermedia systems using the model.

 8

value changes imply on entity versioning, etc. In other words, NCM predicts a very fine
granular control when implementing security and version support, obliging attributes to
maintain other attributes. Nevertheless, systems that are not interested in exploring all
NCM capabilities may choose to model class fields as traditional attributes, instead of
using the property wrapper. Even for those systems implementing access or version
control, class fields that do not need to be monitored with such granularity may also be
represented without using wrappers.

 Entities should offer specific getter and setter methods for each basic property
(e.g. getId, setId, getName, setName, etc.)6, methods for adding/removing extended
properties and two generic methods to get or set extended property values.

2.2. Nodes and Anchors

A node is an NCM entity that has the following additional properties: content; generic
descriptor (optional property); and ordered list of anchors.
 The node content is composed by a collection of information units. The exact
notion of what constitutes an information unit is part of the node definition and depends
on the node specialization, as will be exemplified further on.
 NCM descriptors will be explained in Sections 2.9 and 2.107. The definition of a
descriptor as a node property is optional. When specified, it will contain information
determining how the node should be temporally and spatially exhibited.

 Each element of the ordered list of anchors is called a node anchor, or simply an
anchor. An anchor is an NCM entity that can be further specialized, as illustrated in
Figure 28. The model defines two types of anchors (or interfaces). The first one is the
content anchor (or area anchor), which has an attribute called region. The anchor
region specifies a collection of information units of the node content. Any subset of
content information units may define an anchor and the exact notion of what is an
anchor region depends on the node content definition. However, every node shall have
an anchor with a region representing the whole content of the node. This anchor is
called the all content anchor and its corresponding region is represented by the symbol
λ. The all content anchor shall always be the first anchor in the node anchor list.
Anchors will be very important when specifying relationships among nodes.

6 From here on, it is assumed that subclasses have to specify getter and setter methods for manipulating
each entity property.
7 Unfortunately some NCM class definitions are interdependent, what makes it difficult to write a linear
text describing NCM. This model definition is a typical example where the hypertext paradigm would be
very useful.
8 Actually, NCM anchors inherit from an interface point class, which inherits from entity, as it will be
clarified in Section 2.4.

 9

Interface

Anchor Port
node
nodeIntPt

Al lContentAnchor

SwitchPort
nodeList
intPointList

Entity

ContentAnchor
region

AttributeAnchor
attributeName

Figure 2 – NCM interface class hierarchy.

 The second type of anchor defined in NCM is the attribute anchor. An attribute
anchor may point to a node attribute (or property), or to an attribute defined in the
descriptor associated with the node. During document presentations, NCM nodes are
associated with NCM descriptors, as it will be explained in Section 2.9. In fact, the
attribute anchor may identify any attribute recursively contained in the node, through
qualified references. For example, one can use the qualified name
selectedDescriptor.xPosition to create an attribute anchor pointing to an attribute
xPosition defined inside the descriptor selected to present the node.

 Besides the already mentioned getter and setter methods, nodes shall offer
methods for manipulating their anchor lists (e.g. add, remove, get, iterate, etc.).

2.3. Content Nodes
Content nodes (also called media nodes or media objects) are NCM nodes representing
the usual media objects. They should be specialized in subclasses to better define the
content interpretation (e.g. text, audio, video, image, application, etc.). As
aforementioned, the exact notion of what constitutes an information unit is part of the
node class definition. For example, the information unit of a video content node could
be a frame, while the information unit of a text content node could be a character or a
word. The content of a media node may be defined via a reference (e.g. a URI) to the
content itself, or by a content byte array (raw data). Moreover, each content node
subclasses can be refined; for example, text nodes can be an HTML node, a PDF node,
etc.
 A special type of content node is the time node. This node represents an absolute
time (as, for example, the Greenwich hour), or a relative time (based on some event, as
for example, the start of a document presentation). Each instant of time is considered an
information unit for the content of this kind of node. Thus, time intervals may be
defined as time-node content anchors. Time node will allow triggering events based on
a specific time (see Section 2.7 on events).

 10

 Another special type of content node is the settings node. This node represents
all variables that are controlled by the formatter (the tool responsible for the NCM
document presentation). These variables are represented by properties (attribute
anchors) of the settings node. As will be discussed in Section 2.8, these properties may
have their values changed by link actions. As will be discussed in Section 2.6 and 2.10,
these properties may have their values tested by switch and descriptor switch rules to
choose exhibition alternatives.

2.4. Composite Nodes
A composite node (or simply composition) C is an NCM node whose content is a
collection CL of nodes (content nodes or compositions), which constitute the composite
node information units. When a node N belongs to CL, we say that N is defined as a
component of C, or simply N is contained in C (and C contains N). We also say that a
node A is recursively contained in C (and C recursively contains A) if and only if A is
contained in C or A is contained in a composite node recursively contained in C. Note
that C components can be ordered (ordered list), which will be useful in the definition
of navigation operations. Note also that a node may be contained more than once in CL.
However, there is an important restriction: a node cannot recursively contain itself.

 Different compositions may contain the same node and composite nodes may be
nested to any depth, if the restriction of a composite node not recursively containing
itself is respected. In order to identify through which sequence of nested composite
nodes the instance of a node N is being observed, NCM introduces the notion of node
perspective. The perspective of a node N is a sequence P = (Nm,....,N1), with m ≥ 1, such
that N1 = N, Ni+1 is a composite node, Ni is contained in Ni+1, for i ∈ [1,m), and Nm is
not contained in any other node. Note that it is possible to define several perspectives
for the same node N, if this node is contained in more than one composition. The
current perspective of a node is the one traversed by the most recent navigation to the
node (navigation possibilities will be defined further on). Given the perspective P =
(Nm,....,N1), N1 is called the base node of the perspective (or the anchor node).

 Composite nodes are objects whose semantics is well known by the model. A
conceptual model should represent not only the data structural concepts, but also define
operations on that data for maintaining the structures. Thus, every composite node C
should have the following methods:

• addNode: abstract (implementation dependent on the composite node subclass);

• removeNode: removes a specific node from the collection of nodes of the
composition.

 Based on the definitions of composite-node content and content-anchor regions
(Section 2.2), we conclude that the content-anchor region of a composite node anchor
should specify a subset of the composite node components. A special subset is that with
all nodes (all content anchor of the composition).

 Besides the ordered anchor list, composite nodes have another property named
ordered port list. Ports and anchors have similar purpose and extend a common type
named interface. A port of a composition C is an NCM entity that has two attributes: a
node N and a node interface ip; where N shall be contained in C, and ip shall be an

 11

interface defined in N, that is, contained in its anchor or port list9. As it can be observed,
a composite node port allows defining mappings between the composition and its
internal nodes. As a consequence, the composite node may make an interface of a
constituent node visible for external references (for hypermedia links, for example). The
set of interfaces (anchors or ports) works as an external protection for references to a
node, in the sense that, to access a node content or attribute, it shall be available at the
node interface. The goal is to use interfaces to prevent internal modifications (mainly in
media content) from affecting other entities making reference to the node. Take as an
example a text content node with a content-anchor region marking the second paragraph
of the text content. Any change inside the text, for example the deletion of the first
paragraph, should be hidden from external references, thus maintaining the references to
the correct content part (i.e. the old second paragraph now positioned as the first one).
The node shielding through interfaces will also bring to the model the concept of
compositionality, allowing formal proof of document properties like the temporal
consistency.

 We define a port mapping sequence of a port pk in a composition Nk the
sequence of nodes and interfaces (Nk, ipk,....,N1, ip1) with k > 1, such that, for i ∈ [1,k):

i) Ni+1 is a composite node, and Ni is contained in Ni+1;

ii) ipi is an interface of Ni, and Ni and ipi are the values of the node and interface
attributes, respectively, of a port ipi+1 of node Ni+1. We say that ipi is in the port
mapping sequence of p.

 Note that defining two types of composite node interfaces (anchors and ports)
allows two kinds of presentation actions, desirable when building a hypermedia
document. One can want to play a composition to view the composition structure (for
instance, a drawing showing the composition structural graph). Composition anchors
are interfaces to express this kind of behavior, and the anchor region will enumerate the
components that should be drawn. However, to play a composition, sometimes, means
to play its constituents from an entry point, without showing the structural view of the
composition. Ports serve exactly to give these access points, allowing external
references to touch nodes contained inside a composite node, without losing the model
compositionality property (i.e. composite node entry and exit points shall be explicitly
defined).
 An action on a composite node must specify the interface where it applies. If this
interface is not specified, the action must be considered to be applied on every
composite node’s ports.

 Composite node subclasses will define semantics for specific collections of
nodes. Five important composite node subclasses defined by NCM are the context node,
switch node, trail, public hyperbase and private base.

9 Obviously, ip is defined in the port list of N only if N is a composition.

 12

2.5. Context Nodes
 A context node is an NCM composite node that contains a set of content, context
or switch nodes10. Context nodes have, as additional basic properties, a set of links and
a presentation collection.
 Each link l contained in the set of links of a context node C defines a relationship
among nodes recursively contained in C11, or the context node C itself. We say that a
link l is a component of a context node C or simply that l is contained in C. We also say
that a link l is recursively contained in C if and only if l is contained in C or l is
contained in a context node recursively contained in C. Links will be discussed in
Section 2.8.

 The context node presentation collection specifies a group of generic
descriptors12 for each node contained in the context node. As aforementioned,
descriptors are used to join presentation information to the node, as will be defined in
Sections 2.9 and 2.10. The goal of the presentation collection property is to allow
defining a group of descriptors for each node contained in a context node. Actually, the
group should form a set of descriptors (the same descriptor cannot appear more than
once within a group)13. If the contained node is also a context node, the descriptor group
should be composed of at most one descriptor.

 Context nodes will be useful, among other things, to define a logical structure,
hierarchical or not, for hypermedia documents. These entities will also be suitable for
defining different views for the same document and for improving the user orientation
when traversing a document.

 A context node C shall implement the abstract method deferred from the
composite node class:

• addNode: insert a content, switch or context node into the set of nodes of C.
 Besides the getter and setter methods, the methods for manipulating the lists of
anchors and ports, and the methods for manipulating the set of nodes, context nodes
shall also offer methods for manipulating their link sets and presentation collections
(e.g. add, remove, get, iterate, etc.).

2.6. Switch Nodes (Node Alternatives)

NCM has several features to support document adaptation. One important facility is the
group of node alternatives, selected based on document rules. Figure 3 depicts the class
diagram for NCM rules.

10 Switch nodes will be presented in Section 2.6. They are another specialization of composition that
allows defining node alternatives.
11 As discussed in Section 2.8, relationships may have their participants defined through mappings
towards nodes recursively contained in a composition C.
12 The group may be empty for any context node constituent.
13 The semantics behind the descriptor group definition for each node N is to allow the simultaneous
presentation of the same node with different exhibition characteristics, as it will be clarified in Section
2.9. Moreover, as will be explained in Section 2.10, a descriptor in the group may be the result of a
selection among descriptor alternatives (descriptor switch), whose choice depends on user and platform
parameters.

 13

SimpleRule
var
op
value

CompositeRule
op

SwitchNode

DescriptorSwitch

Rule
id2..n

1

2..n

1

1..*

0..*

1..* ruleList

0..*1..*

0..*

1..*

ruleList

0..*

Descriptor

0..10..1

rule

Figure 3 – Class diagram for rules

 Based on contextual information (e.g. user preferences, platform characteristics,
etc.)14, an NCM document formatter should evaluate each rule to find whether a
document entity associated with the rule should be considered in the document
presentation. The way entities are associated with rules will be clarified further on.

 A rule may be simple or compound. A simple rule is analogous to the connector
statement expression that compares an assessment to a value (Section 2.8.1) and has
three attributes: an identification (var) of the variable to be tested, a comparison
operator (=, ≠, <, ≤, >, ≥) and a value. The compound rule is a logical expression
involving two or more rules (simple or compound) related through the logical operators
AND and OR.

 In order to allow an author to specify node alternatives depending on contextual
information (context attributes), NCM defines an entity called switch node. The switch
node is a specialization of composite nodes. The content of a switch node is a set of
content or context nodes. The switch node has an additional attribute that defines, for
each node contained in its node set, an associated rule. The rules are defined in an
ordered list. A document formatter should iterate the rule list in its order, evaluating
each rule. The first node with the rule evaluated as true should be elected the selected
alternative.

 The switch node may contain a default node. During a document presentation,
this node should be elected the switch selected alternative if none of the rules has been
evaluated as true. In the absence of a default node and of a rule evaluated as true, none
of the nodes contained in the switch should be played during the document presentation.

 In addition to the ordered port list property common to every compositions
(Section 2.4), switch nodes have an ordered switch port list property. Each switch port
is an interface (Figure 2) that defines a set of mappings to interfaces of nodes contained
in the switch node.

 The definition of switch ports allows modeling links (relationships discussed in
Section 2.8) that anchor on switch nodes, independent of the node that will be selected.

14 As previously mentioned, this contextual information may be represented as attributes (properties) of
the settings node.

 14

The traditional composite node ports allow a link to touch a specific alternative. If this
node alternative is not selected, the link will simply be ignored during the document
presentation.
 Like context nodes (Section 2.5), a switch node has a presentation collection, to
allow defining a group of descriptors for each node the switch node contains15.
Actually, the group should form a set of descriptors (the same descriptor cannot appear
more than once within a group). If the contained node is a context node, the descriptor
group should be composed of at most one descriptor. When containing a default node,
the switch may also define a group of descriptors for this node, following all the rules
mentioned in this paragraph.

 The document formatter should decide when to evaluate rules and analyze
switch nodes.

2.7. Events
As defined by Pérez-Luque and Little [PéLi96], an event is an occurrence in time that
may be instantaneous or may extend over a time interval. NCM defines some basic
classes of events, which may be further extended: presentation event, composition
event, selection event, hovering event, drag event, focus event and attribution event.

 A presentation event represents the exhibition of a node content-anchor (media
segment), given a perspective and a specific descriptor. Thus, different perspectives or
different descriptors for the same content node lead to different NCM presentation
events. Presentation events may also be defined on context and switch nodes,
representing the presentation of the information units of any node inside these
composite nodes.

 A composition event is defined by the presentation of the structure of a
composite node. Composition events are used to present the composite map (composite
organization).

 A selection event represents the user selection of a node content-anchor, given a
perspective and a specific descriptor. The common way for content selection is through
the mouse or keyboard input devices, however other interaction input devices can be
used, like TV remote controls. The hovering, drag and focus events also represent the
corresponding interactive actions over a node content-anchor, given a node perspective
and a specific descriptor.

 An attribution event refers to a node attribute anchor, given a perspective and a
specific descriptor.16

 In NCM, each event defines a state machine that shall be maintained by the
document formatter [Rodr03]. Figure 4 shows the NCM generic event state machine.

 An NCM event may be in one of the following states: sleeping, occurring, or
paused. Moreover, every event has an associate attribute, named occurrences, which
counts how many times the event transits from occurring to sleeping state during a

15 The group may be empty for any switch node constituent.
16 It is important to remember that, as defined in Section 2.2, a node attribute anchor may refer either to a
node attribute or to an attribute of the descriptor that was associated to present this node, as explained in
Section 2.9.

 15

document presentation. Events like presentation and attribution have also an attribute
named repetitions. This attribute counts how many times an event should be
automatically restarted by the formatter, and may contain the indefinite value, leading to
an endless loop of the event until some external interruption.

prepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end
prepared

paused

prepared

paused

sleeping

paused

prepared

paused

prepared

paused

prepared

paused

sleeping

paused

occurring

Figure 4 – NCM event state machine.

 Intuitively, taking a presentation event as an example (see Figure 4), it starts in
the sleeping state. At the beginning of the exhibition of its information units, the event
goes to the occurring state. If the exhibition is temporarily suspended, the event stays in
the paused state, while this situation lasts. At the end of the exhibition, the event comes
back to the sleeping state, when the occurrences attribute is incremented, and the
repetitions attribute is decremented by one. If after being decremented, the repetitions
attribute value is greater than zero, the event is automatically restarted (set again to the
occurring state). When the presentation of an event is abruptly interrupted, through an
abort presentation command, the event goes to the sleeping state, without incrementing
the occurrences attribute and setting the repetitions attribute value to zero. Selection
events stay in the occurring state while the corresponding anchor is being selected.
Similarly, focus, drag and hovering events stay in the occurring state while the
respective operation over the anchor is being applied. Attribution events stay in the
occurring state while the corresponding attribute values are being modified. Obviously,
instantaneous events, like attribution events for simple value assignments, may stay in
the occurring state only during an infinitesimal time.

 A presentation event shall change from occurring to sleeping in two situations:
as a consequence of the natural end of the presentation duration, or due to an action that
stops the event.

 The duration of an event is the time it remains in the occurring state. In the case
of a presentation event, this duration may be intrinsic to the media object or specified by
the event descriptor. The duration of a presentation event will be chosen by the
document formatter taking into account content intrinsic parameters, descriptor
parameters, document relationships (mainly links) and other external information, like
platform characteristics.

 A presentation event associated with a composite node stays in the occurring
state while at least one presentation event associated with anyone of the composite child
nodes is in the occurring state, or at least one context node child link is being evaluated.
It is in the paused state if at least one presentation event associated with anyone of the
composite child nodes is in the paused state and all other presentation events associated
with the composite child nodes are in the sleeping or paused state. Otherwise, the
presentation event is in the sleeping state.

 16

 A presentation event associated with a switch node stays in the occurring state
while the switch child element chosen from the bind rules (selected node) is in the
occurring state. It is in the paused state if the selected node is in the paused state.
Otherwise, the presentation event is in the sleeping state.
A composition event stays in the occurring state while the composition map is being
presented.

 Links defined in context nodes indeed specify relationships among events
defined on node anchors, more precisely, among event state machines, as will be
discussed in the next section. In order to facilitate NCM link explanation, Table 1
defines state transition names and the action name to produce the corresponding state
transition in NCM event state machines.

Table 1 - Transition and action names for NCM event state machines

Transition (caused by action) Transition Name
sleeping→occurring (start) starts
occurring→sleeping (stop) stops
occurring→sleeping (abort) aborts
occurring→paused (pause) pauses
paused→occurring (resume or start) resumes
paused→sleeping (stop) stops
paused→sleeping (abort) aborts

2.8. Links
A link is an NCM entity that has two additional properties: a connector and a set of
binds to this connector. Figure 5 presents the NCM link class hierarchy.

 The connector is an entity introduced in NCM 3.0, which aims at defining
hypermedia relation semantics, independently of the participants that will actually be
interacting [MuRS02].

 Connectors receive first-class status in the model [MuSo01], i.e., connectors
may be defined independently of other model entities.

 Links representing the same type of relation, but interconnecting different
participants (nodes), may reuse the same connector.
 A connector specifies a set of interface access points, called roles. An NCM link
refers to a connector and defines a set of binds, which associate each link endpoint
(node interface) to a role at the referred connector.

 17

Entity

CausalLink ConstraintLink CausalConnector ConstraintConnector

Bind
role
component
interface
descriptor
embed

Link

2..n 12..n

bindSet

1

Role

Glue

HypermediaConnector

* 1

connector

* 1

2..n

1

2..n
roles

1

1

1

1

glue

1

Figure 5 - NCM link class hierarchy.

2.8.1. Connectors
Figure 6 shows a connector named R, representing a relation with three different roles,
which means three different types of participants. The figure also illustrates two
different links, l1 and l2, reusing R. While a connector defines the relation type, the link
set of binds specifies the interacting nodes. Link l1 defines three binds interconnecting
nodes A, B and C to the roles of connector R. Link l2 also defines three binds, but it
connects a different set of nodes (B, C and D). Links l1 and l2 define different
relationships, as they relate different sets of nodes, but represent the same type of
relation, as they use the same connector. In an NCM document specification, a link shall
refer to a connector instance.

xconnector nodenode anchor/port/attribute bindbindrolerole

xconnector Rxconnector R

A CLink l1
DLink l2

B

R
R

A CLink l1
DLink l2

B

RR
RR

Figure 6 - Example of links using the same connector R

 Conceptually, connectors may represent any type of relation, such as reference
relations, synchronization relations, semantic relations, derivation relations, etc. This
NCM version concentrates efforts in the specification of spatio-temporal
synchronization relations and also reference relations17, providing enough support for
the creation of hypermedia documents.
 The NCM connector allows the definition of multipoint relations with causal or
constraint semantics. In a causal relation, a condition shall be satisfied in order to
trigger an action. An example of causal relation is the traditional hypermedia reference
relation, which causes the navigation to a target node when a source node anchor is
selected. Another example of causal relation is one that starts a node presentation when
another node presentation finishes. Besides causal relations, NCM connectors may also

17 In fact, a reference relation is modeled as a special case of spatio-temporal synchronization relation.

 18

specify constraint relations, with no causality involved. Consider, for example, a
constraint specifying that one participant shall finish its presentation at the same time
another participant begins its exhibition. The occurrence of the presentation of one
participant without the occurrence of the presentation of the other also satisfies the
constraint, which specifies that, if and only if these two participants are presented, their
end and beginning times have to coincide.

 In order to capture causal and constraint relations, connectors are specialized in
causal and constraint types. In both types, the definition of a connector is done by a set
of roles and a glue. The definition of roles is based on the concept of event (Section
2.7). Each role describes an event to be associated to a relation participant, while the
glue describes how the events should interact, according to causal or constraint
semantics.

 Each connector role defines an id, which has to be unique in the connector role
set, an event type and its cardinality. The event type specifies the name of one of the
event class specializations. Table 2 describes the names for NCM event types. The role
cardinality specifies the minimal and maximal number of participants that may play this
role (number of binds) when this connector is used for creating a link, as defined later.
Table 2 - Definition of the names for specifying event types in NCM connectors

Event specialization Name for the Event Type
Presentation event presentation
Selection event selection
Point over event pointOver
Drag event drag
Attribution event attribution
Focus event focus

 Roles are specialized in action roles, condition roles and assessment roles.
Different types of roles are used depending on the connector type. In constraint
connectors, only the use of assessment roles is allowed. In causal connectors, any type
of role may be used. Figure 7 illustrates the class hierarchy for NCM roles.

Role
id
eventType
minCardinality
maxCardinality

SimpleCondit ion

EventStateTransitionCondition

transitionName

Action
actionType

ActionRole

11 1

action

1

CompoundCondition
operator
isNegated

Condition

2..n

1

2..n

1

ConditionRole
key1 11

condition

1

AttributeCondition
attributeType
comparator
value

AssessmentRole
key

Assessment

1 1

assessment

1 1

AttributeAssessment
attributeType

EventStateTrans i tionAss essment

transitionName

Assignment Action
value

Figure 7 - Class hierarchy of NCM roles in NCM connectors.

 Action roles capture actions that are triggered in causal relations. Types of
actions are illustrated in Figure 4 by labeled arcs causing transitions in the event state

 19

machine. Besides the action type attribute, an action may define a value to be assigned
to a participant attribute (if the role event type is attribution). As an example, an action
role can be: “pause the presentation of a content node”.

 NCM actions may be further extended. For instance, animation actions could be
specified, defining an initial value, a final value and a duration for performing a node
attribute assignment (e.g. the object x position in the screen, in a 2D environment).

 In causal connectors, conditions shall be satisfied in order to trigger actions.
Conditions are captured by the condition role type, which defines a logical expression
evaluating event state transitions, event attribute values or node attribute values. When
evaluated, a condition returns a boolean value.

 Conditions may be simple or compound. A simple condition may test an event
state transition, an event attribute value or a node attribute value. In the case of event
state-transition condition the test result is true only at the moment the specified
transition (transitionName attribute, defined as in Table 1) occurs. The attribute
condition shall specify the attribute type (attributeType) to be tested: an event state or
an event attribute (occurrences or repetitions) associated by a link to a node anchor; or
the attribute type nodeAttribute, that shall be associated by a link to a node attribute.
The referred attribute will be compared with the value attribute specified in the
condition using one of the following comparators: =, ≠, <, ≤, >, ≥. The attribute
condition obliges the role event type to be attribution, as discussed in Section 2.7. As
for selection events, the condition role may additionally specify to which selection
apparatus (for example, keyboard or remote control keys) it refers, through its key
attribute.

 A compound condition consists of a logical expression involving two or more
other conditions over the same event and based on operators “and” or “or”. A
compound condition role example is “the presentation of a participant finished for the
second time”, which would be specified as “[(eventType = “presentation”), ((transition
= “stops”) AND (occurrences = “2”))]”18. Note that any compound condition may be
negated using its isNegated attribute.

 While a condition always returns a boolean value when evaluated, an assessment
role contains an assessment that returns a value, depending on its type. An attribute
assessment returns the value of an event attribute (attributeType equals to one of the
event attributes: occurrences or repetitions), or the value of an event state
(attributeType equals to state), when associated by a link to a node anchor; or returns a
node attribute value (attributeType equals to nodeAttribute), when associated by a link
to a node attribute. An event-state transition assessment returns the time instant an
event state transition occurs (specified in the transitionName attribute). When referring
to a selection event, the assessment role may additionally specify to which selection
apparatus it refers, trough its key attribute.

 As previously mentioned, a connector is defined by a set of roles and a glue,
where the glue specifies how the roles interact. Every connector role shall be used in the
glue. A constraint connector has a constraint glue, which defines a statement expression
relating assessment roles. A causal connector has a causal glue, which defines a trigger
expression, relating condition and assessment roles, and an action expression, composed

18 Compound condition operators may be extended with other types, like temporal logic operators. Of
course, these operators will need to be correctly interpreted by document formatters.

 20

by action roles. When the trigger expression is satisfied, the action expression shall be
executed. Figure 8 depicts the class hierarchy of NCM expressions defined for NCM
connectors.

Glue

SimpleStatement
comparator
mainAssessmentRole
mainRoleQualifier
mainAssessmentOffset

AssessmentValueStatement
value

AssessmentStatement
otherAssessmentRole
otherRoleQualifier
otherAssessmentOffset

CompoundStatement
operator
isNegated

StatementExpression

2..n

1

2..n

1

ConstraintGlue

11 1

expression

1

SimpleTriggerExpression
conditionRole
roleQualifier

ActionExpression
delay

TriggerExpression

minDelay
maxDelay

CausalGlue

11 1

actionExpression

1

1

1

1

triggetExpression 1

ConditionExpression

CompoundTriggerExpression
operator
isNegated

2..n

1

2..n

1

SimpleActionExpression
actionRole
roleQualifier
repeat
repeatDelay

CompoundActionExpression
operator

Figure 8 - Class hierarchy of NCM expressions in NCM connectors.

 A statement expression may be simple or compound. A simple statement may
compare either assessment roles of the same type (assessment statement) or an
assessment role to a value of the same type of the assessment result (assessment value
statement). An offset value may be added to an assessment role before the comparison.
For example, an offset may be added to an assessment role to specify: “five seconds
after the time instant a presentation event stops” or “the screen vertical position plus 50
pixels”. The comparison may use the same comparators defined for simple conditions.
For example, suppose that an event state-transition assessment role P specifies a
presentation-event type and the “starts” transition, and that another event state-transition
assessment role Q specifies a presentation-event type and the “stops” transition. If an
assessment statement S1 defines that “P = Q”, S1 will be evaluated as true if a
presentation event bound to P starts at the same time another presentation event bound
to Q stops19. As another example, suppose the assessment role H containing a node
attribute assessment for the screen horizontal position attribute value. If a simple
assessment value statement S2 specifies that “H ≥ 100”, S2 will be evaluated as true if
the horizontal position of a participant playing the H role is greater than “100”. When
the maximal cardinality value of a role is greater than one, several participants may play
the same role. In this case, a qualifier shall be defined each time this role is used in glue
expressions, as will be discussed in Table 4 explanation.

 A compound statement consists of a logical expression, based on the operators
“and” or “or”, involving two or more statement expressions. Compound statements may
be negated.

 Although statement expressions may be used in causal connectors, their main
utility is in the specification of constraint connectors. The semantics of a constraint
connector is that the statement expression shall be kept true during a presentation. Table
3 illustrates a constraint connector example expressing a spatial synchronization relation

19 As aforementioned, if the first event presentation does not start, or the second event presentation does
not stop the expression is also evaluated as true.

 21

specifying “two nodes shall be horizontally aligned by their tops (their top attribute
values defined in their descriptors shall be identical)”.
Table 3 - Example of constraint connector

Role Type and id Event type Cardinality
(min,max) Attribute Name

Assessment P1 attribution (1,1) descriptor.top
Assessment P2 attribution (1,1) descriptor.top

Glue Type Statement Expression
Constraint P1 = P2

 A trigger expression may be simple or compound. A simple trigger expression
refers to a condition role. A compound trigger expression consists of a logical
expression, based on the operators “and” or “or”, involving trigger or statement
expressions, moreover a compound trigger expression may be negated. Any trigger
expression may specify minimal and maximal delays to its evaluation. For example,
given that a trigger expression C is true at instant t, C’ defined as C with minDelay=”t1”
and maxDelay=”t2” is true in the interval [t+t1, t+t2]20.

 Compound trigger expressions may relate any number of condition and
assessment roles (through condition and statement expressions). However, one
restriction is necessary to guarantee causal relation consistency. Every trigger
expression associated to a causal connector shall be satisfied only at an infinitesimal
time instant; requiring at least one event state-transition condition role.

 An action expression may also be simple or compound. A simple action
expression refers to an action role. If the action role of a simple action expression is
played by an event of presentation or attribution type, a repeat attribute may be assigned
to the repetitions attribute of the event, and also a repeat delay to be waited before
repeating the action. A compound action expression consists of an expression, based on
the operators “par”, “seq” or “excl”, involving two or more action expressions. Parallel
(par) and sequential (seq) compound actions specify that the execution of actions shall
be performed in any order or in a specific order21, respectively. Exclusive (excl)
compound action specifies that only one of the actions shall be fired. In the latter case,
the document formatter should decide by itself which one is to be performed or ask the
user to decide.

 Any action expression may also specify a delay to be waited before executing its
actions.22

20 Note that the temporal behavior of NCM relations may also be obtained using NCM time content nodes
(Section 2.3), instead of exploring connector delay parameters.
21 It is important to mention that when the sequential operator is used, actions should be fired in the
specified order. However, an action does not need to wait the previous one to be finished in order to be
fired.
22 An application based on NCM can allow the parameterization of this value and other attributes present
in glue expressions and roles. In NCL, for instance, a same connector specification can be reused with
different parameter values, deriving different NCM connectors. Indeed, the NCL parameterization is used
not only for action attributes, but also for assessment and condition attributes, specified either in the
connector roles or in the connector glue expressions. Parameterization, however, is an implementation
issue and not a model issue, so it is left to application definitions, as discussed in Part 5: NCL (Nested
Context Language).

 22

 As previously mentioned, when the maximal cardinality value of a role is greater
than one, several participants may play the same role. In this case, a qualifier attribute
specifies the role behavior. Table 4 presents possible qualifier values.
Table 4 - Role qualifier values

Role type Qualifier Semantics
Condition all All conditions shall be true
Condition any At least one condition shall be true

Assessment all All assessments shall be considered
Assessment any At least one assessment shall be considered

Action par All actions shall be executed in parallel

Action seq All actions shall be executed in parallel, but respecting the
order the participants have been associated to the role.

Action excl Only one of the actions shall be executed

 Table 5 illustrates a causal connector example expressing a temporal
synchronization relation. The connector specification is interpreted as “if a group of
participants is being presented (C1) and another participant is selected (C2), stop the
presentation of a group of participants (A1) and start the presentation of another
participant”. In order to stop the presentation of the same group of participants that
played role C1, a link using this connector shall create two binds for each participant in
the group, one to role C1 and another to role A1.
Table 5 - Example of causal connector

Role Type and id Event Type Cardinality
(min,max) Condition Action

Condition C1 presentation (1, unbounded) state=occurring
Condition C2 selection (1, 1) transition=stops

Action A1 presentation (1, unbounded) stop
Action A2 presentation (1, 1) start

Glue Type Trigger Expression Action Expression

Causal all(C1) AND C2 seq(par(A1), A2)

 Since the definition of connectors is not simple to be done by non-expert users,
because they would need to have the notion of event states and event state-transitions,
the idea is to have expert users defining connectors, storing them in libraries (connector
bases) and making them available to others for creating links23.

2.8.2. Link Binds

As aforementioned, links are defined inside a composition (indeed, until now, inside a
context node). A link refers to a connector and defines a set of binds, which associate
each link endpoint (node interface) to a role of the referred connector. Binds are
constrained to directly associate interfaces of nodes inside the composition C where the

23 As an example of connector base, consider the thirteen well-known synchronization relations defined
by Allen [Alle83]. Although Allen specified a complete set of all possible relationships that can exist
between two intervals, they do not precisely express the causal or constraint semantics that should exist
between the time intervals [DuKe95]. For instance, the meets relation only specifies that the end of
interval x should coincide with the beginning of y, but several interpretations could be given. The meets
relation could be considered either a simple constraint, or a starting causality (the end of x shall cause the
start of y), or even a stopping causality (the beginning of y shall cause the stop of x). When using NCM
connector, the author can choose and define the exact semantics (s)he wishes to express through the
relation, allowing an unambiguous specification.

 23

link was defined, or anchors of the composition C. However, since a composite-node
port may be mapped to another inner composite-node port, and so on until a node
anchor is reached, links defined in a composition C may indirectly associate events
defined in any node recursively contained in C to its connector roles. This brings the
notion of visible links and contextual links, defined as follows.

 Recalling that different NCM composite nodes can contain the same node, and
that links can be defined in any composite node in the node perspective, it is necessary
to identify which links effectively anchor on a node, or “cross” a node (in the case of
composite nodes), in a given perspective. The set of links that anchor on the node in a
given perspective P is called contextual links of P. The set of links that anchor on or
cross a composite node in a given perspective P is called visible links of P.

 More precisely, given a node N1 and a perspective P = (Nm,....,N1), with m>0:

1. A link l is visible in P if and only if there is a composite node Ni, for i ∈ [1,m],
such that Ni occurs in P, Ni contains l and:

i) if i>1 thus (Ni-1, p,...,N1, p1) defines a port mapping sequence (Section 2.4) of
a port p of composition Ni-1, and p is bound to a role of the connector used by l;
or

ii) N1 is a node that has an interface directly bound to a role of the connector
used by l.

2. A link l is contextual in P if and only if there is a composite node Ni, for i
∈ [1,m], such that Ni occurs in P, Ni contains l and:

i) if i>1 thus (Ni-1, p...,N1, p1) defines a port mapping sequence of a port p of
composition Ni-1; N1 contains an anchor p1 that is in the port mapping sequence
of p, and p is bound to a role of the connector used by l; or

ii) N1 is a node that has an anchor directly bound to a role of the connector used
by l.

 For example, suppose that nodes A and Z contain node B, which contains nodes
C, D, E and F with the links illustrated in Figure 9. Thus, the presentation of node C
through the perspective (A, B, C) will show a link from anchor i of C to anchor j of E,
and a link from anchor m of C to anchor n of F, defined in A and B, respectively. Both
are the visible and contextual links in (A, B, C). The presentation of node B, through the
perspective (A, B) will show a link from B to B, which is defined in A. This is the only
visible link in (A, B); there is no contextual link in (A, B).

 24

C

E

A

r

j

p1

p2

i

p3

c1

c1

B

m

F

n

D

k

p4

s

t

c2

c3

C

E

Z

r

j

p1

p2

i

p3

c1

c4

B

m

F

n

D

k

p4

s

t

c2

c3

port
role
anchor

mapping
bind

connector

node
C

E

A

r

j

p1

p2

i

p3

c1

c1

B

m

F

n

D

k

p4

s

t

c2

c3

C

E

Z

r

j

p1

p2

i

p3

c1

c4

B

m

F

n

D

k

p4

s

t

c2

c3

port
role
anchor

mapping
bind

connector

node

Figure 9 – Examples of visible and contextual links in NCM.

 On the other hand, the exhibition of node C through the perspective (Z, B, C)
will show a link from anchor r of C to anchor k of D and a link from anchor m of C to
anchor n of F, defined in Z and B, respectively. Both are the visible and contextual links
in (Z, B, C). The presentation of node B, through the perspective (Z, B) will show a link
from B to B, defined in node Z. This is the only visible link in (Z, B); there is no
contextual link in (Z, B).

 Link binds have other attributes besides those used to associate an interface to a
role: descriptor and embed. A descriptor attribute is optional and specifies a generic
descriptor for the node associated with the connector role. In the case where the
associated node N is a composite node, the descriptor is null. Note that several binds
may be made to the same content node with different generic descriptors, leading to the
simultaneous presentation of the same node with different exhibition characteristics,
similar to the depth navigation discussed in Section 2.4.

 The embed attribute of a bind is a boolean attribute and is used only when
associating an action role (only for start or prepare actions) with a presentation event E.
If the bind descriptor refers to a player (Section 2.10) that is already being used to
control the presentation of another event F, then the player is requested to also control
E, without stopping F, if the embed attribute is true, otherwise, if embed is false, the
player is requested to replace F by E. When not specified this attribute should be
considered as false.

 The definition of switch ports, presented in Section 2.6, allows modeling links
(relationships) that anchor on switch nodes, independent of the node that will be
selected, as illustrated in Figure 10. The traditional composite node ports allow a link to
touch a specific alternative. If this node alternative is not selected, the link will simply
be ignored during the document presentation.

 25

X

Y

A B C

List of rules

Switch ports

Interface pointList of Mappings

Switch node

Links

a b c

X

Y

A B C

List of rules

Switch ports

Interface pointList of Mappings

Switch node

Links

a b c

Figure 10– Switch nodes, switch ports and links.

 Based on NCM switch nodes, switch ports and link binds, an author can also
specify link adaptations. For example, one could insert the same node more than once
into a switch node with different rules and links associated to each occurrence. Figure
11 depicts an example of switch node usage to adapt document relationships. In the
example, the link that starts the presentation of node Z will be enabled only if rule a is
evaluated as false and rule b is evaluated as true.

X

Y

A A

List of rules

Switch node a b

Z

Link ignored if a is
true or b is false

Figure 11 – Support to link adaptation in NCM.

2.9. Data Objects versus Presentation Objects
NCM defines a data object as an entity that comprises an NCM node with all operations
for manipulating this node, except operations related with the presentation of node
content (content information units defined in Section 2.2). The functionality for
presenting the node content is given by a descriptor instance that shall be associated to
the node (data object).
 The aggregation of a data object and an NCM descriptor is called a presentation
object. The association between data objects and descriptors is illustrated in Figure 12
through dashed lines connecting objects in the lower plane with the ones in the upper

 26

plane. In the figure, nodes are represented by circles, links are illustrated by arcs and
compositions are represented by bigger circles containing other circles and arcs.

Data Plane

Presentation Plane

DescriptorsNodes (data objects)

C
A

D1

D2

D3

X

Y

X1

Y1

DX

DY

C1
A1

A2

A3

Z

Z1

DC

DZ

Nodes
(presentation objects)

Data Plane

Presentation Plane

DescriptorsNodes (data objects)

C
A

D1

D2

D3

X

Y

X1

Y1

DX

DY

C1
A1

A2

A3

Z

Z1

DC

DZ

Nodes
(presentation objects)

Figure 12 - Association between data objects and descriptors generating presentation objects

 Note that one node can be combined to different descriptors, originating
different presentation objects of the same node. Figure 12 shows this feature with the
association of descriptors D1, D2 and D3 to the data object A, originating presentation
objects A1, A2 and A3. Node A has three different presentations because there are, for
example, three different ways to access it: one can reach A by link navigation (through
one of the two links that touch the node) or by depth navigation (through composite
node C). Therefore, due to the possibility of one data object generating several
presentation objects, the presentation object of a context node may contain a different
number of elements from the corresponding data object context node (e.g. context C1
versus context C in the figure).

 As previously defined, a descriptor may be specified as a node property, as part
of a descriptor group in the composition containing the node or as an attribute of a link
bind. Besides that, default descriptors may be specified for node classes (text, image,
etc.) or explicitly suggested by the document reader (user). If a node has more than one
of these descriptors specified, the presentation system (NCM document formatter)
should build the resulting descriptor based on the following cascading rule.

 Suppose a node N of class C with the current perspective (Ck, …, C1, N) reached
through a link navigation (link l). Let D1 be a descriptor defined for the node class C, D2
be the descriptor defined by the descriptor property of N, D3 be a member of a group of
descriptors specified for N in C1, and D4 be a descriptor specified by in the bind used to
associate N link l connector. The resulting descriptor will be formed by the sum of all
attributes/properties of these descriptors (D1, D2, D3, D4). If two or more descriptors
define the same attribute/property with different values, D4 information will have

 27

priority over D3, which will have priority over D2, which in turn will have priority over
D1. Finally, if the user specifies a fifth descriptor when navigating to N, this descriptor
would be included in the cascading list with precedence over D4.

2.10. Generic Descriptors, Descriptors and Descriptor Switches
As aforementioned, descriptors are NCM entities in charge of grouping presentation
characteristics, aiming at separating this information from the document content and
structure.

 NCM defines a generic descriptor class that is further specialized in descriptor
and descriptor switch classes. The NCM descriptor has as additional information the
following optional properties: a start presentation specification, an end presentation
specification and a collection of event descriptions.

 The start presentation specification property should contain an identifier to a
formatter presentation tool (a player). This tool will be responsible for rendering the
node content during the presentation. When the player is not specified or points to a
presentation tool that is not available in the formatter, the NCM document formatter
should choose one based on the node content type.

 The start presentation specification may also contain an attribute specifying if a
new player shall be instantiated or if an already instantiated player shall be used.
Moreover, the start presentation specification may contain a set of particular attributes
or parameters that will be interpreted by the player selected for controlling the node
presentation. Some examples of these parameters are:
– for nodes with visible presentations, like text node, video node and image node, a
device parameter specifies the device where the presentation will take place; spatial
region parameter specifies a location to present the node content, identifying a position
in a screen of the specified device; etc. When these parameters are not specified, the
document formatter should choose a default spatial device and area for presenting the
node.
– for audio nodes, a device parameter specifies the audio device where the sound will
be played; a volume parameter specifies the initial playing volume; etc24. When these
parameters are not specified, the document formatter should choose a default audio
device and volume for presenting the node.
– for a text node to be played in a TtS (text to speech) player, parameters may specify
the desirable voice language, accent and gender.

 The end presentation specification property specifies what actions shall be done
at the end of the presentation. It should contain an attribute specifying what will happen
to the presentation tool at the end of the presentation, that is, if the player will be closed
or will remain opened, ready for the next presentation. In this last case, it shall also
specify if the player will remain hidden or not.

 An event description in a descriptor consists of the tuple <AnchorId,
ExplicitDuration, DurationCostFunction, Rep>. AnchorId identifies an anchor of the
data object to which the descriptor will be associated (this anchor can be generically
identified by a label or its position in order to allow the descriptor to be reused by more
than one node). ExplicitDuration is optional and overrides the node presentation ideal

24 The author can choose to present a visual information associated to an audio, for instance, a temporal
progress bar. In this case, the parameters described in the first bullet should also be specified.

 28

duration. DurationCostFunction is also optional provides metrics to guide the formatter
on how to adjust the corresponding event duration. Rep specifies a value to initialize the
repetitions attribute of the event (as discussed in Section 2.7). In particular, every
descriptor contains at least the description event <all content anchor, ExplicitDuration,
DurationCostFunction, Rep> associated to the exhibition of the entire node content.

 Similar to the switch node entity (Section 2.6), the descriptor switch contains an
ordered list of rules, where each rule is associated to a descriptor. The document
formatter should traverse the list evaluating each rule and selecting the first descriptor
whose associated rule is satisfied. If none of the rules is satisfied, the descriptor switch
may specify a default descriptor to be selected.

 The descriptor switch entity allows document formatters to adapt node
presentation characteristics independent of structure and content information. Obviously
both kinds of flexibility (presentation and content adaptation) may be combined.
Together with duration adjustments, these model characteristics lead to a flexible
support for authors specifying adaptive hypermedia documents and adaptive
hypermedia presentations.

2.11. Trails
Issues such as large number of nodes, large number of links, several changes in the
document, bad response time for user actions, insufficient visual differences between
nodes and links, and visually disoriented users combine to hinder document navigation
mechanisms. Disoriented users need context information to reestablish the sense of
orientation. In particular, temporal context information is needed to answer questions
like: “How did I get here?” These questions are answered by introducing the concept of
trail.
 Given a context, a private base or a public hyperbase25 composite node C, a trail
T for C is a composite node whose content is an ordered list of content, context and trail
nodes, such that: all nodes that are not trails are recursively contained in C, and all trails
are trails for C. Moreover, T has an additional basic property named current node,
whose value is the position of a node in the ordered list of T. This pointed node is called
current entity of T. The trail has another additional property named view, whose value
associates each node N (in the ordered list) that is not a trail with a node nesting
(Nm,....,N1), m ≥ 1, and a descriptor D, such that: N1 = N, Nm = C, Ni+1 is a composite
node, Ni is contained in Ni+1, for i ∈ [1,m). We say that trail T is associated with C.

 Every trail shall implement the deferred method of the composite node class:

• addNode: inserts a node in the trail node list in the specified position with an
associated view.

Additionally, every trail shall implement the following methods:

• next: if the current node attribute does not point to the last node in the trail list,
then it increments the current node attribute value;

• previous: if the current node attribute does not point to the first node in the trail
list, then it decrements the current node attribute value;

• home: sets the current node attribute pointing to the first entity in the trail;

25 Private bases and public hyperbase are defined in the next section.

 29

• last: sets the current node attribute pointing to the last entity in the trail;

• enable: enables the forward, back, home and last methods and disables the
addNode and removeNode methods;

• disable: disables the forward, back, home and last methods and enables the
addNode and removeNode methods;

 The reason for defining the enable and disable methods is to prevent a trail from
being simultaneously used for navigation (through the trail) and for maintaining the
navigation history. The same trail may be used for one task or the other.

 Note that a node may appear more than once in the ordered list of T. Moreover,
each node occurrence is associated with a node nesting from the point of view of C.
Trails are useful for lining up hypermedia documents and for implementing guided
tours. A special system trail may keep track of all navigation made during a work
session, so that a user can move at random from node to node and go back step by step.
Finally, it must also be remarked that, if a node N contained in a switch node S pertains
to a trail, this node shall be the selected node of S when navigating through the trail,
independent from the evaluation result, at the trail navigation moment, of the switch
rule associated to N.

 The definition of trails is important for hypermedia systems, since they represent
ordered navigation. Through the trails, authors can provide an ordering for reading,
which helps readers that are not familiarized with the document. Authors can also
provide an appropriate presentation order to a certain audience. Users tend to feel less
disoriented when they follow an already defined trail, since they have a limited number
of options to choose from when navigating.

 According to the NCM model, a possible implementation for trails to maintain
navigation history is to create a main trail (or system trail). Every time a user navigates
to a node, this node, its perspective and the resultant descriptor (cascading descriptor)
are inserted in the main trail by the system. If the user decides to navigate through the
trail, a copy of the main trail is created and the enable method is called for this copy.
Even when navigating through this trail copy, the main trail can be updated in order to
maintain the navigation history. If the user tries to go to a node without respecting the
trail sequence, the trail copy should be destroyed.

2.12. Public Hyperbase and Private Bases
The public hyperbase is an NCM concept that represents the global public repository of
available entities in a hypermedia system. The public hyperbase is a unique composite
node such that if it contains a composite node C, then it also directly contains all nodes
recursively contained in C. The public hyperbase composition has, as additional basic
property, a set of descriptors. The descriptors in the set of descriptors are those used to
create presentation objects (see Section 2.9) from the set of nodes contained in the
public hyperbase.

 A private base is a special type of composite node, such that:

i) it may contain content, context, switch, trail and private base nodes;

ii) a private base may be contained in at most one private base;

 30

iii) if a composite node is contained in a private base PB, its components are either
contained in PB; or in the public hyperbase; or in any private base recursively
contained in PB.

 Private base compositions have, as additional basic properties, a set of links and
a set of descriptors. Each link l contained in the set of links of a private base node PB
defines a relationship among nodes recursively contained in PB26. The descriptors in the
set of descriptors of a private base are those used to create presentation objects (see
Section 2.9) from the set of nodes recursively contained in the private base.

 Intuitively, a private base collects all entities used during a work session by a
user.

26 As discussed in Section 2.8, relationships may have their participants defined through mappings
towards nodes recursively contained in a composition C.

 31

3. Final Remarks
In order to offer a scalable hypermedia model, with characteristics that may be
progressively incorporated in hypermedia system implementations, NCM was divided
in several parts. This technical report deals with basic model entities that comprise the
NCM core.

 As a last note, it should be mentioned that it is also possible to have NCM
implementations that ignore some of the basic entities, but this is not so relevant to
deserve a minimum-core definition.

Acknowledgements
Many people have contributed to the NCM definition. Chief among these are Marco
Antônio Casanova and Débora Muchaluat, who have worked on the model for nearly a
decade.

 32

References
[Alle83] Allen J.F. “Maintaining Knowlegde about Temporal Intervals”.

Communications of the ACM, 26(11), November 1983, pp. 832-843.

[BMRS04] Bachelet B., Mahey P., Rodrigues R.F., Soares L.F.G. “Elastic Time
Computation in QoS-Driven Hypermedia Presentations”, Technical Report of
TeleMídia Lab., Departamento de Informática, PUC-Rio, Brazil, May 2004.

[DuKe95] Duda A., Keramane C. “Structured Temporal Composition of Multimedia
Data”. Proceedings of the IEEE International Workshop on Multimedia Database
Management Systems, Blue Mountain Lake, USA, August 1995.

[HaSc90] Halasz F.G., Schwartz M. “The Dexter Hypertext Reference Model”. NIST
Hypertext Standardization Workshop. Gaithersburg. January 1990.

[MuSo01] Muchaluat-Saade D.C., Soares L.F.G. Hypermedia Spatio-Temporal
Synchronization Relations Also Deserve First Class Status, VIII Multimedia
Modeling Conference - MMM'2001, Amsterdam, Netherlands, November 2001.

[MuRS02] Muchaluat-Saade D.C., Rodrigues R.F., Soares L.F.G. “XConnector:
Extending XLink to Provide Multimedia Synchronization”. ACM Symposium on
Document Engineering - DocEng'02, Virginia, USA, November 2002.

[PéLi96] Pérez-Luque M.J., Little T.D.C. “A Temporal Reference Framework for
Multimedia Synchronization”. IEEE Journal on Selected Areas in Communications
(Special Issue: Synchronization Issues in Multimedia Communication), 14(1),
January 1996, pp. 36-51.

[Rodr03] Rodrigues R.F. “Formatação e Controle de Apresentações Hipermídia com
Mecanismos de Adaptação Temporal”. PhD Thesis, Departamento de Informática,
PUC-Rio, March 2003.

[Soar00] Soares L.F.G. et al. “Modelo de Contextos Aninhados versão 2.2”, Relatório
Técnico do Laboratório TeleMídia, PUC-Rio, Rio de Janeiro, Brazil, 2000. (in
Portuguese)

[SoCR95] Soares L.F.G., Casanova M.A., Rodriguez N.R. “Nested Composite Nodes
and Version Control in an Open Hypermedia System”, International Journal on
Information Systems; Special issue on Multimedia Information Systems, 20(6):501-
520, Elsevier Science Ltd. England, September 1995.

[SoCR91] Soares L.F.G., Casanova M.A., Rodriguez N.R. Modelo de Contextos
Aninhados. Relatório Técnico PUC-Rio - Departamento de Informática. Rio de
Janeiro. May de 1991. (in Portuguese)

[SSRM99] Soares L.F.G., Souza G.L., Rodrigues R.F., Muchaluat-Saade D.C.
“Versioning Support in the HyperProp System”. Multimedia Tools & Applications,
8(8), May 1999.

[XLin01] “XML Linking Language (XLink) Version 1.0”, W3C Recommendation,
June 2001.

 33

Appendix A : Examples of Link Usage
Let us consider a working document of a Drama Research Team about English Poetry
of the XVI Century. Assume that the document is modeled as a user context node E
containing a user context S, grouping plays by Shakespeare, and another user context
node M, grouping sonnets by Christopher Marlowe. Assume also that S contains the text
nodes H and L, representing the plays “Hamlet” and “King Lear”, and that M contains a
text node F representing “Dr. Faustus”. Suppose the group wants to register a
connection between “Hamlet” and “Dr. Faustus” (such a link could be used, for
example, to register a connection between plays where the main theme is conflict). The
idea is to create a link l1 with the following behavior: when the user selects (clicks over)
an anchor i (for example, a sentence) of H, the sentence where the same concept appears
for the first time (anchor j) in F is presented, replacing the exhibition of H. This link
may be defined in E, but requires the creation of a hyperlink connector and the
specification of two ports in compositions S and M. Table 6 shows the connector cH
specification, while Figure 13 illustrates the context organization and port mappings.
Table 6. Example of hyperlink causal connector

Role Type and id Event Type Cardinality
(min,max) Condition Action

Condition C selection (1, 1) transition=stops
Action A1 presentation (1,1) stop
Action A2 presentation (1, 1) start

Glue Type Trigger Expression Action Expression

Causal C seq(A1, A2)

F
L

H

E

i j

λ

λ

λ
λ

λ

λ

map

p1p1

S M

port
p2p3

Figure 13 - Example of Drama Research Team document

 The link l1 would then be created in E using connector cH and establishing three
binds: <(S, p1), C>, <(S, p2), A1> and <(M, p1), A2>, as illustrated in Figure 14.

 34

F
L

H

E

i j

λ

λ

λ

λ

p1p1

S M

p2
cH

A1 A2

C

λ
λ

p3

Figure 14 - Link creation in the example of Drama Research Team document.

 As another example, illustrated in Figure 15, since S contains H and L, a link
connecting these nodes may, in principle, be defined in S with a connector c1 and the
following binds to this connector: <(H, λ), C> and <(L, λ), A>, where C and A are role
identifiers defined in c1. If one wants to create a link in E connecting H and L with the
same connector, one may define the link with binds <(S, p2), C> and <(S, p3), A>. Note
the difference between defining the link in S and in E. A link defined in S will be seen
by every document which includes S (the user context node grouping plays by
Shakespeare will probably be shared by several documents), while a link defined in E
will be seen in S only by the readers of document E.

F
L

H

E

i j

λ

λ

λ

λ

p1p1

S
M

p2
cH

A1 A2

C

λ
λ

p3

c1

CA

c1

CA

Figure 15 - Defining links with the same behavior in different contexts.

 Figure 16 offers a less polluted view of document presented in Figure 15. In this
drawing, connectors and port mappings are implicit defined in the link arrows. Since we

 35

used only causal connectors, we can specify a direction from conditions to actions (link
arrows).

F
L

H

E

i j

λ

λ

λ

λ

S
M

λ
λ

l1

l2

l3

Figure 16 - NCM causal links abstracting the connector and port concepts.

