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In the present report, a programming me»thod for the technique of finite ele-
ments in plane elastic problems will be developed. The characteristic featu-
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INTRODUCTION

The technique of finiteelements offers one of the most promising fields, for
research and application in the solution of camplex structural problems. The
success of the method may be ascribed to the widespread availability of digi
tal ooxrputefs and the simple, unsophisticated formulation of boundary condi~
tions. '

Another advantage of the method is that it makes use of the well known noti-
ons 'in the theor.y of structures, so that its peculiar programming technique
can be adhered to. - '

In our case, the program was inspired in the work of Gere and Weaver (3),(4)
for structures made up of linear elements.

For the time being, triangular elements were envisaged. Tt is intended to
enlarge the program, in order to include also elements of other shapes.

An ‘interesting feature in the method is that it makes the consideration. of
thermal effects possible in a simple way, without introduction of additional
cmxplications.

In the interest of the program's user, ‘the input data will be supplied by a
direct examination of a sketch of the structure. The number:.ng of points and
elements is quite arbitrary. By using a certain discipline in the numbering
of elements an economy in storage space can be achieved. '

BASIC RESULTS FOR TRIANGULAR PLATE ELEMENTS

We shall include a sumary of basic results for triangular plate elements
subject to in-plane forces. We ref,er,.:‘to Przemieniecki (1) for demonstrations.
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In figure 1, we depict a triangular ele
ment with joints numbered from 1 to 3
with corresponding displacements

ul, u2]0 .-U.6.

It can be shown that, if arbitrary dis-

P x placements are induced at the joints of

Fig. 1 ' : the element, along with an increase of

: temperature T in the whole element, the

force camponents Sy, S,, S3...5¢ in the joints are determined form the matrix equa-

tion ' B ;
s=lk] fwr + i} T (O

where different quantitiesand symbols are defined below. | :
X] is the symmetric stiffness matrix of the element, given by[K]—-—-'[KrJ-i- [Ks]
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In (2') and (2'")s %= Ki¥os Y™ Yy with mn=1,2,3. (xyy;), (X,,¥,) are the
cartesian coordirentes of the joiats in Fig. .l. ‘ ‘



Also, A123= l/2[x32¥21- x21y32| ’ the area of the triangle 1,2,3 and E,v,

t are the elastic constants and thethickness of the element respect ively.
{h} is a vector related with thermal effect, whose components are

Y32
%32
. Y
thi= Bt ) 3y (3
O 2() -x31
Y
_ X
Finally,{S}, {u} are the joint force and joint displacements vectors, ie,
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ot is the coefficient of thermal expansion, times the ten‘perature

1f can be seen from (1), that {h}a T is the joint force vector,arising form a tempe
rature change in the element, if no joint displacements are allowed, ie, if {u}=0.
This consideration is :Ltrportant, because it suggests the treatment of thermal effects
as a special kind of modal forces, as it was effectively dene in the program.

As soon as the displacements are determined, the stresses are evaluated according to
the formula '
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3. THE MAIN PROGRAM FEATURES

The finite'element program must accomplish the following basic tasks:

a) input of data, including cartesian cobi‘dinates of joints,information concer-
ning the incidence of elements in the joint network, properties of the struc-
ture and degrees of freedom;

b) computation of the stiffness matrix of each element;

- €) construction of the overall stiffness matrix of the structure from the stiffness
matrix of the elements; 7 ;

d) input of loading and temperature data;

e) determination of the free joint displacements;

£) evaluation of stresses. e | ’ | \

Let us consider an arbitrary two-dimensional elastic body sketched in Fig.2, where

we have stablished an appropriate subdivision into triangular finite elements.




The Jomts are nuvbered in .an arbitrary way, starting from l. Joint are enclosed in

circles. The elements are also numbered in sucession and the element number is wri-

tten on each element, without a circle. There is no necessary connection between the
element and joint nurbers. |

We may have arbitrary forces Fy, Fy,... applied at all or some joints.

The elements may also be subject to arbitrary temperature variations Tyr Tyr Taeeen
A nunber of joints, as®)(@ (@ and(d) must contain restrictions, in order to pre
clude any rigid bod‘y motion of the system. The positions of joints are determined by
their cartesian coordinates, refered to the general reference frame Xx,v.

The computer program mist, ‘contain infoﬁration regarding the Jjoint mwbers, which are
associated to a certa:.n element, so that the overall stiffness matrix is assembled
correctly.

" For e}:&_ttlplé, the. element "m" is associated to@, @ R @ .

Before we gét ‘down to the description of the flow chart, it is interesting to dis-
cuss the physical motivation of the way in which the over-all stiffness matrix is
assembled form stiffness matrices of the elements.

First’, we imagine that all joints in the element assembly are completely restricted
against translatibh. In such a case, all forces can be resolved into fibint forces.
These are the external appiied joint forces and the joint forces‘nece‘s"saxy to restrict -
the translation of joints in the case of a temperature variation. In a bnext stage, we
'relax the joints, by assummg motions of the joints of each element in the dlrectlon
of the coordinate axes. : . ‘

Such a task is perfomed mathematlcally, by determining the jo:l.nt dlsplacenents as a
"result of modal forces. i

The stresses in all elements are determined in a subsequent stage from the joint



" displacements.,

The rules employed to build up the overallstiffness matrix of the finite element
- assenbly, as well the J.dentifn.cation of the degrees of freedom, are s:.m:Llar to
' the analogous rules in the theory of structures (3) (4)

A FLOW CHART

A flow chart for the finite element program is given in the appendix. The follo
wing flow chart conventions are cbserved.

- input

i

“output

V ‘ - assigmment statement

<————: - iteration
<> logical decision

The main symbols used in the program are listed below:
M - nurber of finite elements
NJ - nurber of joints
NR - nunber of restrictions
'NRJ - number of restricted joints
E, NI modulus of elasticity E and Poisson ratlo v
- thickness of plate ‘

1

ALFA - coefficient o of thermal expansion
~ number of degrees of freedom
X(I) Y(I) - vectors for storage of cartesian coordn.nates of the joints
JJ(I) ,JR(I),JL(I) - vectors used to define the incidence of joints in elements

7/



RL(K) - vector used in order to define de_grees lof freedom and restrictions ("0"
for degree of freedom; "1" for a restriction).

CRL(K) - vector of cumilative restrictions

T(I) - temperature vector

A(K) - joint forde vector

SM(I,J) - stiffness matrix of a fim.te element

S(I,J) - assembledstiffness matrix of the whole structure

D(J) - joint displacement vector ~

AK[K) - vectar of restricted joint reactions.

SUBROUTINE STHMIR

This subroutine camputes the stiffness matrix of a finite element with the help
of formulas (2'), (2™, along with the temperature wvector given by formula. (3).
The results are stored in SM(...) and H{...)} respectively.

Next we shall make some very brief comments on the flow chart. In section I-II
of the flow chart, basic data, as number of elements, mmber of joints, elastic
constants, joint coordinates and so on are read in.

‘SectionII-IIIof the chart identifies degrees of freedom and restrictions and
reads in tenperéture information for processind.

Section III-IV is most important in the program.The stiffness matrix of each ele
ment is compute.d by means of the subroutine STHMIR and located temporarly in S1(...).
The stiffness matrices of the elements are transferred to the overall stiffness ma-
trix of the structures S(...), after an appropriate identification of degrees of
freedom and restrictions. |

In section IV-V, joint loads are read in and combined with joint loads frqm tem~—
perature - effects, and the result rearranged, in order to meet the requirements
concerning degrees of freedom and restrictions.

In V-VI, the linear system of eqﬁations for the displacement is solved in terms -
of the joint loads. A subroutine based on Choleski algorithm was used.



Section VI-VII refers to a rearrangement of displacement and fixed joint reacﬁions
for printing purposes. '

Finally, in section VII-VIII, the strésses are camputed from the displacements,
The program was written in FORTRAN 1V, for a 7044 IRM computer.

As an illustrative, two special examples were calculated by means of the program

N & P= 1000Kg

g P= 1000Rg

Fig. 2

e TR 5 . ;‘_ oD ‘,, W- ’v’,v““""‘r‘ v

Fig. 3

The examples are shown in Fig. 2 and Fig. 3. The first example is a plate subject
to two concentrated equal forces applied at the corners on one side and complete-
ly restricted against translation at the o@osite oorners.

The Second exanmple (Fj._g.3) is a gravity dam with a rectangular hole and subject
to a hydrostatic load.

In the first case, different nurbers 6f vfinite elements were considered in order
to appreciate how the solution approaches the continuous model. Also a temperatu

re variation was assumed in all elements.

We shall now list the results in each case.



5.1 Examples of Fig. 2
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Fig. 4

Joint J osi{.nt coordinateé {cm)
1l 0
2 100 0
3 200 0
4 0 100
5 100 100
6 200 100

Joint Restrictions: 1 and 4, horizontal and vertical
Joint Loads: Joints 3 and6,1000kg. horizontal

Joint Displacements (cm) _

Joint Horiz. Vert.

1 o o
2 0.6667x10°°  0.2652 1070
'3 0.1333x1072  0.5367 10720

4 0 0o »
5  0.6667x10>  0.1745 10 %0
2 10

6 0.1333x10
Joint Reactions (kg)

0.5558 10~

‘Joint Horiz. Reaction Vert. Reaction

1 ~1000 -0.7629 x 10
4 -1000" -0.1309 x 1074
Stress Field (kg/ cmz) .
Element T T . ™Yy
* -7 -8
1 2 -0.2722 x 10 ~0.2126 % 10

8 8

2 2 -0.5733x10°°  -0.3313 x 10"
3 2 0. o 0.2617 x 1077
4 2 -0.2722x 107/ 10.1529 x 10/
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V) Joint Reactions:

Joint Hor. . Vert.
1 ~1000 0.2634 x 103
2 0. 0.6991 x 10°
4 0. -0.2479 x 10°
6 0. -0.1653 x 10°
8 0. ~0,2590 x 10°
10 0. " 0.3389 x 10°
VI) Stress field (kg/cm?)
Element Tx Ty Ty
1 2.9463 0.  -1.0537
2 1.0537 0.3446 ~0.2796
3 2.3023 0.344 ~0.3644
4 1.6977 0.1751 0.0227
5 2.3100  0.1751 -0.0141
6 1.6891 0.1014  0.3336
7 2.8332 0.1014 0.1886
8 1.1668  0.1886 0.1167

If, with the abowve finite element assenrbly, we repeat the ca.'lculat:.ons, with zero

joint loads and a terrperature encrease of 202 in all elements (a = ), the re-
sults will be:
I) Joint displacements (cm)
Joint : Hor. Vert.
1 0. 0.
2  0.5335 x 1072 0.
3 0.1180 x 107 0.8942 x 102
4 0.1353 x 107> 0.
5 0.2243 x 107+ 0.1005 x 107t
6 0.2200 x 1071 0.
7 0. 3260 x 1071 0.1008 x 107+
8 0.273 x 107% 0.
9 0.4263 x 107t . 0.1007 x 107t

0.4270 x 1071

[
S

0.



II) Joint Reactions

Joint Hor. .- Vert.
1 © 0.1062 x 107 ~0.1771 x 10°
2 0. 0.1630 x 10°
4 0. 0.2232 x 10
6 0. " 0.3910 x 10°
8 0. ~0.2774 x 10°
10 0. ~0.1546 x 10°
ITI) Stress field (kg/cmz) _
Element T Ty Txy
1 10.821 ~60.000 10.821
2 ~10.821 -6.347 -5.183
3 3.764 ~6.347 -1.873
4 - 3.764 0.273 -1.419
5 1.018 0,273 -1.328
6 ~1.018 0.455 ~0.400
7 | 0.200 10.455 -0.418
8 ¢ _0.200° 0.418 ~0.200
5.2 Example of Fig. 3
y
A
’® \\ t= Im
NP NG B= 3 x 10° e/’
< /\ ‘ V=0
—+() O}
= .
DK
o5 6 \@®

LW

Fig. 6
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I) Joint - Jo}jant _ Coordinates (m)

1 - 0. _ %
2 : 0. 28
3 4 28
4 0. 24
5 24
6 20
7 20
8 12 20
9 0. 16
10 16
11 11 16
12 16 16
13 . 12
14 12
15 11 12
16 20 12
17 8
18 8
19 16 8
20 24 8
21 0 4
22 8 4
23 16 4
24 24 4
25 0.
26 0.
27 16 0.
28 24 0.
29 | 32 0.

II) Joint Restrictions: Joints 25, 26, 27, 28, 29
Horizontal and Vertical




* III) Joint Loads: Horizontal forces are applied as follows:

Joint | Load (t)
1 | 2
2 16
4 32
6 48
9 164
13 80
17 A 96
21 112

25 | 62

IV) Joint displacements (m)

Joint "Hor. Vert.

1 0.5959 x 107 0.1638 x 107
2 0.5238 x 1073 1 0.1638 x 1073
3 0.5182 x 1073 0.9428 x 10~
4 04515 x 107> 0.1616 x 107>
5 0.4291 x 1073 ~ 0.2914 x 1074
6 0.3820 x 1072 0.1572 x 1073
7 0.3494 x 1073 0.3209 x 1074
8 0.3315 x 107 ~0.2401 x 10™4
9 0.3177 x 107> 0.1468 x 103
10 0.3909 x 107 0.5565 x 10~
1 0.2516 x 107 | 0.1320 x 107>
12 | 0.2224 x 10 -3 -0.5545 x 1074
13 0.2441 x 1073 0.1309 x 1073
14 0.2046 x 10~ 0.4148 x 1074
15 0.1636 x 1073 0.1403 x 107>
16 0.133 x 1073 0.6496 x 1074
17 0.1710 x 1073 0.1016 x 10>
-3 0.1460 x 1074

18 0.1216 x 10
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19 0.9024 x 1074 ~0.2559 x 1074
20 | 0.7070 x 107% -0.5511 x 1074
21 0.9591 x 10™% 0.6371 x 1074
2 | 0.5684 x 10™% 0.6254 x 107>
23 0.4077 x 1074 -0.1357 x 1074
24 0.2650 x 1074 ~0.2454 x 10”4
25 0. | 0.
2 0. o 0.
27 ' 0. ' 0.
28 0. 0.
29 | 0. 0.
IV) Joint reactions (t) _

Joint Hor. Vert.
25 1628 | 233,38
26 -1557 - 25.5
27 -114.1 92.1
28 - 79.5 14.7
29 4 0. 19.9

The stresses will not be given for reasons of space.

6. CONCLUDING REMARKS

Although the above results of the chosen nurerical exanmples are self explaa.ning,
we shall drop a few remarks about them.

First, it is interesting to notice that the finite element structure of Fig. 4
gives the same stresses and @isplacements, as if the loads are applied as a
um.form tension in the bar. Such an outcame should have been expected on elementary
considerations.

When the numbers of elements is increased, (Fig.5) a stress concentration begins
to be felt close to the outer longitudinal edge of the plate. The horizontal dis
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placements are algo larger along the edge, as compared to the inside of the pla-

te. This general tendency should become more evident; as the number of elements

is encreased.

The results of the temperature effect can be clecked very well by approximate

elemetary methods, both for stresses and displacements.

It becomes clear froan analysis of results that the triangular element is not
the most favorable shape for the problem of Fig. 2, because it deviates consi
derably from the natural geametry.of the problem. Rectangular elenents are be-

tter indicated. |

As for the example of the gravity dam with a hole, the displacements obtained
from the finite element distribution of Fig, 6 seem quite logical and reasona

ble. The stresses can not be trusted very much, on account of the very low num
ber of elements.

In all examples the equllibrlum of the fixed joint reactions with the extemal

loads can be rigoroulsy checked.
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APPENDIX - FLOW CHART

[M,NJ',NR,NRJ',E,NI,Tl +ALFA

N « 2NJ -~ NR

(M,NLNR,NRJ‘,E,NI Ty ALFA,N

(J,X @), @

3, X@), Y@) | l

®




(I, 33(T), JK(T), L)

I, 33(1), IR(I), JL(I)

(.
K, RL(2K-1), RL(ZK)

K, RL(2K-1), RL(ZK)

Ve

e



®

‘CRL(1) +Rt L

CRL (K) «CRL (K-1)+RL (K)

close
loop at




Jl « 203(0)- 1 ; J2 <+« 237 (I)

Kl +« 2JR(I)~- 1 ; K, <« 2JK(I)

2
Ll,* 20L(I)- 1 ; L2 + 2JL(I) .

X1 « X(@@J(I)) ; Y1 « Y(IT(T))
X2 « X(IR(I)) ; Y2 « Y(JR(I))
X3 « X(JL(I)) ; ¥3 « Y(IL(L))

°

CALL STHMTR

CC « ALFA.T(I)




A(IL) « ccx(l) + A(I1)
A(JZ) « OCxH(2) + A(J2)
A(Kl) + CCxH(3) + A(KL)

A(K2) « CCxH(4) + A(K2)

A(Ll) <« CCxH(5) + A{Ll)
A(L2) « CCxH(6) + A(L2)




' NO _ vES |} .
| Ll<- N + CRL (Ll) RL(Ll)— ‘\YLlﬁ' Ll"CRL (Ll) _
a—
L2+ N+CRL (LZ) ' L2<' Lz—CRT.: (L2)

il




§(J1,3)) « 83y, T + S1(1,1)
S(7,,7,) « S(3,,d) + SM(2,1)
(R ,3p) « SR ,J;) + SM(3,1)
S(RyTy) + S(RyJp) + SM(4,1)

S(Ll,ql‘) <+ S(Ll,Jl) + 8M(5,1)

j

S(Jl’J2) - S(Jl'J?.) + G(1,2)

YES

53y /K)) « S K)) + sM(1,3)

Iy 1%

RL (2JK(I}I»=0

S:(JZ'Kl) AR TETRTRPY

S(Jl,Lz) * ‘S(Jl,Lz) + M(1,6)

-




s

(

J « 1,NLJ

A(ZK-1)«A(2K-1) + A,
(K« A(2K) + Ag

KNH+CRL (J)

AA (K) <A (J)




‘

‘ Solve linear system of equa
, tions S(N,N) and put displa
@ : cements in D(J)

' \'/ , { K+N+1,1\}_m3

AR(K)+« - AA(K)M

"

AR (K) AR (K)+8 (K,J)x D(J)

®



J< ML

DUTE) + 0

KeN

D (JE)+D (J)

AR (KE) <0

ReR+1

AR (KE)«AR (K

‘

10



Campute stresses by means of formu-
la (5) and print results.

11



