Series; Monographs in Computers Science

and Computer Applications

NO 9/71

A MODELLING TECHNIQUE 1IN PROGRAMMING

by
Carlos J. P. de Lucena

and

Luiz F. de Almeida Cunha

Computer Science Department - Rio Datacenter

A MODELLING TECHNIQUE IN PROGRAMMING

Carlos J. P. de Lucena
Associate Professor

Luiz F. de Almeida Cunha
Assistant Professor

Computer Science Department
PUC/RJ

This paper will be published in the Proceding of The Fifth Asilomar

Conference on Circuits and Systems (San Francisco - November 1971).

@eries Editor: Prof. A, L, Furtado December/1971. -

Uc- 81500 -8

'ABSTRACT

This paper presents an approach for the implementation of"
the semantics of information structures. It is hoped that the faqi
lity described will be useful in the procéss of incorporating the
existing formalisms for the description of information structures
in programmxng languages. The system here discussed in operatlonal
in the form of a package of sub-programs written in FORTRAN and as-
sembler language which can, with very small effort, be adapted to

any existing computer system.

1. BASIC CONCEPTS

In this work a set of conceptual entities are defined which
can be represented within a digital computer memory, and that can be put

together to represent information structures.

These entities, or objects can be constructed by means of

! can have their properties and

1

appropriate operators, called creators

components modified by others called updaters
1

and can be deleted by des
troyers”, The properties of these objects can be detected by means of
discriminators, and there are selectors which allow for the access of in

dividual items®.

Each of these objects is created in an environment called
structural space of a program®, and there it remains for use. Within a
structural space of a program each object is identified by its name, and
there are not two objects bearing the same name in that space. These na

mes are non-empty strings of characters chosen from a particular alpha-

bet,

A modular structure®’? is a model comstructed by means of
modules and coanzaticns, and one of its modules is distinct £rom the
others from the point of v »v of some application. It is called the ori-
gin of this appiication of the structure, There is a certain - of
these cbjezts to which non—empty strings of characters chosen f£row a

particular alphabet can be associated. They enable the representation of
information related to the objects. A module includes an information nu-
cleus and an associated ving of connections. Each connection establishes

a link “stween two (possibly not distinct) modules.

2, MODULES AND CONNECTIONS
The information nucleus associated to a module inc cludes
three components: the name of a module, a string of characters ‘that be
longs to a particular alphabet, and. a format describing an 1nterpreta -
tion of the string. We shall name these items ALFA, BETA and GAMA, res-
pectively,

ALFA is the name of the origin of an applicatiqn of a
modular structure‘and can be either a string or an empty string, The
structure pointed to by ALFA is said tc be internal or to be in a lower
level with respect to the module that contains ALFA. If ALFA is an emp-
ty strlng, the module to which it corresponds is said to be a terminal
module, Otherwise it is said to be a non-terminal module.

If a module is non-terminal, then BETA and GAMA for that
module are simultaneously represented by means of empty strlngs.. BETA
and GAMA for terminal modules are non-empty strlngs of characters from
two alphabets (not necessarily distinct) and are used to ultimately des

cribe information.

A connection establishes an interrwlétionship bétween two
modules. It can be said that a connection has a module in each extreme
and is 1nd1v1dualxzed through its names. A connection may have one or
all of the following characteristics: be oriented, be marked, have an
associated modular structure. A connection is marked or has an associ-
ated modular structure if it possesses elements called MARK or FNAME
respectively. FNAME is the name of a module. MARK is a feature for pro—
grammlng with the modular structure model,

A ring of connections is an ordered and non—empty set of
connections in which one is chosen to be the first in the coll Lection.
The set has a wrap-around structure, in the sense that the n> th element
preceeds the first—one.

'The connections of a modular structure may belong to one
or two rings of connections, a connection belongs to a 31ng1e rlng when
it indicates a loop (a module linked to itself),

As an element of a ring of connections, a connectlon may-
have the following properties: occupy the first position in ‘the, ring
and be ACTIVE. The first connectlon is called a HEAD connection, It is-
ACTIVE if it has an associated element called TAG. There Ls always_ one
and only one connection which is active in a certain moment with ‘res - ‘
pect to one ring of conmmections. It means that at any given moment thene
is only one connection that enables the access to another module -of the
structure. Connections can be ACTIVE or HEAD from the point of vzgw of
one or both of rings to which it is related.

The first connection to a module isg initialized with an ac
tlvatlon TAG in the moment of its creation. TAGS can be moved forward'
and backward along the connections of the ring of, connections of a modu

le. These ideas can be resumed pictorially.

Picture 1

Picture 1 represents a module where * indicates the HEAD con
nection + the ACTIVE connection and NAME its name.

In Picture 2, the arrow indicates an oriented connection,the
letter M the fact that the connection is mérked and the name ROOT a modu-
lar structure associated with the connectlon. The elements ALFA, BETA, ‘GA
MA can be thought of as separate tables.

Picture 2

3. PROGRAMMING WITH THE MODULAR STRUCTURE

The concepts discussed before are encompassed in a package
that can be utilized by means of the functions to be presented in sequel.
These functions act as opefators and discriminators that can be handled by
the programmer for the construction of a programming system. As mentioned
before, a modular structure is constructed by means of operators that are

classified into three categories: creators updaters and destroyers.

Modules can be created in the system by means of the functi-~

on DCLNCL (name 1) (declare nucleus) that declares a module of name

name 1. The functions STRINT (name 2, name 3) defines the component ALFA

of the nucleus of the module name 2 as name 3. The non-application of

STRINT to name 2 keeps its ALFA equal to an empty string.,

The function DINFO (name 2, information, format) defines the

components BETA and GAMA of name 2.

The organization of the modular structure in the structural
space of a program is coﬁtroled through a symbol table. In the case of
the present system the symbol table that establishes the association be~
tween the name of a module andlthe pointer in the free storage list to
the area occupied by the module is handled by means of a hashing® techni-

que.

By their turn connections can be constructed by means of the

function CONECT (name 7, name 8), that sets up a link between name 7 and

name 8 disregarding a possible previous declaration of them.

The function DCLNCL provides for a module to be associated
to any comnections previously defined as linked to it. Attention is paid
by the system to the order in which they were created. This order is kept

in the ring of connections. The function EDGFNC (name 5, name 6, name 3)

defines name 3 as the item FNAME of the connection linking name 5 and na-

me 6. Function DIRECT (name 5, name 6) establishes an order in which name
2 and name 6 are to be considered with respect to the conmection. Al -

though this connection is said to go from name 5 to name 6 this constraint

can be overridden while programming with the system.

We have been using until now the notation namei for the name
of function parazmeters. The choice of this notation is related to the ge-
neral properties that each of the function parameters have. These proper-

ties and their relation to the used notation can be summarized by the fol -

PoUcCoB-J. V ‘

Biblioteos . 5.

. 92-550

lowing table.

Appeared as argument Appeared as one of
of DCLNCL : the arguments - of
. CONECT ‘
name 1 - NO ~ YES / WO
name, 2 YES : YES / NoO
name 3 YES / NO YES / NO
name 4 ~YES _ YES
One or both anneared ‘Appeared together as
as arguments of the arguments of
DCLNCL CONECT
name 5 and - : ‘
name 6 YES / NO YES
name 7 and YES' /N0 N No
name 8
name 9 and YES / NO ’ YES / NO
name 10 ’
name il and YES o ¥ES

name 12

Following the defined convention, we introduce now the update
functions: ADVTAG (name 4) moves the TAG forward to the next connection in
the ring of connections of name 4. If TAG is in the nth connection it is

moved to the first one in the ring: BCKTAG (name 4) produces the opposite

.

effect of ADVIAG; SETTAG (name 4) moves the TAG to the HEAD connection
in the ring, When the module is created, this action in taken'automati
cally if there are connections already defined to link it to other mo-
dules in the structural space. If no connection was defined yet, this
action is taken when the first one is created§ MARK (name 4) associa-
tes a MARK to the ACTIVE connection of the fing of connections of name
ﬁk\ This MARK is not affected by the displacement of the TAG; = UNMARK

‘(name 4) removes the MARK of the ACTIVE connection.

Three updaters are defined that can be applied to connec-
tions, one of them reverses the order previously indicated for the mo-.
dule at the extremes of a connection, if any ordering had -already been
established. Another simply undoes the ofdefing,-if any, and finally
one substitutes the FNAME gompbnenthof the connection, if any, by an

empty string. The corresponding functions are respectively CHDIRE (na-

me 5, name 6), UNDICT (name 5, name 6) and NOFUNC (name 5, name 6).

Complementing the set of constructors that act on modules
two destroyers were defined. Their names are RESET (name 2) and DELETE
(name 2). RESET (name 2) deletes all the connections linking with gggg
2 from the structural space of a program, The rings of connections of
the modules linked to name 2 will be rearranged automatically,‘and if
a HEAD connection is destroyed, the next in the ring will take its'pyg
ce. Besides, if one of the connections whose deletion was indicated is
ACTIVE from the point of view of some module, an error condition oc -
curs, and the action of RESET is not completed. DELETE (name 2)acts in

much the same way as RESET, but includes the deletion of name 2.

Just one destroyer is defined for connections, whose name

is DISCON (name 5, name 6). It eliminates the connection linking name

5 and name 6, from the structural space. The same sort of care taken

. L 7 L

in RESET is applied here.

As it was mentioned before, the access to individual items
in a structural space of a program is achieved by means of selectors.Se
lectors are defined on modules and‘connections. For modules, four of
them were defined: INTSTR (name 2). They allow respectively for the
access to the name of the origin of the modular structure internal to
name 2, to the number of connections linking name 2, to the components
BETA and GAMA of name 2, and to the module linked to name 4 by an
ACTIVE connection. |

For connections the only function defined is called EDGEF
(name 5, name 6). It enables the access to the component FNAME of the

connection,

To detect the properties of particular modules or connecti
ons in a structural space a set of discriminators or predicates are de-
fined. There are‘five of them defined for modules and five for connecti
ons. The predicates fof modules are the following: DECLED (name 2)which
is TRUE if néme 3 was previously declared; TERMIN (name 4) TRUE if the
HEAD connection isg t&rmiﬁél; HEADER (name 4) TRUE if the HEAD connecti-
on is ACTIVE; INCIDE (name 4) is TRUE if the ACTIVE connection is not
directed or if in case it is directed name 4 is the second element of
the orderad‘pair; MARKED (name 4) is TRUE if the ACTIVE connectipn has"

a MARK. For congections, these predicates are: CONNEX (name 9, name 10)

is TRUE if theré is a connection linkirng name 9 and name 10 ; TAGGED

(name il, name 12) is TRUE if the connection is ACTIVE from the point

of view of ome or both of the modules linked through it; HEADCN (name

11, name 12) same as the preceeding for a HEAD mark; ORIENT (name 5 ,

name 6) is TRUE is name 5 and name 6 are in this order; MARKEX { name

11, name 12) is TRUE if the connection has MARK.

4. COMMENTS

Experience with the system has shownthat is enables a very
comfortable construction of information structure models, The order in
which the information in the model is to be retrieved is immaterial du
ring its construction phase and the manipulation of pointers is'elimiﬁi
ted. Also, traversing modular structure models is a fairly easy task,
as illustrated by the example it the annex. It was probably transparenﬁ
from the‘descriﬁtion,of the system that its greatest advantages are felt
when complex structures are being modelled. It is in this case that. it
achieves its maximun efficiency as its obvious overheads are easily paid,.

® of all kinds can be fairly simply built by means of the

Interpreters
- method discussed, It is due to the possibility of associating predica -
tes of any complexity to connections (FNAME) generating in this form an.

interpreted graph,

The reason for designing the system as a set of functions
was to make it useful to act as a low-level programming language for the
semantics of existing syntatic deflnltlons7’aﬁ/of information structure&
Languages for graph processing can also be based in the proposed mecha~-

‘nisms ! 0

. 9.

5. REFERENCES

(1).

(2)

(3)

(4)

(5)

(6)

7

(8)

LASKI, J. "The Morphology of PREX - An Essay in Meta-Algorithms"
in "Machine Intelligence 3"
Edited by Donald Michie, American Elsevier - 1968.

LUCENA, C. J. P "An Approach for Maﬁpingr Abstract Informat_ionv
Structures on Digital Computers Memories'

IEEE International Conference

ALMEIDA CUNHA, L. F. "A General Method for Representing Information
Structures: Modular Structure"
Dept. Informatica - PUC/RJ ~ April -~ 1971,

ROSS, D. T. "Data Structure and Storage Management"
The Newcastle University = IBM Seminar in Computer

Science = December - 1968.

MAURER, W. D. "Scatter Storage Techniques"
. COInm. ACM 11’1 - 19680

WEGNER, P. "Data Structure Models for»ngggémmiquLaﬁgggges".v in
"Data Structures in PrqgrammingﬁLannua‘esW
Edited by Julius T. Tou and P. Wegner University of
Florida - 1971. ’

STANDISH, T. A. "A Data Definition Facility for Pfqgramming Languages"
Carnegie Institute of Technology — May - 1967.

van der MEULEN, S. G. "Informal Introduction to Algol 68"
and '
LINDSEY, C. H.

Mathematisch Centrum, Amsterdam -~ 1970.

Al 10 e

(9) EARLEY, J. '"Forward an Understanding of Data Structures"

Notes of course 200 A, Computer Science Dept. University
of California - Berkeley - 1969,

(10) CRESPI-REGHIZZI, S, ~ "A Language fof Treating Graphs"

. and
MORPURGO, A. Comm., ACM 13, 5 - 1970.

« L1 &

APPENDIX

Cm—~=SAMPLE PRUGRAM
.Ce=~~GIVEN A DIGRAPH REPRESENTING
C----ITS VERTICES BY SIMBYLS WITH
C----UP TO FIVE ALPHAMERIC CHARACTERS PRINTS
C~-=-EVERY PATH BETWEEN TW§ GIVEN VERTICES
' LOGICAL INCIDE, HEADER, MARKED
INTEGER ADJACT, A, B, P, C(10)
 DATA IBR/1H /
C-~-~SETS UP LIST OF AVAILABLE SPACE.
CALL LSPACE
C-—--READS THE NAMES OF TWO VERTICES.
CALL READ (INIC, IEND)
CALL DCLNCL (INIC)
CALL DCLNCL (IEND)
_ C=--=-~READS THE PAIRS OF ADJACENT
C~=-~VERTICES (ARRA@WS).
1 CALL READ (Il, I2)
IF (Il .EQ. IBR) G¢ T¢ 2
CALL CONECT (Il, I2)
CALL DIRECT (il, I2)
"GP TP 1
C-~--DECLARES THE M@DULES REPRESENTING
C~-~~VERTICES.
2 CALL READ(I1)
IF(I1 .EQ. IBR) G¢ T¢ 3
CALL DCLNCL(I1) '
GF 19 2
C-..-.....—
C---~TRAVERSES PATHS BETWEEN VERTICES
C~~~=INIC AND IEND

. 12,

3
4
5

A=1INIC
IF (.NGT. INCIDE(A)) G# T 6
CALL ADVTAG(A)

IF(.NOT. HEADER(A)) GO T@ 4
ST@P

CALL MARK(A)

B = ADJACT (A)

IF(B .EQ. IEND) G§ T¢ 12
IF(.N¢T. INCIDE(R)) G§ T@ 1l

8 CALL ADVTAG(B)

10

11

12

13

14

IF (.N@T. HEADER(B)) G@ T¢ 7
IF (MARKED (B)) G¢ T@ 10
CALL BCXTAG (B)

G@ T¢ 9

CALL UNMARK(B)

P=23 .

B =vADJAQT(B)‘

CALL SETTAG (P)

IF(B .EQ. INIC) G@ T@ 5

Go T 8

IF (ADJACT(B) .EQ. IEND) G T@ 12
IF (MARKED (ADJACT(B))) G@ T¢ 8
CALL MARK(B) |

B ADJACT (B)

Go T¢ 7

P = INIC

I1=0

I=1+1

C(I) =P

IF(P .EQ. IEND) G¢ T¢ 14

P = ADJACT(P)

GP TG 13

CALL PRINT(C, I)

Go T 8

END

. 13 ®

