Series: Monographs in Computer Science

and Computer Applications

N? 12/70

ON THE USE OF PUSHDOWN AUTOMATA FOR THE PARSING

OF SENTENCES OF CONTEXT-FREE LANGUAGES

by

Robertd Lins de Carvalho
.Computer Science Department = Rio Datacenter

TECNICO CIENTIFICO
dade Catolica do Rio de Janeiro
de Sao Vicente, 209 —- Z(C-20

Rio de Janciro — Brasil

ON THE USE OF PUSHDOWN AUTOMATA FOR THE PARSING

OF SENTENCES OF CONTEXT-FREE LANGUAGES

by

Roberto Lins de Carvalho

Computer Science Department ~ Rio Datacenter

ABSTRACT

This work is a different presentation of an existing algorithm

[é] for parsing sentences of context-freellanguages.

A formal presentation of the algorithm is given, and improve =

ment are made in the processing time.

1. INTRODUCTION:

In this introduction we present some definitions in order to achieve

completeness.

We‘deﬁote the set of all words (séqﬁences of symbols) forﬁed by an

alphabet A, iu: luding the empty word €, by A%, and by A+ the set
A% - {e}, A context-free grammar G is a 4~tuple G = (VN’ XT’ P, o),

where VN and VT are finite non-empty sets, called the set of nonter~

minals and the set of terminals, respectively, P is a sﬁbset of

VN X (VN U VT)+ called the set of production rules of G, and o is an -

element of VN

free grammar (cfg, for short) .is the following.

, called the start symbol. The interpretation of a context-

. . + .
If o is an element pf (VN 1) VT) , and a particular element of VN’ say n,
occurs in o and there exists in P the pair (n, u), then we can substi-

tute u for that occurence of n in a.

: Y o) +
We sometimes use n =+ u for (n,u), we define a relation :E=> E;;(VN U VT)

X (VN U VT)+ such that o ;z=> B iff a = B or a = unv, B = uwv and

- : X : . *
(n ,w) € P, Another relation, the transitive closure of =—>, 1§ =
' , G G o

%
> B iff there exist words Cps Gosesesly such

which is defined by o

> oy + 1. Now we

that a1'= @, o w‘B, and for all 1g¢ i < n ay

G

+ % . .
| ¢ ==>" x}, this set is called the langua-

define the set L(G) = {x ¢ VT

"ge (cfg) generated by G.

We now present a very useful automaton, called pushdown automata (pda, for

short).

Definition 1.1 - A pda is a 7-tuple A=(K, I, I, &, dgs ZO’ F) where
K is finite non~empty set of states, I is a finite
non-empty set os input symbols, I' is a finite non-
empty set of pushdown symbols, § is a funét%on from

: L ' * 7/
Kx (20U {e}) xT into finite subsets of K X T » g
is the start state, Z0 is the start pushdown symbol

and F is a subset of K and is called the final set of

states.

An illustration o£ such automata is given by the

following picture.

4] #2| 23| 24| - | | ———- alB | X \\
finite :
control in state q

Yi| Y2 | Y3 | —~ | Y5 | ¥ | ¥ ——-7\

the picture shows the automaton in state q, reading
input a; where a.€ ZU{ ¢ },and scanning the right most

symbol (the top) Y5 in the pushdown - tape.

An atomic move of the automaton A, if (q', w)g_dﬁq,aist),

may be the following:

Definition 1.2 -~

‘Definition 1.3 -

Definition 1.4 -

(i) go into state q'

(ii)substitute the word w for Yj in the pushdown tape.

If w= ¢, A erases or "pops-up" the pushdown store.

Formally we ‘have:

An instantaneous description (id, for short) of a pda
%* *
(K, z, I, &, A Zp» F) i8 an element of K x £ XT ,

which we denote by (q, %, wW).

Let A= (K, L, T, &, qo, Zy» F) be a pda and define a

relation |— on id's of A, as follows.

for each qeK, ae L U {e}, x ¢ X*,W £ I‘* and Z e T,

(¢, ax, w2) |-(a*, %, wy) iff (q', y) ¢ §(q, a, 2) thus
|- denotes an elementary (atomic) mer ‘of the automaton
also we define the relation |ﬁ by

u I—t B iff there is a sequence of id's Q)= 05 Oy Ogy eoey

o = B, such that for all i, 1-ski< n o oa; }-—ozi .1
Let A = (K, Z, T, 6, g Zy» F) be a pda, define the sets.

*. 1 *
T @) ={xez]| (49, %, 2Zp) ~ (q, €, w), for some
*
(q’ W)E F x r }0
%* * a
and N(A) = {x e I | (qo, X, ZO) = (q, €, _e), for some

qe K}

Intuitively, T (&) and N (A) are sets of words éccepted in two senses:
(i) by the finél state

(ii) bybthe empty pushdown :ape

Example 1: Let A=(K, I, T, &, qp,Zy> ¢) be a pda where K= {q,, q;}, I =

{a, b}, P=’{ZO, a, b} and 8 is defined for each ¢, A ¢ I,

by
G(QO.’ c, ZO) {(qo» Zo: C)} 6(q0: €, ZO)" {(ql’ 3)}
(g, ¢, A) = {(qp, Ac)} 8(qy, ¢, ¢) = {(qy, e)}

S(qo: c, ¢) = {(qO’ cc)‘,(ql,e)} 6((11,'5, ZO)= {(ql’ e)}

If we have, at the beginning the wora "abbbba" on the input
we shall have the following ''derivation tree"

Ch éppbbg: Zg)

7

(ql,'abbba, €) (qo, bbba, Zoq)
? T

(qo, bEBa, Zoab).

Z

bba, Znabb
(QQ, - ’a’\\(za')

T T

(qo, ba, Zoabbb) (ql, ba, Zoab)
? T
(ql, a, Zpa)
T
(qy> €, Zp)
"‘IT‘

(ql, €, €)

C.R.3

£.0
B3]

lioteca

Z 3.2/

wmwnﬁAﬁzzﬂ

2.

We see that we finally arrive at (ql, €, €) and that abbbba e N(A)

by definition. The signal "?" means that by that ramification of the

tree we shall fail.

We present in this paragraph an algorithm based on pda to recognize

Theorem 2.1 - For each cfg G= (VN, VT’ P,0), there exists a pda A

Let us define A= ({q }, VT’ VNU VT,-cS, q, 0, ¢), where

8(q, a, a) ={(q, €)} for each a ¢ V,,, formally, one

T’

% %
0= x, % ¢ Vi iff (q, x, o) — (g, €, €)

RECOGNIZING CONTEXT-FREE LANGUAGES:
cfl.
such that N(A) = L(G).
T
6§(q, €, n) '={(q,‘ x)|n> x € P}
. shows thatb
T
See Ginsburg [1]
Example 2 -

Let G = ({6},.{8, b};{(c’ aa), (o, bb), (v, aca), (o, bOb)}so>

o} be a cfg.

Then by the theorem 2.1, the pda A is ‘t‘he following:

A= ({ q}, {a, b} ,{o, a, b}, §,0,9,6) where § is defined by:

§(d, €,0) = {(q, aa), (q, bb), (q, aoa), (q, bob)}
6(q» as'a) “A{(Q> e)}

§(q, by, b) = {(q, €)}

By example 3, we see that if we want to simulate the pda for a cfg, we
must keep track of the derivations and automatically emit the "?" in the

tree.

It is easy to prove the following:

Lemma 2.2- Let A = (X, 2, T, §, g9 ZO’ F) be a pda, where for all Z € T
if § (q, €, 2) # ¢ then (p, €) # 8(q, €, 2) for all p ¢ K,

suppose that xy € N(A) and that a possible derivation is

® *
(qos XY, ZO)}" (4, y, W) l'— (p, €, €), then ly, > |W

The importance of this Lemma is just decide when we can or not to

continue the tree, the "?" as in example 3.

Suppose we have the id (g, ax, yZ) where a ¢ L and Z € I', we should like

that

(q, ax, yZ) %z-(p, ax, yva)

for in this case, we can continue the computation. If our automaton is the
one described in Theorem 2.1, this case corresponds to having.

% : %*
Z==> aw , we (V, UV
G N T

Suppose the following matrices

A= [aijjmxn , where m = # (Vy)» n =FHV.)

! 1if n, > a.we?P
\ 1 J

and aij a2y \
’ 0 otherwise

1 if ng > npu e P

B = E’ij} mxn °Vhereb;, =
' ‘0 otherwise

k=1

Then c=<Lmj Bk> A UA

where
.
B =B
gt = 3tlp

and if A. B = [dij] then

m
dij = g agy . bkj , where A = [aij] mxn

B =[b..]
ijl nxp
I i - £ A \Y)*
s easy to p?ove that cij = 1 1iff ni? aj w, for some w e (NU T

Hence if a derivation yields an id (q,ajx, yn), then we use the C

matrix as a test: if €ij = 1 we continue, otherwise we fail.

We will present an algorithm in which we use the following notations:

nr - denotes the number of rules of the ordered set P
nv - denotes the number of nonterminals of the ordered set VN

nt - denotes the number of terminals of the ordered set VT

v, - denotes the ith nonterminal, and vy =0

th

di - denotes the i terminal

P:=p. P. ...p: ~— denotes the ith rule of P; p. is the left side
%%, i, _ iy
and p; ...p; is the right side

2 ki

lpil— length of the right side of P;
A= [éij]— denotes a matrix uv x nr, in which asy is the number of

alternative rules of the monternimal Vis and aij’ 2<j « ai1+1

are the ordinal numbers of the alternation rules of the ordered

set P.

C= {;13]- denotes a matrix nv x nt defined by

Qo s =

*
1 iff V> asu, for some w € V¥
ij

0 otherwise

The pushdown itore is denoted by s, its top is denoted by Se» Suppose
we want to replace the top symbol by a string x. We will represent this

by s « sx and if s = ¢ by s «Xx.

The length of s is denoted by t. If we want tc take away a single

character of the top of s we make t equal to t-1 (t« t-1).

The input string is denoted by x = X, X, Xgeeo X, M > 1 where

A

X € YT, 1»& ign

The variable m denotes the scanning position of the string x.

We also use a matrix B = Ebij]KX4 which is constructued by the algorithm
and its meaning is: If in a derivation we have (qo, Koo X 5818500,

S¢_q Vi) — (4> ®peeeX ;8185 -8, 1P, kz'..pz ,) and 2-1 was the last row

1
22

1
of B that was constructed then b21 =i, b

1

= t, b 3" K and b24 =m

2

the algorithm follows:

l. s«0; t«l; 2«03 m«1

2., 1If S, = Vs for some i, 1 <i < nv, go to 9

3. If S, # X 80 to 7

4, mem+ 1; t«t-1; If # 0 go to 3

5. If m<n go to 12

6. End (the string x is accepted)

7. If S, # vy for all i, 1 <i <nv go to 12

8. Let x_be dj for some j, 1 < j < nt then if ¢y = 0 go to 15
9, k+ 2; 2«2 +1

10. 2 If |x_ x

1% 350 0 Xl xn] <t + | plll go’to 12

11. bzl “ i;\bQz “ t3 b23 <+ k; b24 “m; § <« 8 Por kzz ..l pzlz; te t +
| pgy | = 15 go to 2

12.K<—b23+1; i«bzl; IFK}aij+1go to 14

13, ¢t « bzz; m <« b24; go to 10

14, ¢t « blZ; S, €V,

15. 2 « 2 - 1; If & =0 then End (the string is accepted)

16. rl - b2’+1’4; rz ha bf,f}; ‘If rl rz 24} to 12

"17. s+ss,_ x X, e, X_ 3 80 to 12
t r1-1 rl-z T,

We verify from (15, 16, 17) that the pushdown - store has been generated

once we back up (2 « & — 1) in the construction of B.

GRAMMARS WITH LEFT-CYCLIC VARIABLES:

Let G = (VN, VT’ P, g) be a cfg, we say that a monterminal symbol

* *
ne VN is a left-cyeclic variable iff n =z> nu for some u ¢ (VN\J VT).

Let us suppose that in G we have such a left-cyclic variable with u # e.

We show that our algorithm also works in this case..

Let n be such avariable, if in some point of the derivation we have the
. : * e .
id (qD’ ax, yn) where,]ax| > Iyn| and n T?-aw, we continue the deriva-

: % i .
tion and suppose that (qo, ax, yn) h& (qc, ax, y(uT)1 n) then since
[ul > 1 for some i>1 we will have |y(u)™n | > |ax|, and then by the
algorithm we return to some point and change the alternative rule. It is
. easy to see that the algorithm works, even for extremely‘long string

which incur long processing times. ' \

- 10 -~

BIBLIOGRAPHY

1 - Ginsburg, S- -~ "The Mathematical Theory of Context-Free Languages"

MeGraw-Hill ~ 1966.

2 - Hopcroft & - "Formal Languages and Their Relations to Automata”
Ullman
3 - Runo, S. ~ "Computer Analysis of Natural Languages"

Proceeding of Symposia in Applied Mathematics, Vol - XIX

- 11 -

