|

il

i

S

§

i

s S

@

Series: Monographs. in Camputer Science
. and. Camputer. Applications -
" ¥° 6/69

A SOFTWARE WRITING SYSTEM

CARLOS JOSE PEREIRA DE LUCENA

IR T,

‘A SOFTWARE WRITING SYSTEM

CARLOS JOSE PEREIRA DE LUCENA
COMPUTER SCIENCE DEPARTMENT
‘PUC - RIO DE JANEIRO

A SCFTWARE WRTTING SYSTEM

.. ‘The purpose of this short paper is.to illustrate through . an
‘example the main features of the COMASS neta—language. The meta-
languagewearedealingwithcanhandleaclassof languages referred
to.as zrlanguages: . Theexampleweare going ‘to describe in two
versions isasimple z—languagewhichcanbehandledby - COMASS.

This: z-language will- be canposed of ‘a- rather classical set of
FORTRAN-1ike statéments. - -
Its.general form will be:
label: statement;
the particular statements that will be treated are:

1/0 Statements: F : _

: READ AL, A2,:005

PRINT Al,A2,...;
Declarative Statements:

' | ' » DIMENSION Al(C1),A2(C2)...;
REAL Al,A2.:.;)
. INTEGER Al,A2...;
Control Statements: Y
' GO TO label;.
IF aqgression cauparison ‘expression
THEN statanent,
: m;_
Assigrment Statement: '
| ‘ to be discussed later.
END ‘of Source Program
- END;

m2u

The statements presented have the usual meaning and will be compiled for
simplicity into SPECTRE MAP.

Note that the language is stream oriented, with each statement
finishing in this specific case by a semi~colon. This feature is imposed
by the present version of COMASS.

1. The General Organization of a COMASS Program.

The goal of this description is to show practically and in a
simple way how to utilize many of the features of the meta—language,hoping
that somebody who wants to get involved in a practical project using

COMASS be able to extrapolate more sophisticated applications.

Before going into the details of the programs appended to this
text, we are going to show its general O:r:'gam‘i..zaﬁ:,:i.,ono The scheme below is
going to illustrate a further explanation.

Statements

function 1
function 2
COMASS . function n

{ Global

PROGRAM <
KEY statements

MACRD statements

| SOURCE DECK of the
defined Z-language

.30 ’

Althouwh the presented organization is not compulsory it is ~ rather
" convenient and easy to be understocd. Of course, by understanding the
example one will be able to propose different organizations. ‘

1. The Global Statements.

The ‘core of this sector of the program is the compilation - loop.
'Obsexvethatinbothversious of the example you will Find immediately
after the declaration and the initialization of same arrays a DO loop
saying’ while $EOF (which is as furction of the system) is equal to zero
COMPILE. The COMPILE instructionreadsthene:d:s;mtaticmitsin . the
- input stream and compares thanwithallthemamg (the syntaticpart of
- it) defimdintheGCMASSprogram Ifthepmgrammnaqestofind a
'matchingtanplatetheinstructionscontainedinthebodyofthe MACYo
will be. executed giving the semantic meaning of the re@cgrﬂzed syntatic
units. '
. If the program finds no 'matéhing template the system will print the
ﬂiessagee'
andwill skip‘tothenextmit, '

 We will-show later on in the second version of our example that a
matclﬁ.ng template will always be found. This will be obi‘:ained thromh a
simple mechanism thatwas plaeed in theprogran to suggest a means for
‘edii:ing more specific” érror nessageso

The reason why most: of the declarations and initializations were
placed in this sector of the program was the intention of putting the
area of constants in common to all macros and functions in the program.

Note that DO loop initiated by the instruction

| » | DO (ki=k#l) <= SWM;
will enly be executed after the reading and processing of all‘statements

049

in the input stream, that is, when $ECF be egual to 1 indicating an END
of FILE. This loop will also be the last part of the program to be execu-
ted.

2. The functions

When we are in the process of translating the recognized syntatic
units into a target language we f£ind out that many of the actions we must
take are cammon to several macros. For this reason we collect these pie
ces of coding and put them in the form of a func:ion that can be called fram
any part of the program. _ '

Besides this reason for constructing functions, we can anticipate
that the . elaboration of the semantics to certain syntatic definitions
will impose the use of a recursive prccedure. To cope with that fact the
COMASS functions were designed implicity recursive. This avoids the in
tricated process of stacking several variables to attain the same effect.
Functions can be anywhere in the COMASS program except in the body of a
macro. To. improve readability they were placed immediately after the glo
bal statements. Note that the nesting of functions is not allowed. We
shall discuss later how the specific functions we use work.

3. Macro and key statements.

As we already mentioned elsewhere a MACRO is composed of a syntatic
and a semantic part. We called the first a template. The semantic ‘part
of the macro is the set of instructions that analyse the template and
generate an output based on it. In our case the output is a SPECTRE MAP
program. Eventually certain syntatic components are cawmon to more - than
one macro. In this case it is convenient to factor this cmﬁponent . out
creating a KEY statement. This is used more than one time in.our example
put let us repeat here a specific case. The syntatic part of the macros
to the statements PRINT and READ in the specified z-language could have
the following form '

IT.

MACRO "PRINT"<$I 0-<","$I>>";";
and MACRO "READ" <$I 0-<","$I>>";";
Nevertheless, if we factor the cammon part of the definition we would have:
KEY IOLIST=<$I 0-<","$I>>;
MACRO "PRINT" IOLIST ";";
and MACRO "READ" IOLIST ";";
Sametimes the KEY statements are used to improve the readability of some
syntatic definitions making the program easily understandable. That is what
was done with the defmiti@n of the assignement statement in our example.

Same basic ideas in using the language

The semantic meta-language of COMASS is a PL/I like language. “This
greatly facilities the task of programming in COMASS. Nevertheless it is ve
very jgrporténtfto call the uéér's_ attention to certain basic features of
the J;a,riguage on which most of the process of programming in COMASS is based.
These features are mainly related to the process of qualification and
retrieval of the camponents of a syntatic unit that had just been recogni
zed. _ | o

When a sy.ntatic unit is read from the input stream and satisfactoriiy
matched against a macro template the programmer must know which is the par
ticular format of the instruction he has in his hands. Suppose the follow

:mg example. As the macro for the DIMENSION statqnent was specified as be

ing.
KEY DIMLIST=<$I" ("$¢") "O=<M, ST ("EC") "e;
MACRO "DIMENSION" DIMLIST ";"; -
both of the following statements will match with the template:
DIMENSION A(5); DIMENSION B(6), C(7); _
We will now want to refer to the element being dimensioned so that we can .
store its name and dimension in a symbol table. If we do this we will be
able in the future to reserve an area to these variables in the object pro-

gram.
In our case this was done in the following way:

DO DIMLIST.$I(I:=I+l) =";
S¥M: —-SYMH.

SYMEOL: (S¥YM) =DMIS’I‘ $I(1);
SIZE {S¥M) s=DIMLIST.$C(I);

.
®
®

The notation used in this' piece of coding has the following meaning:
DIMLIST.$I(I:=I+1) =" + The do loop will proceed till the ith

‘identifier in the KEY DIMLIST is null. By the null we mean that o

ith identifier was present in a specific case. Note that in COMASS

all variables are initial:.zed with zero and so the first item to be

referenoed in the loop is DIMLIST.$I(1).

Th.is way of scanning the statement imposes no restriction to the

nuber of specifications in the list.

Another rather frequent-problan is the one of determining which of

the alternatives of a syntatic definition has actually occurred in a

certain case. The task of solving this problem is made a rather tri

vial one by using the system function $ALT.

For instance, when we wrote in the first version of the example the

statement IF. $ALT (AEXP.TERM(I) .MOP (LT-:L)=1 THEN DO; .we meant the

following:- |

If in the ith temm of the arittmetic expression (AEX TERM(I)) the J-

1th sign indicates a nmlt:.pln.cation the get into the DO block.

Note that in the KEY MOP= <"*"| "/">, the miltiplication sign occupi-

es the first alternative.

In the process of "walking" inside a syntatic definition the use

of functions prove to be a rather useful tool. If we look to the se

cond version of the example we see the above statement took the form:

A function TERMO is called TERMO (AEXP); and inside it we have

.6.

07@

FUNCTION TERYO (¥);

[}

IF $ALT (¥.TERM (I) -MOP (J~1) j==1 THEN DO;

[
]

@

Then we have-to face recursive syntatic definitions (see Version two), the
use of functions is practically the only solution to the problem.

i

III. Description of the example.

- The First-fact to stress when applying the COMASS language to design
things as campilers is that-the most important problem that will certainly
appear is the semantic description of the assigmment statement. ' |
This problem is enlarged when we consider a so simplified version of a
campiler-as we did in our example.

A general scheme-of the apperded example could be presented in the
following way:

1. A set of global statements initialize some declared arrays.
'I‘he constants we feed in to the arrays are opera‘t:a.on codes . in
SPECTRE MAP. As we mentloned before the DO $HOF loop provokes the
sequentlal camparison of the syntatic units with the defined

. Macros.

. 2. The macros referring to the specifications DIMENSION, REAL and IN-

' THGER, when executed, will simply add to the symbol table (SYMBOL,
SIZE, MODE) the dimension and mode of the arrays and variables
defined in those instructions.

3. The campilation of the statements PRINT, READ, SIOP ' (and LABEL,
that has to be considered an indzpendent syntatic unit for cbvious
reasons) is also straight forward. ‘

. The if statement is almost entirely based in the assignement state

ment. For this reason we will come back to it later.
5. The assignment statement is basically the only problem that has to
be faced. We shall now describe it with detail.
A relatively simple assigtment statement could be defined in COMASS in
the following way:
MACRO $I"=" AEXP;";
KEY AEXP= <TERM 0~ <AOP TERW®>;
KEY TERM= <FACTOR 0—<MOP FACIOR:>;
KEY FACTOR=<PRIMARY (- <"#%" PRIMARY>>;
KEY PRIMARY= <$I $C $I"("AEXP")"|" ("AEXR") ">
KEY AOP= <"4" "=" >;
KEY MOp= &%"| n/v >

The definition above was the primary goal of the example.
Nevertheless we noticed while programming that some of the features
defined above were not adding anything new to the program'but, on the
contrary they were confusing the example. So we decided to keep in the
program only the unique features of the definition and to mention
here in the text how easily the others could be added to it.

The problem was approached in two versions. In the first
version we show how to "walk" through a syntatic definition by fully
using the qualification feature. In the second version we show how
to cope with recursive syntatic definitions. The definition we use the
assignment ‘statement is actually the following:

MACRO $I"="AEXP";";

KEY AEXP=<TERM O- <AOP TERM>>;

KEY TERM=<FACIOR 0-<MOP FACTOR>>*

KEY FACTOR=<$I|$C l " ("AEXP") ">;

KEY AOP=<"+"|"-"

KEY MOP=<"#*"|"/" >;
Note that elimination of the exponentiation means only to reduce one
level

-9.

of qualification. Note also. that the treatment of the. canponent $I" (AEXP") "
is exactly the same as the one we give to " (AEXP")".

The implicit mode of ‘the var:.able will be known by checking: the first letter
I,J,K,L,M,N for integers. 'I'he only kind of constants accepted will be integer
constants. Mixed mode is not allowed, but the forms:
' Real V. Integer exp and
Integer V. = Real exp
will be accepbed and convem.ently compiled.
In the first version of the example, all the. semantics. referring. to the assig
nment statanent will be contained in the body. of. the macro $I"="AEXP";".
This is made possible by the eluninata.on of. the alternative " ("AEXP")" fram
the definition of fac:tor.. This s:l.mplif:.catlon reduces the organization of
the semantics for this macro to. the follwirxg scheme:
DO. AFXP 'I'EEM(I.»—I-%—l) =";
J.-O,
DO AEXP.TERM(I) QFACIOR (J:=J4+1) =";
TF :END;
Store in a. temporary storage
the value of one factor
AT:END;
Add (subtract) . the various
factors.
This.has. the. followmg meaning:
To. each term. cons;.der one. factor. at. a time outputting for. it. the corresponding
object code. In a second phase. operate over the set of factors.
The exixtence of variables. and. constante and of the integer and real modes will
originate the following typical output statement:

0100

, 1
V% TOAD($ALT (AEXP . TERM (I) MOP (T)))
S 9 B
VORC, ($ALIT (AEXP . TERM (T) .FACTOR (7)))
3 , .
AEXP . TERMA(I) FACI'OR(J’) ! % $STAT;
Its meaning is the following
1. OutputCIAorIDQdeperdingont}msign MoP) proceedingthenext
element in the factor.
2. Output an ‘'=* if the elanent to be printed is a constant,, Otherwise
don't.
3. Output the element itself.

The system function $S'I?¥.l‘ prints the statement that is being pro-

cessed. This output statement could produce something as '

IDQ=125 ‘camment |
The only function used in this version of the program is the ' SEIMODE
function which indicates the mode of a variable. The variable - MODEIN
keeps track of the current mode of an expression and the variable
CHECK indicates the mode of each variable at a time.

When a mixed mode expression is detected an error message is
printed and the production of the object code to the current @:pression
is interrlupted .

In the second version of the example we introduced the alternative
" ("AEXP")"‘in the definition of FACTOR. This was sufficient to change
the whole structure of the program. Besides that we also added to the
example the IF, the GO TO statements and simple feature that intends
to suggest how formal errors could be handled by the language. ‘

The structure of the assignment statement in the second version
now has the following form: _
(1) FUNCTION TERMO (Y)

°

[}

A1,

MACRO $I"="AEXP";"; = DO Y.TERM(N:=N+1)= =";
| TERMO (AEXP): - (1) (2) + CHECK:=FATOR(Y.TERM (I) ,PROV(N));
. Operations: involving the
i ifactors (z)
END;
(2) FUNCTION FATOR(X,PROVN) ;

[}
®

DO X.FACTOR(J :=J+1) ™ =";

®
@

©

GO TO (VARI,CONST,PAREX) $ALT (X.FACTOR (7))

PAREX:
(1) * mao {(X.FACTOR (J) .AEXP) ;

K
)

END; :
Note that to introduce indexed variables and fucntions the only thing
to do would be to create a new entry in the camputed go to with an
identical recursive call as in PAREX. Of course the only difference
would be in the fewoutput instructions that would generate object
code at the end of the recursion. '

_ 12
Note ‘that in’ this version practically all working areas were
declared as global areas. |
Although-we had no -intention of cptimizing the object code pmduced
we suggest one way of doing this in the semantics of one single factor.
Note that we keep track of the register being used and that we shift
the information back and forth accordingly. This could be with a few
-changes extended to-the whole program.
Note the way the macro (were the IF statement defined)refers to the
arithmetic statements involved in the instruction e.g. TERMO (AEXP (1)) ;
'Intheifstatanentﬂqereistlnnecessazycheckformixed mode
across the catparison with the corresponding error message.
The macro we call ‘ERROR TRAP® recognizes by default any set of
syntatic units finishing by a semi-colon:

MACRO PT=<";" | $8U PT >; |
The objective of the utilization of this feature is to show how a
programmer ‘could enlarge the number of error messages edited.by his
- COMASS campiler.

Suppose that one believes that the anission of cammas in the list
of specification of a D:imension statement is a rather common error.
If he wants to.issue an error specially for this wery. specific case,
he could write down the. following:

MACRO "DIMENSION" $I"("$C")"O= 0" "gI" ("} 5>

NOTE ' COLON MISSING IN THE FOLLOWING DIMENSION

STATEMENT ° $STAT;

END;
TheO""meansthatthemnamyormaymtbepresentbefore the
' jdentifier in the list. Again this technique could be extended and
applied wisely.

Conclusion

The COMASS meta—-language whosé utilization one can master in a very

..130

short period -of time is potentially an excellent tool to be applied in
software developnento : :

Although we were not able to experiment with it in other fields
rather than compiler, we think that intuitively the following other
applications could be listed:

1) Design of special purpose languages.
One nw erical analyst could want to intezact with the camputer by
writing, for instances:
INTEGRATE function Y=x**2
FROM 0.5 T0 1
using ROMEERG;
Also one statistician could be willing to tell the computer:
OORREIATE Age WITH Income
testing STANDARD DEVIATION
with a T DISTRIBUTION;
2) Design of parts of operating systems.
On interesting application would be to teach students
how to design a simple operating system using CCMASS.

References

1 Robert Zarnke - "A Compiler and Software Writing System"
University of Waterloo - 1969, |

2 E.J. Desautels and D.K. Smith - "An Introduction to the
String Manipulation Language SNOBOL" in "Programming Systems &
Languages" - 1967. _

3 T.E. Cheatham and K. Sattley - "Syntax Directed Compiling"” in
"Programming Systems & Languages" - 1967. |

o Sy

2y

VERSION l

Gidog M
‘)YN !IXLL‘ TP li)\t.l),f\uul)l.qb) LHAR(I).

MALRD VREALY

[MTEGER

B
b4

ST HOBE R

TOLIST m3ng
CU IOLISTe3I0le=lr1)m= 023
SYMi=SYH+l;
SYMROL{SYM) ¢
MOGDE(SYR) 2 =2
END 3

eNb

TOLISTa 4101)3

LDy
ENDEL «2s

RaAU“

;MALRU WREALY TOLIST Wiy
'Du TOLIST.$141¢ 1»1)«:; ,

=1 THrN : | s
. JINP uml&[.illl) ' VS TATS:
_LLGL T
| (NP * TOLIST.¥ICI)}
&Nd;. S
END;
PRINT

MAqRo PR INT# TOLIST #5393
DO ' TOLLSTY &lll:=1+1)~—""
IF 1=1" 1HLN §

© QUT 1 IOLIST, $I(I)
&L@C

ouT ~.10L15r;ﬁ1{tad§
gNn:
ENG 3

) IAB e

MACRO = $T: 3 ;

O SLUUIREST Gt LISSTATS
ENDL3
vsfop»
MACRO "STOP LR AN S
vooSTR ‘*f' $bTAT.x
END's '
END
MACRG 33 thD ,rifﬁ~-
JenD CHSTATS
hNDh

ASSIGNMEMr

MACFO sx Ep ARXP. PRy
Dﬁ PROVLS) CHAk(é).NY(Z)

P(z) CHAK([3) 2SU(2) CHAR Iy
. YJRC(Z’ CHAR (4)yCONVPRT(A) CHAR
MY = s Mpyr, PREY S
DV=TOIVE PFONY G
YTEOADD Yy TFAD
Sue «!:UB'.'FSU*;]
LOAD =1 LDQ y CLA S

FETS FEUEL R PR

VAk
;cuﬂy&RT:a!xrx

e :
©o aExp. 1hkn(l) IALTUR(J Jfl -
TEJ=1 THEN DOQ5 . e

LECNEXP L TERM L) MUP(J)*P'

lF 1UUL[N THEN DUS &
N E VUPL(IALI(AEXP.IFRM(I) kACTLR(J))M.

AEXD TFI«M(I) iALTU}\(J) st J'bﬁlAT.
GU IO TF3 '
ENDY

Ve LOAD (AL T(AEXP TERALT) . wup(i))y'
-V1NL(»LLT(uLxP TekMUL) FACTAR(I) D),

ACXP TERMUL) FACTURLJ) R $SIAT.
':NL)l - » :

GOITO TF,

END';

At =SETMODE(AXP TERA(L) FACTL&(J)).
EJCHECK== MODEIN THEN 'DOF |
v OUATTEMPT TOU USE A MIxLD MODE tprFSoxuw'f‘
GO 'TO MCR;

ENDH B S e -
IF .SALTUACXP TERMUT) MCPLJ=1))=1 THEN DU3
IF] "CHECK=2 & J«~2 THEN '

’ LRS SR TV
vl ..-'MY(thLK) VPR@(ﬁALT(AhXP TERN(T) fACTﬂR(J))W'
AEXP. TEFN(I),FALTUB(JL-
ENI.- o
IF LHLCK 2 & dn= THFN
LRS - © Xutsoo
IF =2 1 cnnqx 2 TH&N do TO SKIP3
L CLLS £ ey
fSKIP. v 'DV(LHECK) VUHC(&ALr(AcAP FERMEI) JEACTUREID L
AEXP . TLRM(I)FFALTOR(J)o
‘ ENUQ
TFIEND3

TEMP: T1TEM -~|1pr+1. o
PROV(T) =0TV LITLEMP S
1F v 1 | CHECK=2 THEM
3 sru CPREWIYE
eLSE v STQ ! PRUV(I),
ATSENDS «»f"
A 1 '5 CLa !PkOV(l),

HEN 6o 70 F[NAL,

<=1

LAGXP ADP (L= 1)}~‘
‘AU(LH;L&)' PRO 't

ij'j L osu(cHLCK)' . pRUV(L).i

CEND:
FINALS 1uuexm =SET MUDL(iI)m

IF %UDthﬂ~CHECA THLV o3

' CALL -

r sro s1 STGNMENT #5.

ELSE ! sru,' $x v END OF ASSIGNMENT'

MCRIENG : - o

ENDI}

D VuFNSfON A(blsG(l')'
Al T“'I'J,HAxv e
..U"AyB'Cﬂ“\I'\HMAXo .
VC/37+|HN'~"&A)(-MAX »f
MEN#KAX 5 : l
I'f‘l‘/‘)TFMIN’v‘IMAK MAX,

eND YV .

DATA SET UTILLTY = GENERATE

PRGCESSING CNDED AT EOD

RES 5 DIMENSIGN A(S),Gl1)3
RES 1

INP A READ AsB,CyMINyMAXS

[NP B

INP c

iNP MIN

[NP MAX

Loq # D=B%C /37 tMIN#MAX-MAX]
ATTEMPT TO USE A MIXEC MODE EXPRESSION
LeqQ MIN C=MIN"MAX3}

FMY MAX

STC T1

GLA Tl

CALL | [FIX

STO C END OF ASSIGNMENT

LOA (1] D=BHE/ST +MINKMAX=-MAXS
FMY E

LRS 1¢

FRv =C7

5T T2

LCQ MIN D=B¥E/9T+MIN*MAX-MAXS
My MAX

STC T3

CLA MA X D=3%E/5T+MINEMAX -MAX 3
510 T4

CLA T2

FAD T3

- Ve

[T

DIV N

sTE 19 o .

GLA | K D=I¥C/NEK/MN=LERS
NIV - MN

STQ - To o . o
CLA " LER p=1%C/NAKR/MN=-LEFS
st 1Y) o
CLA TS

AoD . T6

sus o TT

CALL FLUAT

STQ .0 END OF AS&IGNMtNT
LCQ. “AB. K= Au/bwcmu-Acwuxﬁvo.
FCoV. D '
LRS, 14

FMY - END

sTQ T8+ ,

1DQ . AC K=AB/D*END=ACHUK*PQ;
FMY - UK ' B
LRS 16

FMY - PQ

STo0 - T9

CLA T8

FSU . T9

CALL - IFIX

STO K - . END.OF ASSIGNMENT
QuT - D CPRINT DyCs

cur ' C '

STP STOP;.

iENU END;

SYMBOL TAELE

A2

6 2

c 1

MIN: 2

MAX 2

VERSION| 2

C£CL SYMBCLU5L)) CHAR(6)y MODE(SC S rlxrntl). 6.
STZELS0). FIXEDs NBMODE (1G] CHARCID 5o 0
SYM rxxru,lfw'p leﬁDyNMOD&(é) LHAR([).
DCY MY (2) CHAR(3Y, DV(Z) CHAR(3>4

ADT2) CHARI3), SUL2) . anh(B).LDAD(Z) CCHAR (3)+ CHECK BIXEDCL),
VORC(2) CHAR(Z2), CONVERT(2) CHAR([5) 3
Mvj-twpv°,r;qYﬁ;
OVE=IDIVY, IEGY
AD‘*'ADP' P TEADY

“"SUB' nrguv
LUAD'*‘LDQ’ ACLA®S
VORC-—-E 09’0 [:_-.ﬂ: .
CONVERT 3= = LFIX ! =FL0A1':

-o @v wE

SYmi=0; L
NMqDE'“"I e;e oKe 'L‘ tMl oNl-_.- v '
f\.B“"OD e= D nle U R 0330 ’lt l5l " 'ng_ ’.B.'lqn ;
o 550F~3;"" |

ceh PILE,_“

END

DD (K2=K@1)/ sy“, o
SYMBOLLK) ? RES ' SILE(K)E .
FNq o

END.
Keg IDLIST <s[G- < "," SIO>3
KEY n]Ml IST (51‘"‘" 50 |I)|l I‘_< n 5[’tl(.l’sc Ol," >>.
KEY ~AEXP=< TERM G=<AQR. TERMDD G Y :
KEY . TERM=< FACTOR 0=< MOP: FACTOR:>>.
KEY - FACTOR=<: $1 | sC g AEXP DM >
KEY M(]P (nxunlwllo)’_. o
KEY AOP < (L] ‘ nuu>':

bEMANTIC& OF THE SYNTATIC UNIT - CTERM>

FUNCTIGN TERMO(Y)s
DCL _PROVI(1S5) JCHAR(6) 3
4}n‘
DD Yo TERM(No'N+1)~“"§
CHFCK FATO (YaTERM(N),PRCV(N)):
IF CHECK=0 Tﬁem RETURN |
ENq
" CLA fAPROVGI).
Lo%lo .) .
W=l THEN RETURN ;
uo (Lr=L+l)<aN-13
IF SALTIY.AOH(L-11)=1 THEN
T AD(CHEC4} 't * PROVIL G
ELSE ¢ * SUUCHECK) 7% PROVIL);
G
URN

s

9 .

ENd
: seyANTxca-OF'THE-szTATLcJuNITagpAchg>

FUNCTION FATOR (XvﬁRDVN)Q‘
DCL T CHAR(6),Q- CHARebr,,
JiE0s . ;
CO X, FACTOR<J°~J+1) ﬂ-°'a
KEYON: =03
.. 60 TO (VARI UDNSTePAREX) SALT(XaFACTORUJND ¢

RECURS

CLELRALT (X5 FAQTOR(J+1))>2 THEN. 003,

X« BACTOREID * VUBSHATS =
60 {TO TENP:
END;
KCHPOP .ﬁALTquHUP(J))a
MOPDE IN=2 THEN D03 Lo BT
) doq +vORe (sALT(X. FAQTOR(J))) KLOFACTORGJEL - ' S§TATH
GO'[TO RECURS s o R
EnDs |
v -LOAD(»ALv(x,MoP(J)V) VORL($ALT(X FACTOR(SI))
xoqACTUR(J) e $SﬂAT. i
IF $ALT(FACTDR(JMI))>2 THLN Dn.
Irﬂwp =ITEMP 1. e
TYame T LITEMP -
 IF SALT (X hOP(J))-Z & dHECK 1 THEV
o |sw *T
ELSE ' STQ ¢ T3 -

':GO'TD PAREXP‘;v

tND.

.60 'T0 LooPs
CEND3
'7CHﬁC'“= sermqDE(x FACT%R(J)).-

DOs

IF.CHF(K ~= MODEIN THE
D MCDE EXﬂRbSSIUN“

(TTEMPT 1O~ USE A MIXE

LRE&URN CHECK=C3 .«
END|;

TF SALT (X, MGB(d=1)) =1 ﬂHcN no.

IF %Hccx =2 & Jm=2 THEN
b LRS tors

MY (CHECK) voaccsAdr(x FAcrom(J))) X F&qroatJ).

'éd;To PARENG

"ENDS L
CELSE DO '
IF CHECK= 2 & J« 2 THEN
i-“qu - no’-’ '
=2 | CHLUK =2 THEN do TO SKIP.

LS _dads
) 'DV(CHFQK) VORC($ALT(X FACTdR(J))) X5 HACTOR(J)

"t"

]uMOP(J))y-

KEGPOP 2 =$ALT (X
17 1 L

CRHO(K;FACTOR(J) Aq P}
EYON=0 THEN GO TO LOOP;

iréwp =T TEMP4L;
o

lir) P ITEMAS
STO A S
IF:(HECK 2 THFN

gne T

ELSE * ' LOAQ(KEERPOP) ® * T
IFKEEPOP=1 THEN = '
N MY (CHECKY ¢ Q.

! OV(qHFCK) 'Q;

END3
MODE VERTEICATION

FUN(T[UN SETHODE(X) §

Kef=s SfAch(ﬁ SYMBOL) 3
IF‘[h noOTHEN 005 . o
IF \4SE Ak(H(SUBSTR(X.lpI)oNBMUDE)H=0_ 4
THEN RETURN Ijs o ‘
SYM:= svwrl,f
qunoL(%vM)':x
STZE{SYM) =1y
IF %SEABCHS(SUBSTR(Xyl 1)y NHUDE) 21) THEN
RETURN MODE (SYM) =25
ELSE RETURN NOD%(SYM)oﬂl:

END;

ELSE RtTURNVﬁODc(IK)’
endls

Go_fo

MAﬁkO < "GOTQ“”IV"GO‘T0"> $T ";“é{.
! TRA 3 R B SITATS :
 ‘FNn‘

DIMrNSION

MACIRD ”DIME STON pimdrsT wiw R
DC DIMLIST, $I(I'~l+l)«ﬂ":'”
SYMIsSYHELs

"SYMBOL(SYW).—DIWLIST $1(1)5
C,STZELSYM) s=DIMLIST,SC(I) 5 "
IF SSEARCHS(SUBSTR(DIMLIST $1(1).1.1).NM00£) =0
" THEN MODE(SYM) =23

'_ELSE MDCC(SY)~— ;

gNu,

~

REAL

:AMAORO MREALY IOLIST nipes
DOIOLIST, S AL s=I41)n= 10
CSYMr=SYMels
syMBOL(SYH) tSIOLISTL $T(T)
CSTZE(SYM)t=L3

CMODE(SYM) =24

< END3 ‘

CEND

-e

-

INTFGCR

PAGRY ‘"INTLGER" [OLIST "3%3
DO OLIST, tx(x~—1+1)<—""
SYH:=SYM+Ls

EsYhu(L(SYM) IOLLST¢$JQI)3
STZECSYM) =13
MODE(SYM) t=17

ENO;

ENO

i

.8.

TOLIST ST

ELSE

; I !=;-,") ": i
CINP P TOLIST,

GO 0 KEYONS |
NE:s * TZE ' LABCL23
¢ LRA T OLABLLLS
- GO TO KEYON;
GE: ' TZE * LABEL1S
GT: ¢ TPL Y LADBEULS
CVTRA LABEL2 S
GO [TO KEYON; .
o TLE" LABELL;'
o Ml v LABELLS
) TRA ' LABEL23
:KEYCN. KKY 1.» o -
' LABELL RIES Grs
C[)MPILEo, e '
"'LAQEIZ ' RES vy

: ERRok*TRNP-

MAGRO PT=< "im | $SU PT >3
NOTE ¢ UNABLE TO IDENTLEY THE STATEMENT ' $STAT:.
ENDE TAT:
E\ld)ﬁ :

DIWCNson_Atﬂy.u(lo).'j

READ A B, CMUNGMAXG
D=HC /37 +MINHNAX= -HAX;

C=MINEMAX G
‘D= B*E/RT+HKN*MAX MAXS
D=I%C/N+K/MUN=123 5
K=AB/D*END- AC*UK*PQ. B
"PRENT 0sCs . ’
A=(AX (D= E))+q"(E’F c).
1= J (K L)3-=MN. o

= [=K%L THEN B=G¥D+R 5
~J THEN PRINT KyI3

I K450 > 1%

60 TO 173
. STgP 5 |
NOTE ' UNABLE TO IOENTIFY THE STATEMENT 64 TO 175

INP
NP
INP
INP
1w

£aQ
ATTEMPT TO USE N MlﬁkD MODE; "EXPRESSION

LeqQ
FMY
STO
CLA
cALL
STO
LcqQ
FNVY
LRsS
FOV
STO
LCQ
FMY
STO
CLA
STO
GLA
FAD
FSU
STO
LEQ
MPY
LLS
civ
§$TQ
CLA
DIV
S$TQ
cLA
STO
CLA
ADD
Suwn

GalLb

ST
LeQ
Fov
LRS
FNY
STO
LDQ
FMY
LRS
FMY
STO
CLA
FSy

cALL 1

STo
ouT
ouT
LOO
STQ
CLA

[-~

A READ AsB,C,MIN;MAXS
8 -
C

MWIN

MAX

B D BVC/3W+HIN¥MAX~N&X.
MIN* ‘ C MINM$AX.

NAX

TL

Tl '\‘I-
IFIX y
C . END GF ASSIGNMENT .

0" D=B¥E/RT +M1N*MAX—MAX.

D=BH#E /RT+MINKMAN-MAXS,

0=BHE/RT+MIN*MAN-MAXS

K=AB/DHEND-ACKUK#PQ;

K ' END OF,i§SIGNMENT3

'o-l PRINT D4C

A "__(A*(o4t))+o*(5*ﬁ =613

D AS(AR(D4E)) $GH(EXHZGI 3

ccc(c11:{
L(l(JUOl i
regrorzd
ncovonl4¢

a ﬂ(;"\ﬂs%‘

i f"b\,ﬂSq
R polatalst

: ﬁOnULSQQ
 CL\CC;‘m

LA
FSsu
STC
LeqQ
FMY
5T0
CLA
STO
LCA
STQ
LDQ
FMY
STO
CLA
STO
cLA
FSU
STC
LoQ
FMY
STO
cLA
FAD
STO
CLA
ST0
CLA
STO
CLA
STO
CLA
suB

ST0 -

CLA
otv
STQ
CLA
STO
CLA
sus

STO .

CLA
STD
CLA
$TO
CLA
5TO
cLa
suB
S$T0
CLA
DIV
S$TA
CLA
STO
CLA
ST0
LDO
MPY
$TAQ
CLA

e

12
T13
T10

T13
‘T14

Tla
T15
G

T16

17
G

T18

11T
T18
T19'

T16
T19

T20.

T15
T20

T21
T22

T23
122
T23
Y24
T21
T24

125

T26

125

T26

T27

‘T2§

129
128

129

T30
T27
©T130)
T31

131

T32

T@?

T34

A= (A(DSE)) +GXE#F-G)Y

A={A%(D-E)) +GH(EXF=G)E

A=(A%(D-E)) ¥G¥ (E*F~G)3

END OF ASS IGNMENT.

{=J/{K-L)~ MN.

_IFJ/(KfE)*ﬂNi

1=4/ (K=LD-MNg

I=2J/7(K-L)=MN3

END OF ASSIGNMENT
IF 1/4J=K)~n=T-K¥L

[F 1/ (4K ~=1<KHL
TF /- n=T=KeL

[F 1/7(J-K)~=T=K*L

IF 12(J<K}r=l-Kxl

THEN
THEN

THEN

THEN

THEN

x13

X14

[HAYAY
RES
LNQ

FRY

$T0
CLA
STO
CLA
FAD
STO
RES
CLA
STO
CLA
ST0
CLA
ADD
STO
LDQ
¥PY
STQ
CLA
STO
CLA
SuB
STO
CLA
suB
TIE
TPL
TRA
RES
ouT
ouT
RES
STP
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RFS
RES
RES

RES.

RES
RES
RES
RES

TEND DF NSSIGNMENT

B=GXD+R |

B=GX0+R .

IF K+5> 1*7~J'rntgﬁ

IF K+55-l*l -J ;THEIN

IF K+5>=1%7=J THEN-

1F o536 147-07THER

neGnL)

L 'Jl‘l'
’Of',Qr_l, ,
"‘0’\"‘1"

".'0(313'0 l :
nCooN:
XJOQ(."{% i
'_hﬁ Jl' 1

0nocLl

