

ISSN 0103-9741

Monografias em Ciência da Computação

n 01/2022

A Note on Process Modelling:

Combining Situation Calculus and Petri Nets

Edirlei Soares de Lima
Antonio L. Furtado

Bruno Feijó
Marco A. Casanova

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 01/2022 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Maio, 2022

A Note on Process Modelling: Combining Situation Calculus with Petri Nets

Edirlei Soares de Lima, Antonio L. Furtado, Bruno Feijó, Marco A. Casanova

Universidade Europeia, Faculty of Design, Technology and Communication – IADE, Lisbon, Portugal
PUC-Rio, Departamento de Informática, Rio de Janeiro, Brasil

edirlei.lima@universidadeeuropeia.pt, {Furtado,Bruno,Casanova}@inf.puc-rio.br

Abstract: The situation calculus logic model is most convenient for modelling the actions that can occur in
an information system application. The interplay of pre-conditions and post-conditions not only determines a
semantically justified partial order of the defined actions, but also serves to enforce integrity constraints. This
form of specification allows the use of plan-generation algorithms to investigate, before the system is
liberated for official usage, whether the proposed specification allows all desirable use cases, and effectively
disallows the illegal or, for some reason, undesirable ones. On the other hand, especially for legacy
applications, implemented without a prior specification, Process Mining techniques have been employed to
derive an implicit Petri net model from the analysis of a large enough number of traces registered in an
execution log. However, as a system just begins to be used, with a still empty execution log, this sort of
process mining discovery would not be feasible. We shall explain in this paper how the Petri net model can be
directly derived from the situation calculus specification rules. The main gist of the present research is to
provide evidence that the two models are complementary, not only because the Petri net model is derivable
from the situation calculus model, but also in view of the distinct advantages of the two models. While the
situation calculus model leads to planning and simulated execution prior to implementation, the Petri net
model, like other workflow engines, can be designed to run in a tightly restrictive mode, with the additional
asset of intuitive visualization of the workable sequences. As proof of concept, we developed a prototype to
demonstrate our methods, and tried it on two example cases: 1. a published request processing application
used to introduce process mining notions, and 2. an analogously structured trial by combat application taken
from a popular movie. The prototype includes an interactive dramatization component, which serves – as a
mandatory requirement for digital entertainment pieces – to enact the second application.

Keywords: Situation Calculus, Petri Nets, Conceptual Specification, Dramatization.

Resumo: O modelo lógico de cálculo de situação é conveniente para modelar as ações que podem ocorrer em
uma aplicação de sistema de informação. O jogo de pré-condições e pós-condições não apenas determina uma
ordem parcial semanticamente justificada, como também serve para garantir restrições de integridade. Essa
forma de especificação permite o uso de algoritmos de geração de planos para investigar, antes de o sistema
ser oficialmente liberado para uso, se a especificação proposta permite todos os casos de uso desejáveis, e
efetivamente proíbe os casos ilegítimos ou, por alguma razão, considerados indesejáveis. Por outro lado,
especialmente para aplicações herdadas, implementadas sem prévia especificação, técnicas de Mineração de
Processos tem sido empregadas para derivar um modelo de rede de Petri implícito a partir da análise de uma
quantidade suficiente de traços registrados em um log de execução. Contudo, no momento em que um sistema
apenas começa a ser usado, com um log de execução ainda vazio, essa espécie de mineração de processos não
seria factível. Vamos explicar neste artigo como o modelo de rede de Petri pode ser derivado diretamente das
regras de especificação do cálculo de situação. O ponto essencial da presente pesquisa é fornecer prova de que
os dois modelos são complementares, não apenas porque o modelo de rede de Petri é derivável do modelo de
cálculo de situação, mas também em vista das vantagens distintas dos dois modelos. Enquanto o modelo de
cálculo de situação leva a planejamento e a execução simulada antes da implementação, o modelo de rede de
Petri, assim como outras ferramentas de fluxo de trabalho, pode ser projetado para rodar em um modo
estritamente restritivo, com o bônus adicional da visualização intuitiva das sequências viáveis. Como prova de
conceito, desenvolvemos um protótipo para demonstrar nossos métodos, e o experimentamos em dois casos
exemplos: 1. uma aplicação de processamento de pedidos publicada para introduzir noções de mineração de
processos, e 2. uma aplicação, de estrutura análoga, de julgamento por combate tirada de um filme popular. O
protótipo inclui um componente de dramatização interativo, que serve – como requisito obrigatório em peças
de entretenimento digital – para encenar a segunda aplicação.

Palavras-chave: Cálculo de Situação, Redes de Petri, Especificação Conceitual, Dramatização.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

It is highly recommended that the implementation of Information Systems – both for
business applications and for digital entertainment – be preceded (and governed) by a
conceptual specification. Typically, formalisms such as Entity-Relationship or UML
models are employed to specify the database component. But the processes whereby the
database is handled should also be specified.

Systems implemented without a conceptual specification (legacy systems, schema-less
systems) are unpredictable and problematic. Reverse engineering techniques have been
used to move up from arbitrarily designed files to a fitting conceptual specification
[Heuser].

Another way to obtain a conceptual specification, when none is available and the
system has been running for some time, is to apply process mining techniques [Aalst]. A
process model can be obtained by extracting traces from an execution log, analyzing and
somehow combining them, and finally expressing the result under some formal
representation (e.g. as a Petri net).

Here we shall first employ our own formal approach, based on situation calculus. In
previous works (e.g. [Gottin]) we have shown how to start with a formal conceptual
specification and ultimately derive a relational database implementation by going through 3
phases: (1) three-schema executable specification in Prolog, (2) execution commanded
from the Prolog environment resulting in the update of Oracle tables, (3) final Oracle
implementation wherein actions are performed via automatically generated stored
procedures.

As part of that previous work, we demonstrated an early version of process mining, by
extracting transactions from an also automatically created execution log.

The situation calculus specification that we use as proof of concept in this report shows
how we interpret the simple introductory Petri net example, formulated by Wil van der
Aalst [Aalst], which deals with a reimbursement request process. Starting from the logic
specification has the advantage of offering a semantic meaning to transactions, as well as
putting goal-motivated plans side by side with observed traces.

We shall argue that the two models are complementary to each other, to the point that
the Petri net representation can be generated from the situation calculus model, over which
an execution method, analogous to the standard token-based Petri net method, can be
operated.

In addition, as we have argued before [Ciarlini et al. 2010], our very same logical
approach is applicable to the interactive composition of plots pertaining to fictional
storytelling genres. As a support to this claim, we shall examine how a trial-by-combat
incident taken from the movie Excalibur1 can be handled in terms of the two models. The
choice of this particular incident was largely motivated by the felicitous coincidence of its
Petri net structure with that of the request application.

Related research includes in special [Tan], which proposes a Situation Calculus
Ontology of Petri Nets. In [Peterson] a comprehensive and still useful classic survey of the
Petri net formalism is provided. Petri net synthesis is preceded by a novel preliminary
activity mining algorithm in [Kindler et al.]. Plans are related to Petri nets by [Ziparo et al.]
and plans are used to produce workflows in [Fernandes et. al] (recalling that Petri nets can
be viewed as a particular form of workflow).

1 https://en.wikipedia.org/wiki/Excalibur_(film)

 2

This line of research can clearly go much beyond in future more ambitious projects, in
particular if the Petri net model is extended. In actual practice, as remarked later in his
introductory process mining paper [Aalst], the event logs can register much richer
information than the bare parameter-less traces:

Moreover, event logs may contain information about resources, timestamps, and case data; for
example, an event referring to activity "register request" and case "992564" may also have attributes
describing the person registering the request (such as "John"), time of the event (such as "3011-
2011:14.55"), age of the customer (such as "45"), and claimed amount (such as "650 euro"). After
aligning model and log the event log can be replayed on the model; while replaying, one can analyze
these additional attributes; [with the necessary additional information] it is possible to analyze wait
times between activities. Measuring the time difference between causally related events and
computing basic statistics (such as averages, variances, and confidence intervals) makes it possible to
identify the main bottlenecks.

 The present text is organized as follows. Sections 2 and 3 discuss, respectively, our
approach to the situation calculus model and to the Petri net model, stressing their
complementarity. In both sections the elementary request processing application is used as
example. Section 4 exploits – again in terms of the two models – the structurally analogous
digital entertaining application.

In full recognition of the distinctive characteristics of digital entertainment, wherein
narration must visually show the participating characters enacting the events of the
generated plots, which in turn should allow immersive user interaction, a fully implemented
dramatization feature is described in detail in sub-section 4.3. Finally, concluding remarks
are the object of section 5.

2. The Situation Calculus model

The starting point of our long-term Logtell project was the development of running
conceptual level specifications to characterize narrative genres in a logic programming
formalism [Furtado and Ciarlini]. To specify an information system application, it is not
enough to define the classes of facts that will eventually populate its database component.
One should specify, also in conceptual terms, i.e. in the language of the application domain,
a fixed repertoire of events, whereby the state of the underlying mini-world would change.

Accordingly, besides our static schema, wherein facts are specified in terms of the
Entity-Relationship model [Batini et al.], we provided a dynamic schema to describe a
fixed repertoire of event-producing operations for performing state changes in conformance
with the applicable integrity constraints. Following the Stanford Research Institute
Problem Solver (STRIPS) method [Fikes and Nilsson], each operation is defined in terms
of pre-conditions, which consist of conjunctions of positive and/or negative terms
expressing facts, and any number of post-conditions, consisting of facts to be asserted or
retracted as the effect of executing the operation.

This approach is fully consistent with the situation calculus theory, compactly
expressed as follows [Kowalski]: “The following two clauses constitute the core of our
formulation of the situation calculus as a logic program. Together they define what
sentences P hold in the situation result(A, S) that is the result of the transition from state S
by an action of type A:

holds(P, result(A, S)) ← happens(A, S) ∧ initiates(A, S, P)
holds(P, result(A, S)) ← happens(A, S) ∧ holds(P, S) ∧ ¬ terminates(A, S, P)”

 3

noting that the second clause of this second-order logic formulation avoids the exponential
proliferation of first-order logic clauses constituting the so-called frame problem, by
eliminating the need to specify every class of facts (P) that are not affected by the execution
of an operation (A).

In turn, these situation calculus clauses suggest an elementary plan-generator, which
can be thus expressed in natural language:

• A fact F holds if it is true in the initial state
• F holds if it is added as one of the effects of an operation Op, and the preconditions

of Op hold at the current state
• F holds after the execution of an operation Op if it did already hold at the current

state and if it is not deleted as one of the effects of Op

and then translated into a Prolog program:

holds(Fact, [start]) :-
 initial_state(Fact), !.

holds(Fact,[Operation|Current_state]) :-
 added(Fact, Operation),
 precond(Operation, Current_state).

holds(Fact,[Operation|Current_state]) :-
 not deleted(Fact, Operation),
 holds(Fact, Current_state).

Although this elementary program is able to handle overly simple cases, such as the

well-known monkey-and-bananas problem, it must be considerably expanded for practical
usage. With that in mind, we developed two different Prolog programs for plan generation,
both obeying the backward-chaining regime of the elementary program, one in Sicstus
Prolog and the other in SWI Prolog [Ciarlini et al. 2005; Ciarlini et al. 2009]. We also
provided a simulated execution feature, which follows a given plan in forward-chaining
direction, testing the preconditions of the successive operations and performing additions
and deletions to achieve their postconditions.

Planners can be used by agents, in situations involving either opportunities or risks to
them, in order to reach some goal in a new target state where such opportunities are
materialized and/or any risks avoided. In business applications the generated plans
correspond to potential use cases, whereas in digital entertainment they represent
automatically composed narrative plots.

The pragmatic aspect introduced by relating agents, situations and goals leads to the
specification of a third schema (not to be treated in this paper – cf. [Ciarlini et al. 2005]),
the behavioural schema, which in its minimal version, consists of goal-inference rules.

As illustration, we shall concentrate on a request processing example, used to introduce
the fundaments of the process mining project initiated by Wil van der Aalst [Aalst], as
informally described in the paragraph below, showing in blue the kinds of events that can
take place:

The client of a business company registers a request, asking for the compensation of a certain
value. To serve as a document to justify the claim, he encloses a ticket. The request itself is either
examined thoroughly or examined casually, and the ticket is separately checked. After that, the

 4

company decides either to pay the compensation or to reject the request. It is also possible,
provided that neither the payment nor the rejection have been executed, to reinitiate the process
utilizing the same registered information.

The entities involved and their properties are specified, as explained before, through a

static schema:

entity(request, rn).
attribute(request, r_value).
attribute(request, examined).
attribute(request, analyzed).

entity(client, cn).
attribute(client, status).

entity(ticket, tn).
attribute(ticket, t_value).
attribute(ticket, checked).

relationship(claims,
 [client, request]).
attribute(claims, payed).
attribute(claims, rejected).

relationship(is_holder,
 [client, ticket]).

relationship(attached_to,
 [ticket, request]).

and the event-producing operations in a dynamic schema:

operation(register(C,V,T,R)).
precond(register(C,V,T,R), (client(C), ticket(T),
atom_concat(req_,T,R))).
added(request(R), register(C,V,T,R)).
added(claims(C,R), register(C,V,T,R)).
added(r_value(R,V), register(C,V,T,R)).
added(attached_to(T,R), register(C,V,T,R)).

operation(examine_thoroughly(R,C)).
precond(examine_thoroughly(R,C), (claims(C,R), request(R), client(C),
status(C,ok))).
added(examined(R,C), examine_thoroughly(R,C)).

operation(examine_casually(R,C)).
precond(examine_casually(R,C), (claims(C,R), request(R), client(C))).
added(examined(R,C), examine_casually(R,C)).

operation(check_ticket(R,C,T)).
precond(check_ticket(R,C,T), (claims(C,R),is_holder(C,T),
attached_to(T,R), r_value(R,V), t_value(T,V))).
added(checked(T,R), check_ticket(R,C,T)).

operation(decide(R,C,V,D)).
precond(decide(R,C,V,D), (examined(R,C), attached_to(T,R), checked(T,R),
r_value(R,V),
 if(V =< L, D = ok, D = (not ok)))) :- limit(L).
added(analyzed(R,D), decide(R,C,V,D)).

 5

operation(pay_compensation(R,C,V)).
precond(pay_compensation(R,C,V), (claims(C,R), analyzed(R, D),
r_value(R,V), D = ok)).
added(payed([C,R],V), pay_compensation(R,C,V)).

operation(reject_request(R,C,V)).
precond(reject_request(R,C,V), (claims(C,R), analyzed(R, D),
 r_value(R,V), D = (not ok))).
added(rejected([C,R],'limit exceeded'), reject_request(R,C,V)).

operation(reinitiate_request(R,C,T,V)).
precond(reinitiate_request(R,C,T,V), (analyzed(R,D),claims(C,
R),t_value(T,V),
 not payed([C,R],V),not rejected([C,R],M))).
deleted(examined(R,C),reinitiate_request(R,C,T,V)).
deleted(checked(T,R),reinitiate_request(R,C,T,V)).
deleted(analyzed(R,D),reinitiate_request(R,C,T,V)).

In order to conduct experiments, an initial state must be introduced, indicating the
instances of the entity classes and the specific initial values of their properties, as well as a
clause (limit) affecting the precondition of the decide operation:

limit(100).

client('Mary').
status('Mary',ok).
ticket(t123).
t_value(t123, 58).
is_holder('Mary',t123).

client('Peter').
status('Peter',overdue).
ticket(t124).
t_value(t124, 200).
is_holder('Peter',t124).

To test the specification via the plan-generator, on the basis of the declared initial state,
a try_request predicate was provided. Its first clause tries the favorable outcome that
constitutes the client’s goal. If this fails, the negative outcome is treated by the second
clause, which exposes the motive of rejection:

try_request(C,V,T,R, P) :-
 plans((claims(C,R), r_value(R,V),payed([C,R],V)), P),
 nl, write('Value credited: '), write(V), nl.
try_request(C,V,T,R, P) :-
 plans((claims(C,R),r_value(R,V),rejected([C,R],M)),P),
 nl, write('Motive of rejection: '), write(M), nl.

As a consequence of the values attributed in the initial state, client Mary succeeds
whereas client Peter, who is applying for a reimbursement that exceeds the prescribed limit,
has his request denied. By repeatedly entering “;”, the user is allowed to view alternative
plans, choosing either examine_thoroughly or examine_casually, and letting
check_ticket either precede or follow the chosen examination action. Note that Peter’s
plans, because of his ‘overdue’ status, do not include the examine_thoroughly option.

?- try_request('Mary', 58, t123, R, P).

 6

Value credited: 58
R = req_t123,
P = start=> register('Mary', 58, t123, req_t123) =>
examine_thoroughly(req_t123, 'Mary') => check_ticket(req_t123, 'Mary',
t123) => decide(req_t123, 'Mary', 58, ok) => pay_compensation(req_t123,
'Mary', 58) ;

Value credited: 58
R = req_t123,
P = start => register('Mary', 58, t123, req_t123) =>
check_ticket(req_t123, 'Mary', t123) => examine_thoroughly(req_t123,
'Mary') => decide(req_t123, 'Mary', 58, ok) =>
pay_compensation(req_t123, 'Mary', 58) ;

Value credited: 58
R = req_t123,
P = start=>register('Mary', 58, t123,
req_t123)=>examine_casually(req_t123, 'Mary')=>check_ticket(req_t123,
'Mary', t123)=>decide(req_t123, 'Mary', 58,
ok)=>pay_compensation(req_t123, 'Mary', 58) ;

Value credited: 58
R = req_t123,
P = start=>register('Mary', 58, t123, req_t123) => check_ticket(req_t123,
'Mary', t123)=>examine_casually(req_t123, 'Mary')=> decide(req_t123,
'Mary', 58, ok)=>pay_compensation(req_t123, 'Mary', 58) ;

?- try_request('Peter', 200, t124, R, P).
Motive of rejection: limit exceeded
R = req_t124,
P = start => register('Peter', 200, t124, req_t124) =>
examine_casually(req_t124, 'Peter') => check_ticket(req_t124, 'Peter',
t124) => decide(req_t124, 'Peter', 200, not ok) =>
reject_request(req_t124, 'Peter', 200) ;

Motive of rejection: limit exceeded
R = req_t124,
P = start => register('Peter', 200, t124, req_t124) =>
check_ticket(req_t124, 'Peter', t124) => examine_casually(req_t124,
'Peter') => decide(req_t124, 'Peter', 200, not ok) =>
reject_request(req_t124, 'Peter', 200) ;

In turn, one of the tasks made possible by the simulated execution feature is checking
plan validity. We utilized it in a check_fix predicate to verify whether a manually created
plan is valid. The simulated execution proceeds as long as the given plan is correct, and
pauses at the point where an error is detected. For the current version of check_fix,
corrections are provided in two simple error cases: missing operations to fulfill
preconditions and the presence of redundant operations. Both problems occur in the
example below. Note that, once a correction is introduced, the result is treated again as a
given plan, the process being repeated until the predicate returns a Valid assessment.

read(P), check_fix(P,Pv),!.

given plan:
start=>register(Peter,200,t124,req_t124)=>decide(req_t124,Peter,200,_506)
=>examine_casually(req_t124,Peter)=>reject_request(req_t124,Peter,200)

 7

not enabled: decide(req_t124,Peter,200,_506)

plan with correction:
start=>register(Peter,200,t124,req_t124)=>examine_casually(req_t124,Peter
)=>check_ticket(req_t124,Peter,t124)=>decide(req_t124,Peter,200,not
ok)=>examine_casually(req_t124,Peter)=>reject_request(req_t124,Peter,200)

given plan:
start=>register(Peter,200,t124,req_t124)=>examine_casually(req_t124,Peter
)=>check_ticket(req_t124,Peter,t124)=>decide(req_t124,Peter,200,not
ok)=>examine_casually(req_t124,Peter)=>reject_request(req_t124,Peter,200)

redundant: examine_casually(req_t124,Peter)

plan with correction:
start=>register(Peter,200,t124,req_t124)=>examine_casually(req_t124,Peter
)=>check_ticket(req_t124,Peter,t124)=>decide(req_t124,Peter,200,not
ok)=>reject_request(req_t124,Peter,200)

Valid

Notice that, when inserting the operations needed to fulfill preconditions of the decide
operation, the examine_casually option was chosen by the simulation algorithm, because
the other option, examine_thoroughly – which would be considered first in consequence
of its preceding position in the dynamic schema – was, as explained before, not available to
Peter due to his status.

3. The Petri net model

In database practice, Process Mining [Aalst] has been increasingly gaining attention as a
vitally important discipline. It relies on the analysis of an adequately structured execution
log to check the compliance of the users’ transactions, as represented by traces extracted
from the execution log, with the intended behaviour of the application. In the unfortunately
frequent case of legacy systems, in which no duly documented specification is available,
Process Mining offers methods to discover what might be called an implicit specification,
compatible with the observed traces.

As a formalism especially attractive for offering visual intuition, Petri nets, is
commonly utilized in such methods. In the semi-formal terminology employed in this
paper, a Petri net is a graph with two kinds of nodes: places (round nodes, either empty or
containing exactly one token) and transitions (square nodes representing operations).

We define a Petri net edge as triple, Op1 Pn OP2, with two (operational) transition
nodes and an intervening place node. Petri net edges are positioned so as to express a
partial ordering in the execution of events, which may follow each other in linear
sequences, possibly branching to form and-forks, or-forks, and-joins, and or-joins. We shall
also consider a simple cases of backward loop, allowing to return to a previous position and
try different branching options.

Process mining promotes the generation of Petri nets by analyzing the order of events in
the traces recorded in the execution log. Here we shall try a different approach, showing
how the ordering requirements can be derived from the situation calculus model.

The first basic consideration is that there exists an edge connecting (through a Pn node)
Op1 and Op2 if the post-conditions of Op1 have a non-empty intersection with the pre-
conditions of Op2. There is also an edge from Op1 to Op2 if some post-condition of Op1

 8

cancels some post-condition of Op2 (thus causing a backward loop, whereby Op2 can be
retried).

Forks occur when there are edges leading from an Op node into two or more nodes
Op1, Op2, …, Opn. A fork is an or-fork if Op1, Op2, …, Opn contain either incompatible
pre-conditions or redundant post-conditions. Incompatibility typically results from
conflicting value comparisons as well as from logic opposition (P vs. not P). In addition, we
consider any pair Opi and Opj incompatible if the execution of one of them would be
rendered impossible by the execution of the other, which might happen if the pre-conditions
of one of these operations require P (or not P), whereas the post-conditions of the other
produce the deletion of P (or, respectively, the addition of P). A fork is an and-fork if none
of these situations holds.

Joins occur when there are edges from two or more nodes Op1, Op2, …, Opn into a
single node Op. A join is an or-join if Op1, Op2, …, Opn contain redundant post-
conditions, or post-conditions that cancel the post-conditions of Op (which induces a
backward loop enabling Op to be retried). A join is an and-join if none of these situations
holds.

By thus considering the presence of edges, as well forks and joins, we have a method to
generate a clausal representation of the Petri net corresponding to a given situation calculus
specification.

To illustrate the result of the method, we shall return to the previously specified request
processing application which, as remarked in the Introduction, Wil van des Aalst employed
as an elementary introductory example [Aalst].

In that work, as a convenient abbreviation, the operations are represented by a single
character: a = register request, b = examine thoroughly, c = examine casually, d = check
ticket, e = decide, f = reinitiate request, g = pay compensation, and h = reject request. With
this compact notation, the trace acdeh describes a reimbursement request that was
ultimately rejected: a:registration, c:casual examination, d:check, e:decision, h:reject.
Figure 1 displays the execution log and the Petri net itself.

Figure 1: The Wil van des Aalst’s example

 9

By applying our method, we obtain the clausal representation below, where the one
letter abbreviations appear as operation labels:

The detected cases of or-forks and join-forks are listed below, using bold to distinguish

the Op originating / terminating operation:

Or-forks
register(c,v,t,r) - examine_casually(r,c)- examine_thoroughly(r,c)
decide(r,c,v,d) - pay_compensation(r,c,v)- reinitiate_request(r,c,t,v)
decide(r,c,v,d) - pay_compensation(r,c,v)- reject_request(r,c,v),
 reinitiate_request(r,c,t,v)
reinitiate_request(r,c,t,v) - examine_casually(r,c)- examine_thoroughly(r,c)

Join-forks
register(c,v,t,r) - reinitiate_request(r,c,t,v)- examine_thoroughly(r,c)
register(c,v,t,r) - reinitiate_request(r,c,t,v)- examine_casually(r,c)
register(c,v,t,r) - reinitiate_request(r,c,t,v)- check_ticket(r,c,t)

Operations coming from or-forks can be executed in any order. They might be executed

in parallel if there are enough resources, but we shall confine ourselves to linear sequences.
Once the clausal representation is generated, it is possible to display the Petri net (via

the DrawNetwork utility), as shown in Figure 2. Placing the cursor over a node with a label
such as e, causes the operation corresponding to this label, namely decide, to be shown.

 10

Figure 2: Petri net drawn from the request processing clausal representation

Even more importantly, one can check whether a given trace fits the specified ordering,

as a linear sequence initiating in the start node and terminating in the end node.
As a preliminary consideration, note that, by construction, or-forks stem from place

nodes, and or-joins always converge to a single place node. Since place nodes can contain
at most one token, or-type branching is restricted – as should be expected – to the selection
of a single option.

In contrast, and-forks stem from operation nodes, and and-joins converge to an
operation node. Differently from place nodes, operation nodes are able to emit tokens to all
outgoing place nodes (one token for each).

According to the standard token-based Petri net process, forming a trace begins by
placing a token in the start place node. The place node is then activated which signifies that
the token is consumed and the single operation node attached to the start node is enabled. In
the next steps, successive place nodes are activated after receiving tokens from enabled
nodes, and some operation node to which all incoming place nodes are active (i.e. contain a
token) is chosen to be enabled. The process ends successfully when some operation node
connected to the end place node is reached.

The Prolog program below allows to check whether a given trace, such as acdefdbeg is
valid, using a compact version of the clausal representation. Notice in the recursive check1
subprogram the alternation between activate and enable tasks.

check(T) :-
 gen_arcs,
 check1(T),
 enabled(E),
 e_arc(E,end).

check1(T) :-
 i_arc(start,I),
 assert(enabled(I)),
 atom_chars(T,[I|ES]),
 ch1(ES).

ch1([]) :- !.
ch1([E|R]) :-
 activate(S),
 enable(S,E),
 ch1(R).

activate(S) :-
 setof(Se,
 Ei^(enabled(E),arc(E,Se,Ei)),
 Ss),

 11

 forall(member(Se,Ss),
 assert(activated(Se))),
 setof(Se,activated(Se),S).

enable(S,Ei) :-
 retract(enabled(A)),
 forall(arc(Ej,Si,Ei),
 member(Si,S)),
 assert(enabled(Ei)),
 forall((member(Si,S),once(arc(Ej,Si,Ei))),
 retract(activated(Si))).

?- check(acdefdbeg).
True

Also available (and completely reproduced in the Appendix, so that the reader can play

with it if SWI-Prolog is installed) is an interactive trace-generation program, traverse
which, at each step, allows the user to choose from the current options. Whenever only one
option is applicable it is automatically inserted. An example run follows:

?- traverse.
a
choose one label from:
b:examine_thoroughly
c:examine_casually
d:check_ticket
my choice: c
d
e
choose one label from:
f:reinitiate_request
g:pay_compensation
h:reject_request
my choice: f
choose one label from:
b:examine_thoroughly
c:examine_casually
d:check_ticket
my choice: d

choose one label from:
b:examine_thoroughly
c:examine_casually
my choice: b
e
choose one label from:
f:reinitiate_request
g:pay_compensation
h:reject_request
my choice: g

 ֶacdefdbeg

start=>register(c,v,t,r)=>examine_casually(r,c)=>check_ticket(r,c,t)=>dec
ide(r,c,v,d)=>reinitiate_request(r,c,t,v)=>check_ticket(r,c,t)=>examine_t
horoughly(r,c)=>decide(r,c,v,d)=>pay_compensation(r,c,v)

 12

4. A digital entertainment application

Our proposed complementary approach is equally suitable to narratives composed for
entertainment. Here we shall adapt an incident taken from the film Excalibur, directed,
produced, and co-written by John Boorman in 1981. The incident can be thus summarized:

Sir Gawain accuses Queen Guinevere of adultery (figure 3). A trial by combat is announced, there
being two candidate knights to claim the Queen’s innocence: Sir Lancelot, a worthy knight, famous
for his many victories, and Sir Perceval, who would be no less reputed in the future, but at that time
still had little combat experience. The Queen would be vindicated if her defender could defeat the
accuser, otherwise she would be condemned. The trial could be reinitiated if a last minute
replacement of defender chanced to occur.

Figure 3: Sir Gawain denounces the Queen

4.1. Trial by combat in the situation calculus model

We start by providing a specification modelled on our situation calculus formalism, with
static and dynamic schemas, followed by the initial state that was used to exploit the
specification.

Static schema

entity(person, pn).

entity(knight, kn).
attribute(knight, strength).
attribute(knight, loyal).

entity(accuser, an).

entity(defendant, dn).
attribute(defendant,has_defender).

entity(defender, dn).

entity(challenger, cn).

entity(offense,on).

 13

relationship(accusation,
 [defendant, offense]).
attribute(accusation, vindicated).
attribute(accusation, condemned).

relationship(encounter,
 [challenger, defender]).
attribute(encounter, winner).

Dynamic schema

operation(accuse(A,D,O)).
precond(accuse(A,D,O), (knight(A), loyal(A,false), person(D),
offense(O))).
added(accusation(D,O), accuse(A,D,O)).
added(accuser(A), accuse(A,D,O)).
added(defendant(D), accuse(A,D,O)).

operation(enter_worthy_defender(K,D,O)).
precond(enter_worthy_defender(K,D,O), (accusation(D,O), knight(K),
loyal(K,true), strength(K,S), S > 100)).
added(has_defender(D,true), enter_worthy_defender(K,D,O)).
added(defender(K), enter_worthy_defender(K,D,O)).

operation(enter_beginner_defender(K,D,O)).
precond(enter_beginner_defender(K,D,O), (accusation(D,O), knight(K),
loyal(K,true), strength(K,S), S =< 100)).
added(has_defender(D,true), enter_beginner_defender(K,D,O)).
added(defender(K), enter_beginner_defender(K,D,O)).

operation(enter_challenger(A,D,O)).
precond(enter_challenger(A,D,O), (accuser(A), accusation(D,O))).
added(challenger(A), enter_challenger(A,D,O)).

operation(combat(A,K,D,O,V)).
precond(combat(A,K,D,O,V), (accusation(D,O), challenger(A),
defender(K),strength(K,Sk), strength(A,Sa), if(Sk > Sa,V = K, V = A))).
added(encounter(A,K), combat(A,K,D,O,V)).
added(winner([A,K],V), combat(A,K,D,O,V)).

operation(vindicate(D,O)).
precond(vindicate(D,O), (accusation(D,O), challenger(A), defender(K),
winner([A,K],V), V = K)).
added(vindicated([D,O],innocent), vindicate(D,O)).

operation(condemn(D,O)).
precond(condemn(D,O), (accusation(D,O), challenger(A), defender(K),
winner([A,K],V), not (V = K))).
added(condemned([D,O],guilty), condemn(D,O)).

operation(reinitiate_trial(A,K,D,O,V)).
precond(reinitiate_trial(A,K,D,O,V),(accusation(D,O),encounter(A,K),winne
r([A,K],V),not vindicated([D,O],innocent), not condemned([D,O],guilty))).
deleted(encounter(A,K),reinitiate_trial(A,K,D,O,V)).
deleted(winner([A,K],V),reinitiate_trial(A,K,D,O,V)).
deleted(challenger(A),reinitiate_trial(A,K,D,O,V)).
deleted(defender(K),reinitiate_trial(A,K,D,O,V)).
deleted(has_defender(D,true),reinitiate_trial(A,K,D,O,V)).

 14

Initial state

person('Guinevere').

knight('Lancelot').
loyal('Lancelot',true).
strength('Lancelot',200).

knight('Perceval').
loyal('Perceval',true).
strength('Perceval',100).

knight('Gawain').
loyal('Gawain',false).
strength('Gawain',150).

offense(murder).

offense(adultery).

Described in this fashion, the well-intentioned but still immature Perceval would stand
no chance to defeat Gawain, momentarily playing the role of a villain.

?- test_Perceval.
start=>accuse(Gawain,Guinevere,adultery)=>enter_challenger(Gawain,Guineve
re, adultery)=>enter_beginner_defender(Perceval,Guinevere,adultery)=>
combat(Gawain,Perceval,Guinevere,adultery,Gawain)=>
condemn(Guinevere,adultery)

On the contrary, Lancelot had what was required to triumph, thereby establishing the
Queen’s innocence (figure 4).

?- test_Lancelot.
start=>accuse(Gawain,Guinevere,adultery)=>enter_challenger(Gawain,Guineve
re, adultery)=>enter_worthy_defender(Lancelot,Guinevere,adultery)=>
combat(Gawain,Lancelot,Guinevere,adultery,Lancelot)=>
vindicate(Guinevere,adultery)

Figure 4: the Queen is innocent!

 15

4.2. Trial by combat in the Petri net model

It so happens that, when mapped into a Petri net representation, the trial by combat digital
entertainment example exhibits the same structure of the business-oriented request
processing application. Therefore, for the sake of brevity, we shall simply list, trusting that
the reader will have no difficulty to interpret, the clausal representation, the generated Petri
net image (figure 5), and the result of executing the traverse predicate – at each user
interaction providing the same choices as when applying the predicate to the ‘serious’
request processing application. As expected, the two traces are identical, though
corresponding to plans staged in quite different domains.

Clausal representation

Figure 5: Petri net drawn from the trial by combat clausal representation

Interactive trace generation

:- traverse.

a
choose one label from:
b:enter_worthy_defender

 16

c:enter_beginner_defender
d:enter_challenger

my choice: c
d
e
choose one label from:
f:reinitiate_trial
g:vindicate
h:condemn
my choice: f
choose one label from:
b:enter_worthy_defender
c:enter_beginner_defender
d:enter_challenger
my choice: d

choose one label from:
b:enter_worthy_defender
c:enter_beginner_defender
my choice: b
e
choose one label from:
f:reinitiate_trial
g:vindicate
h:condemn
my choice: g

acdefdbeg

start=>accuse(a,d,o)=>enter_beginner_defender(k,d,o)=>enter_challenger(a,
d,o)=>combat(a,k,d,o,v)=>reinitiate_trial(a,k,d,o,v)=>enter_challenger(a,
d,o)=>enter_worthy_defender(k,d,o)=>combat(a,k,d,o,v)=>vindicate(d,o)

4.3. Dramatization of the Trial by combat using the Petri net model

Generating an entire plot via the traverse call may give an indication of the effectiveness of
our method to generate interactive stories, but is not wholly satisfactory from a digital
entertainment viewpoint. In general, interactive storytelling systems are composed of two
main modules: a plot-generator and a dramatization module. While the plot-generator
handles the logical process of creating interactive narratives, the dramatization module
translates the events of the plot into a form of visual representation. In the course of our
Logtell project,2 we developed several dramatization modules to allow users to visualize
narratives in different formats, including frame picture sequences in storyboard style
[Ciarlini et al. 2009], comics book formats [Barbosa et al.; Lima et al. 2013], 3D graphics
[Ciarlini et al. 2005; Lima 2010], augmented reality [Lima et al. 2014a; Franco and Lima],
video-based techniques [Lima et al. 2012; Lima 2014b; Lima et al. 2018a], and game-based
formats [Lima et al. 2014; Lima et al. 2018b]. In this work, we present a dramatization
module capable of representing the generated Petri net model using 2D graphics and
animations.

The architecture of our interactive storytelling system is based on a client-server model
(Figure 6), where the server is responsible for the generation of the plot (Petri net model)
and the client handles the dramatization. On the server-side, the Network Manager receives

2 http://www.icad.puc-rio.br/~logtell/

 17

plot requests from clients and uses the Prolog implementation described in the previous
sections to generate a Petri net, which is then sent to clients for dramatization. On the
client-side, the Drama Manager interprets and controls the execution of the Petri net by
sending action requests to virtual Actors. The process of composing scenes for
dramatization (i.e., selecting the Actors and Locations to show) is performed by the Scene
Composer, which is constantly being informed by the Drama Manager about the type of
scene being dramatized.

User interaction is handled by the Interaction App module, which is implemented as a
mobile app that uses a Convolutional Neural Network classifier to identify hand-draw
sketches (see [Lima et al. 2020] for more details about the sketch recognition process).
Once a sketch is recognized, its identification class is sent to the Interaction Server through
a TCP/IP network message. The Interaction Server module is responsible for receiving and
interpreting the sketch classes sent by clients. Two interaction modes are supported: (1)
single user mode, in which the first valid user sketch received by the system is immediately
used as the interference choice be incorporated into the story; and (2) voting mode, in
which the Interaction Server collects all users’ sketches during a certain time and then
selects one through a voting process.

petri net

user
sketches

user
interactions

Dramatization

Drama
Manager Actors

Interaction App

Scene
Composer Locations

action
requests

scene

Client

plot
request

Plot Generator

Interaction Server

Server

Network
Manager

Prolog

plot
request

petri
net

Figure 6: Architecture of our interactive storytelling system

Multiple programming languages were used in the implementation of our interactive

storytelling system. As described in the previous sections, the process of generating plots in
the Petri net model is implemented in Prolog. However, the Plot Generator also includes an
additional module called Network Manager, which is implemented in C# and provides
network communication capabilities to the system, allowing us to implement the plot
generation process as a service provided by a network server. On the client-side, the
dramatization system is implemented in Lua3 using the Löve 2D framework,4 which

3 Lua is a well-known programming language developed at the Pontifical Catholic University of Rio de
Janeiro, Brazil (http://www.lua.org/).

 18

provides the graphical functionalities needed to create visual representations for the story.
The interaction process is implemented in Java as an Android app, which communicates
with a web service implemented in PHP. See [Gheno et al.] for more details about the
design of the sketch-based interaction system.

The Petri net representation of the plot created by the Plot Generator consists of a
directed graph G = (V, E), where V is a set of nodes {v1, v2, …, vn} and E is a set of edges
{ei = (vi, vj), …, em = (vk, vw)}. Each node vi is a pair (idi, evi), where idi is a unique name
that identifies the node vi and evi is an event description in a predicate format for transition
nodes (e.g., accuse(a,d,o)), or the constant nil for place nodes (as described in Section
3, places are nodes that can contain tokens and transitions are nodes that represent
operations).

When encoding the Petri net to be sent to the dramatization system, the graph is
simplified as a set of edges, where each edge is represented in the format [idi : evi , idj : evj].
For example, the Petri net for the trial by combat (Figure 5) can be described as follows:

[start:nil, a:accuse(a,d,o)]
[a:accuse(a,d,o), s(1):nil]
[a:accuse(a,d,o), s(2):nil]
[b:enter_worthy_defender(k,d,o), s(3):nil]
[c:enter_beginner_defender(k,d,o), s(3):nil]
[d:enter_challenger(a,d,o), s(4):nil]
[e:combat(a,k,d,o,v), s(5):nil]
[f:reinitiate_trial(a,k,d,o,v), s(1):nil]
[f:reinitiate_trial(a,k,d,o,v), s(2):nil]
[s(1):nil, b:enter_worthy_defender(k,d,o)]
[s(1):nil, c:enter_beginner_defender(k,d,o)]
[s(2):nil, d:enter_challenger(a,d,o)]
[s(3):nil, e:combat(a,k,d,o,v)]
[s(4):nil, e:combat(a,k,d,o,v)]
[s(5):nil, f:reinitiate_trial(a,k,d,o,v)]
[s(5):nil, g:vindicate(d,o)]
[s(5):nil, h:condemn(d,o)]
[g:vindicate(d,o), end:nil]
[h:condemn(d,o), end:nil]

The process of dramatizing the Petri net representation of the plot involves a simple

stepwise algorithm that controls the execution of the story by updating a list of active
events according to a standard token-based execution approach. As described in Algorithm
1, function Execute-PetriNet-Step receives by parameter a Petri net PN and a list C with
the nodes that were executed in the previous step of the algorithm (for the first step: C =
{start}). The algorithm performs all the operations to activate place nodes and transition
nodes for a single iteration of the execution process. The narrative events associated with
activated transition nodes are added to set A, which is returned when the execution of the
iteration ends. The set of narrative events returned by a single call of function Execute-
PetriNet-Step represents the parallel events that take place during a certain point of the
narrative. When the dramatization of these events ends, function Execute-PetriNet-Step
can be called again in order to obtain the next narrative events for dramatization. If an
empty set is returned, the narrative ends.

4 https://love2d.org/

 19

Algorithm 1: Petri net execution algorithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

function Execute-PetriNet-Step(PN, C)
 A = ∅;
 for each node V in C do
 if PN[V] is a PLACE then
 N = number of edges in PN[V];
 if N is greater than 0 then
 if N is 1 then
 S = first edge in PN[V];
 else
 S = get selected edge from PN[V] based on user interaction;
 end
 TA = get number of tokens available in parent nodes of PN[S];
 TN = get indegree of PN[S];
 if TA is greater or equal than TN then
 Consume TN tokens from the parent nodes of PN[S];
 Add S to A;
 end
 end
 else if PN[V] is a TRANSITION then
 for each edge E in PN[V] do
 if PN[E] is a PLACE then
 Add a token to place PN[E];
 L = Execute-PetriNet-Step(PN, {E});
 for each node W in L do
 Add W to A;
 end
 end
 end
 end
 end
 return A;
end

All the assets used for dramatization (e.g., character animations, background images,

and audio files) are defined in a library manually constructed for the domain of a specific
story. The context library is a 5-tuple L = (γ, α, β, δ, π), where:

 γ is a set that defines the actors of the story. Each actor has a name and a set of

actions, which are represented by animations in a sprite sheet format;
 α defines the locations of the story. Besides associating each location with a

background image and a soundtrack, it also defines a set of waypoints where actors
can be placed during the scene composition process;

 β defines the characters’ dialogs (text and audio);
 δ is a set that defines the interaction points of the story. Each interaction point is

associated with a set of interactive objects, which are represented by the classes of
sketches that can be used by users to interact at each interaction point. The
interaction points also include a set of instructions to guide the user during the
interaction;

 π establishes values for the variables present in the events of the Petri net.

 20

In our implementation, the context library is defined in an XML file. The library used
for the trial by combat example is available at: http://www.icad.puc-rio.br/~logtell/petri-
net/context-trial-by-combat.xml

During the dramatization of the story, our system generates 2D animations in real time
according to the actions performed by the virtual actors. An automatic virtual camera
maintains the active actors always centered in the image frame while they move around the
virtual world. When more than one actor is involved in the action, the camera will target the
center of the scene, which is calculated based on the positions of all characters that are
participating in the event. Figure 7 shows as an example a scene that involves two
characters: Gawain and Guinevere.

Figure 7: Scene from the dramatization of the trial by combat: Gawain accuses Guinevere
of adultery

User interaction occurs at or-fork nodes of the Petri net. When a node of this type is

activated, users are instructed by the virtual characters to interact by drawing specific
objects in the interaction app. The instructions are defined in the context library and
comprise a set of phases (text and audio), which are repeated until the user draws a valid
object (single user interaction mode) or during a certain time frame (voting interaction
mode). When the user’s choice is identified, the corresponding transition node is selected to
be activated (as indicated in line 10 of Algorithm 1). An example user interaction moment
for the trial by combat is illustrated in Figure 8, showing the user’s decision whether to help
Gawain or Perceval (still in his squire’s garb), in the combat by drawing a spear or a sword
(i.e., the weapons used by each character). A full video demonstration of the trial by
combat example is available at: https://www.youtube.com/watch?v=qI2TeBrhycc

 21

(a)

(b)

 Figure 8: User interaction moment in the trial by combat: (a) shows the dramatization
system instructing the user to draw a spear to assist Gawain or a sword to help Perceval;

and (b) shows that the user chose to draw a sword in the interaction app.

5. Concluding remarks

We claim that the research reported here provides a practically verifiable argument in favor
of the complementarity between the situation calculus and the Petri net models. Indeed, the
first can be used to generate the second.

The situation calculus approach is most convenient at specification time. The interplay
of pre-conditions and post-conditions not only determines a semantically justified partial
order of the defined actions, but also serves to enforce integrity constraints.

As a specified system just begins to be used, with a still empty log, process mining
discovery would not be feasible. But, in lieu of the non-existent traces, generated plans
could be used to derive a first Petri net model. Or, as done here, the Petri net can be directly
derived from the situation calculus specification rules.

Plan generation has the necessary flexibility to investigate, before the system is
liberated for official usage, whether the proposed specification allows all desirable use
cases, and effectively disallows the illegal or, for some reason, undesirable ones. The price
to pay is the time lost in exploring useless alternatives.

On the other hand, based on the conclusions of this investigation, Petri nets (like other
workflow engines) can be designed to run in a tightly restrictive mode, with the additional
asset of intuitive visualization of the workable sequences.

As an additional bonus whenever digital entertaining applications are treated, Petri nets
are especially amenable to an attractive form of dramatization. In confirmation to this
claim, a running system was developed, which served quite well to conduct experiments
with the trial by combat narrative.

It must be recognized, however that, when discussing the Petri net model, we only dealt
in this paper with the oversimplified trace representation used to introduce the most basic
process mining notions at the beginning of Wil van der Aalst’s paper. Since traces just
register the name (or label) of the operations, therefore omitting the parameter lists, the
value-dependent tests that are part of the interplay of preconditions and postconditions

 22

cannot be verified – in sharp contrast with the check_fix predicate (referred to at the end
of section 2), programmed in terms of the situation calculus model.

As a proof of concept, we initiated this project working on the very limited version of
the request processing example. Accordingly, we do not claim that all problems associated
with more realistic applications, as well as more intricate Petri net schemes can be handled
by the current prototype. For instance, Petri net loops caused by iterative actions have not
been considered. It is expected that further research, covering more complex cases and
extended representation conventions, will confirm the complementarity thesis and give
evidence of its relevance to a fully satisfactory extent.

References

[Aalst] W. V. der Aalst, “Process Mining,” In: Communications of the ACM, vol. 55 (8),

pp. 76-83, August 2012. https://doi.org/10.1145/2240236.2240257

[Barbosa et al.] S. D. J. Barbosa, E. S. Lima, F. A. G. Silva, A. L. Furtado, B. Feijó, “Early

Cases of Bertillon, the Logic Programming Sleuth,” In: Proceedings of the XII
Brazilian Symposium on Computer Games and Digital Entertainment (SBGames 2013),
São Paulo, Brazil, pp. 7 - 16, October 2013. http://www.sbgames.org/sbgames2013/
proceedings/comp/02-full-paper.pdf

[Batini et al.] C. Batini, S. Ceri, S. B. Navathe, Conceptual Database Design: An Entity-

Relationship Approach. Addison-Wesley, 1991.

[Ciarlini et al. 2005] A. E. M. Ciarlini, C. T. Pozzer, A. L. Furtado, B. Feijo, “A Logic-

Based Tool for Interactive Generation and Dramatization of Stories,” In: Proceedings of
the International Conference on Advances in Computer Entertainment Technology
(ACE 2005), Valencia, pp. 133-140, June 2005.
https://doi.org/10.1145/1178477.1178495

[Ciarlini et al. 2009] A. E. M. Ciarlini, S. D. J. Barbosa, M. A. Casanova, A. L. Furtado,

“Event relations in plan-based plot composition,” In: Computers in Entertainment, vol.
7 (4), Article No.: 55, 2009. https://doi.org/10.1145/1658866.1658874

[Ciarlini et al. 2010] A. E. M. Ciarlini, M. A. Casanova, A. L. Furtado, P. A.

S. Veloso, “Modeling interactive storytelling genres as application domains,”
In: Journal of Intelligent Information Systems, vol. 35 (3), pp. 347-381, 2010.
https://doi.org/10.1007/s10844-009-0108-5

[Fernandes et al.] A. Fernandes, A. E. M. Ciarlini, A. L. Furtado, M. G. Hinchey, M. A.

Casanova, K. K. Breitman, “Adding flexibility to workflows through incremental
planning,” In: Innovations in Systems and Software Engineering, vol. 3 (4), pp. 291-
302, 2007. https://doi.org/10.1007/s11334-007-0035-y

[Fikes and Nilsson] R. E. Fikes, N. J. Nilsson, “A New Approach to the Application of

Theorem Proving to Problem Solving,” In: Artificial Intelligence, vol. 2 (3-4), pp. 189-
208, 1971. https://doi.org/10.1016/0004-3702(71)90010-5

 23

[Franco and Lima] T. C. Franco, E. S. Lima, “Paper and Pencil Interactive Storytelling
Based on Generic Hand-drawn Sketches,” In: Proceedings of the XVI Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames 2017), Curitiba,
Brazil, p. 594-597, 2017. http://www.sbgames.org/sbgames2017/papers/Computacao
Short/174585.pdf

[Furtado and Ciarlini] A. L. Furtado, A. E. M. Ciarlini, “Generating Narratives from Plots

Using Schema Information,” In: M. Bouzeghoub, Z. Kedad, E. Métais (eds) Natural
Language Processing and Information Systems (NLDB 2000). Lecture Notes in
Computer Science, vol. 1959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-45399-7_2

[Gheno et al.] F. Gheno, E. S. Lima, “História Viva: A Sketch-Based Interactive

Storytelling System,” In: Proceedings of the XX Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames 2021), Gramado, Brazil, 2021.
https://www.sbgames.org/proceedings2021/ArtesDesignFull/218797.pdf

[Gottin et al.] V. M. Gottin, M. A. Casanova, E. S. Lima, A. L. Furtado, “A Story-Based

Approach To Information Systems,” Technical Report MCC05/15, Departamento de
Informática, PUC-Rio, 2015. https://edirlei.com/papers/Gottin_MCC_2015.pdf

[Heuser] C. A. Heuser, Projeto de Banco de Dados. Bookman, 2009.

[Kindler et. al] E. Kindler, V. Rubin, W. Schäfer, “Process Mining and Petri Net

Synthesis,” In: J. Eder, S. Dustdar (eds), Business Process Management Workshops
(BPM 2006), Lecture Notes in Computer Science, vol. 4103. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11837862_12

[Kowalski and Sadri] R. Kowalski, F. Sadri, “Reconciling the Event Calculus with the

Situation Calculus,” In: The Journal of Logic Programming, vol. 31 (1-3), pp. 39-58,
1997. https://www.doc.ic.ac.uk/~rak/papers/reconciling.pdf

[Lima 2010] E. S. Lima, Um Modelo de Dramatização Baseado em Agentes

Cinematográficos Autônomos para Storytelling Interativo. Master Thesis, Universidade
Federal de Santa Maria (UFSM), Santa Maria, Brazil, June 2010.
https://repositorio.ufsm.br/handle/1/5362

[Lima 2014] E. S. Lima, Video-Based Interactive Storytelling. PhD Thesis, Pontifícia

Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, August
2014. https://doi.org/10.17771/PUCRio.acad.24223

[Lima et al. 2012] E. S. Lima, B. Feijo, A. L. Furtado, C. T. Pozzer, A. E. M. Ciarlini,

“Automatic Video Editing for Video-Based Interactive Storytelling,” In: Proceedings of
the 2012 IEEE International Conference on Multimedia and Expo (ICME 2012),
Melbourne, Australia, pp. 806-811, July 2012. https://doi.org/10.1109/ICME.2012.83

[Lima et al. 2013] E. S. Lima, B. Feijó, A. L. Furtado, S. D. J. Barbosa, C. T. Pozzer, A. E.

M. Ciarlini, “Non-Branching Interactive Comics,” In: D. Reidsma, H. Katayose, A.
Nijholt, A. (eds) Advances in Computer Entertainment (ACE 2013). Lecture Notes in

 24

Computer Science, vol. 8253, pp. 230-245. Springer, Cham, 2013.
https://doi.org/10.1007/978-3-319-03161-3_16

[Lima et al. 2014a] E. S. Lima, B. Feijó, S. D. J. Barbosa, A- L. Furtado, A. E. M. Ciarlini,

C. T. Pozzer, “Draw Your Own Story: Paper and Pencil Interactive Storytelling,” In:
Entertainment Computing, vol. 5, p. 33-41, 2014.
https://doi.org/10.1016/j.entcom.2013.06.004

[Lima et al. 2014b] E. S. Lima, B. Feijó, A. L. Furtado, “Hierarchical Generation of

Dynamic and Nondeterministic Quests in Games,” In: Proceedings of the International
Conference on Advances in Computer Entertainment Technology (ACE 2014), Funchal,
Portugal, Article 24, November 2014. https://doi.org/10.1145/2663806.2663833

[Lima et al. 2018a] E. S. Lima, B. Feijó, A. L. Furtado, “Video-based Interactive

Storytelling Using Real-time Video Compositing Techniques,” In Multimedia Tools
and Applications, vol. 77 (2), pp. 2333-2357, 2018. https://doi.org/10.1007/s11042-017-
4423-5

[Lima et al. 2018b] E. S. Lima, B. Feijó, A. L. Furtado, “Player Behavior and Personality

Modeling for Interactive Storytelling in Games,” In: Entertainment Computing, vol. 28,
December 2018, pp. 32-48, 2018. https://doi.org/10.1016/j.entcom.2018.08.003

[Lima et al. 2020] E. S. Lima, F. Gheno, A. Viseu, “Sketch-Based Interaction for Planning-

Based Interactive Storytelling,” In Proceedings of the XIX Brazilian Symposium on
Computer Games and Digital Entertainment (SBGames 2020), Recife, Brazil, p. 348-
356, 2020. https://doi.org/10.1109/SBGames51465.2020.00029

[Peterson] J. L. Peterson, “Petri Nets,” In: ACM Computing Surveys, vol. 9 (3), pp. 223-

252, September 1977. https://doi.org/10.1145/356698.356702

[Tan] X. Tan, “SCOPE: A Situation Calculus Ontology of Petri Nets,” In: Proceedings of

6th International Conference of Formal Ontology in Information Systems, Toronto,
Canada, pp. 227-240, 2010. http://stl.mie.utoronto.ca/publications/scope.pdf

[Ziparo et al.] V. A. Ziparo, L. Iocchi, D. Nardi, P.F. Palamara, H. Costelha, “Petri Net

Plans - A Formal Model for Representation and Execution of MultiRobot Plans,” In:
Proceedings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pp. 79-86, 2008. https://www.ifaamas.org/Proceedings/
aamas08/proceedings/pdf/paper/AAMAS08_0474.pdf

 25

Appendix

/* Simple interactive SWI-Prolog program for trace composition
 allowing to choose one of the two domains treated in the text:

 r: request processing
 t: trial by combat

 which share the same clausal Petri net representation */

:- set_prolog_flag(verbose,silent).
:- style_check([-singleton,-discontiguous]).
:- set_prolog_flag(toplevel_print_options,[quoted(true), portray(true),
max_depth(100), spacing(next_argument)]).
:- dynamic activated / 1 , enabled / 1, lop / 1 .

lop(init).

% special operators

:- op(900,fy,not).
:- op(650,yfx,=>).

% simplified reading utility

rl(L,L1) :-
 get0(A),
 (not (A == 10), !,
 append(L,[A],L2),
 rl(L2,L1);
 L1 = L).

% signatures of the operations

lop_request([register(c, v, t, r), examine_thoroughly(r, c),
examine_casually(r, c), check_ticket(r, c, t),
 decide(r, c, v, d), reinitiate_request(r, c, t, v),
pay_compensation(r, c, v), reject_request(r, c, v)]).

lop_trial([accuse(a, d, o), enter_worthy_defender(k, d, o),
enter_beginner_defender(k, d, o), enter_challenger(a, d, o),
 combat(a, k, d, o, v), reinitiate_trial(a, k, d, o, v), vindicate(d,
o), condemn(d, o)]).

% Petri net clausal representation

i_arc(start, a).
arc(a, s(1), b).
arc(a, s(1), c).
arc(a, s(2), d).
arc(b, s(3), e).
arc(c, s(3), e).
arc(d, s(4), e).
arc(e, s(5), f).
arc(e, s(5), g).
arc(e, s(5), h).

 26

arc(f, s(1), b).
arc(f, s(1), c).
arc(f, s(2), d).
e_arc(g, end).
e_arc(h, end).

% choosing the domain

:- nl,
 forall(clause(lop(X),Y,Z),erase(Z)),
 write('Please choose the domain:'),nl,
 write(' For request processing, type r'),nl,
 write(' For trial by combat, type t'),nl,
 write('my choice: '),
 rl([],N),
 name(Domain,N),
 (Domain = r, lop_request(L),!;
 Domain = t, lop_trial(L)),
 assert(lop(L)), !,
 nl,
 write('You can now compose one or more traces in the chosen domain'),
nl,
 write('each time entering:'), nl,nl,
 write(' traverse.'),nl,nl,!.

% Petri net interactive traversal

traverse :-
 traverse(T), !,
 nl,
 write(T),
 nl,
 trace_plan(T,P),
 nl,
 write(P), nl, nl, !.

traverse(X) :-
 nl,
 write(a),nl,
 check1(a),
 trav1(a,X),!,
 nl.

trav1(X,X) :-
 trav2(S),
 S == [],!.
trav1(X,Z) :-
 trav2(S),
 not (S = []),
 trav3(S,Es),
 length(Es,L),
 (L = 1,
 Es = [E],
 write(E),nl;
 L > 1,
 nl,write('choose one label from:'),nl,
 lab_op(Es,Esl),

 27

 forall(member(Opl,Esl),
 (write(Opl),nl)),
 write('my choice: '),
 rl([],N),
 name(E,N)),
 atom_concat(X,E,Y),
 check1(Y),
 trav1(Y,Z).

trav2(S) :-
 enabled(E),
 e_arc(E,end),
 S = [], !.

trav2(S) :-
 setof(Se,
 Ei^(enabled(E),arc(E,Se,Ei)),
 Ss),
 (setof(Se,activated(Se),S1),!;
 S1 = []),
 append(Ss,S1,S).

trav3(S,Es) :-
 setof(E,
 (Ej,Si)^(arc(Ej,Si,E),
 member(Si,S)),
 Es1),
 setof(E,
 (Ej,Si)^(member(E,Es1),
 (forall(arc(Ej,Si,E),
 member(Si,S)))),
 Es).

check1(T) :-
 (enabled(X), !,restart;
 not enabled(X)),
 i_arc(start,I),
 assert(enabled(I)),
 atom_chars(T,[I|ES]),
 ch1(ES).

ch1([]) :- !.
ch1([E|R]) :-
 activate(S),
 enable(S,E),
 ch1(R).

activate(S) :-
 setof(Se,
 Ei^(enabled(E),arc(E,Se,Ei)),
 Ss),
 forall(member(Se,Ss),
 assert(activated(Se))),
 setof(Se,activated(Se),S).

enable(S,Ei) :-
 retract(enabled(A)),
 forall(arc(Ej,Si,Ei),
 member(Si,S)),

 28

 assert(enabled(Ei)),
 forall((member(Si,S),once(arc(Ej,Si,Ei))),
 retract(activated(Si))).
restart :-
 forall(clause(enabled(X),Y,Z),erase(Z)),
 forall(clause(activated(X),Y,Z),erase(Z)).

lab_op(L,Ls) :-
 lop(Ops),
 findall(Lab:Op,
 (member(Lab,L),
 name(Lab,[N]),
 N1 is N - 97,
 nth0(N1,Ops,Op1),
 Op1 =.. [Op|R]),
 Ls).

% converts trace notation into plan notation

trace_plan(T,P) :-
 lop(Ops),
 atom_chars(T,Lc),
 findall(O1,
 (member(C,Lc),
 name(C,[I1]),
 I is I1 - 97,
 nth0(I,Ops,O1)),
 L),
 plan_list(P,L).

plan_list(start,[]).
plan_list(Ts => T,V) :- !,
 plan_list(Ts,Vs),
 append(Vs,[T],V).

