dheRedistal

Series: Monographs in Computer Science

and Computer Applications

NQ 12/71

A SET OF PROGRAMS TO TEST AND PARSE LL(k) TYPE LANGUAGES

by

Lucas Tofolo de Macedo

Computer Science Department ~- Rio Datacenter

[BC — PUC |

N 515P/¥ (5

A SET OF PROGRAMS TG TEST AND PARSE LL(k) T¥PE LANGUAGES

Tuces Tofolo de Macedo
Member of The Applicatiow
Divisior of Rio Datacenter

PUC/RY

This paper will be published in the Proceding of The Fifth Asilomar

Conference om Circuits and Systems {San Francisco - November - 1971}

Series Editor: Prof. A. L. Furtadc December/ 1971.

ABSTRACT

This paper describes a system which tests the LL(k) condi
tion for a given grammar and ﬁrovides>a recognizer for strings of the
language generated by this grammar. During the recognition phase the
system generates code so that we have, in a semantic; stack, informa-

tion about the code generated so far.

1. INTRODUCTION

There is a class of context—free érammars (efg) which can be
parsed in a top down fashion deterministically with a look ahead of k
symbols. The languages generated by.these grammars (LL(k)) belong to a
claés of languages whigh can be parsed in a length of time proportional to
n, where n is the 1engtﬂ’of the input string, This class is. reasonably
wide and i§ of great utility in comstruction of sintax - directed compi -
lers. This paper describes a system which is an implemehtation of two al-

gorithms which are due to [jD.‘J. Rosenkrantz and R. E. Stearns, 1970 i]

and [rP. M. Lewis II and R. E. Stéarns, 1968:] respectivelly., The first

one tests the LL(k) condition for a given grammar, and the second provides

a recognizer for strings of the language generated by this grammar.

The system, during the recognition phase, generates codé; con~
sequently being a sintax - directed compiler for the languages with LL(k)
characteristics. We are considering the grammar being studied to be € -

free and reduced.

TEST OF THE LL(k) CONDITION

The results which follow allow us to formulate, in computatio

nal térms, the test for the LL(k) condition for a given grammar.

Definition 1 - Let be a cfg G = (VN, Vo Py S) and k in N , where | is the

set of natural numbers,

We define |

rct, if |a] € k

(i) If a is in V*, then a/k =)
o', ifa=0a'B8, |a'| =k

‘|:and a! B are in V'
(ii) If AC V*, then A/k = {w/k | w is in A}

(iii) If A + a is the p-th production in P, then LP(A) =

ook .. ot
=L(a) = {w in Vo | @ == w, where o is in V'}

*
(iv) If A in Yy is such that A—> o=—>>w, and A * «

is the p-th production in P, then one can write

*
A=—=>w (p).

Definition 2 - A cfg G = Vy» Vps P, 8) is LL(k) if and only if, for all

. * i * * L]
w in VT /k, A in VN and w, in VT’ there exist at most one

1 1
production in P, for instance the p-th production, and

'wz, LA in V; such that the following three conditions

hold:

*

(i) S:__}wl Aw
*

(ii) A=W, (p)

3
(iii) (w2 w3)/k ay

Definition 3 - Let G = (VN, Voo P, S) be a cfg and k in N , It is possible

‘to construct another cfg G'= (V, V,i,, P', S') as follows:

(1) s' = (s, {e}h)

(i) IfA+A A, ... A is the p-th production in P, then
(A, R) »(al,'gl) (Ays Rp) wo (A, R)) ig the (p, R)
production in P', where RC V; /k, R =R and for all

e AR /K

i, 1 £ 1 < n, we have Ri = [:L(Ai+1 Ai+2

. "0 ' =
| (iii) Ve = Vp
(iv) . 4VI:I is the set of ordered pairs (A, R), where A is in

V> that actually occur in the productions obtained by

(ii).

It is easy to see that the grammar G' is structurally equi -
valent to the grammar G, and so, we have the fovllowing
Lemma 1 Given G and G', as defined above, then for all (A, R) in VI:I
. . Lx
~and o, B in (VI{I U VT)*, if S':éu (A, R) B, ' then

R = L(B)/k.

With the results above, t;ne procedure to test if a given
cfg is a LL(k) one, can be described as follows:

Given a cfg G = (VN, Voo P, S) and one integer k, we
construct another cfg G', as in definition 3‘and then ,

N
xist at most one p, in P, such thatwbelongs to (Lp (A)R)/k

for each w in V; /k and (A, R) in V!,we test if there e

If every w belonging to (A, R) verifies this condi -
tion, the grammar is LL(k). To prove thét this: test
works, we need a lemma which characterizes LL(k) grammars

in terms of the entities computed in the test.

Lemma 2 - A cfg G = (VN, VT, P, 8) is LL(k) if and only if, for
all A in VN’ w in V¥ /ky, and R T V¥ /k, there exist
at most one p in P such that, for some w, in V; and W,

in V*, the three following conditions hold.

. *L.
(i) S =W A,

(i1) R =1L(w,) /k

(iii) W is in (LP(A)L(WZ))/k

The meaning of T.»mma 2 is that the choice of p can be ob
tained from a finite amount of information, namely A and

L(wz) /k - (or R).

Lemma 3 -

In the system, the construction of the grammar G' and the

sets (LP(A) R)/k can be explained as follows.

The variables of G' are ordered pairs (A, R) where A is

in Yy and R E}V% /k. Such pairs are obtained as follows:

a). Construction of the sets R - initially we construct

the sets LK (A), defined as follows:

. o '
Lk(A) = { win V; /k I _:r§7>\wz, where A is in VN

)
and z is in VT}.
Such sets are necessary by the following.

Ri = E‘(Ai"'l)RiJ-l /k’ for 1 S i <n

So, for the maximum value of i (i = n - 1), Ri+l = Rn = R
(by definition 3, (ii)) and as the set R is initially €
(by definition 3, (i)), we have an effective way of obtai
ning the Ri’s, that is by concatenation of the L(Ai+l)

. This copcatenation is processed by one subrou-

1

tine -~ subroutine CAT - in which, given two one-dimensio-—

w;th Ri+

nal arrays, we obtain a third one-dimensional array whose
elements are the results of the concatenation of each ele

ment of the first array with all the elements of the second.

. 5 .

b). Construction of the sets (LP(A) R) /k - the sets

(Lp(A) R) /k are obtained by the concatenation of
the sets Lt (A) with the sets R, where the sets

L§ (A) are defined as follows:

if A 7 A, Ay oo Al is the p-th production in P ,

then ng (A = (... (Lk(Al)Lk B)/k .. Lk(An))/k)/k.

Thus, since that we just have the sets L¥(a). (see to
pic a), we can obtain the sets‘LE (A) by using the

subroutine CAT.

All sets mentioned above are stored in lists so that
we have a sequential search which is proportional to

the number of elements in them.

The test is processed during the construction of the
sets (Lp;(A)R)/k, where p. (i =71, 2) is one of the
L's alte;natives A-productions in P,and R is fixed .
It is made a comparison of each element of (Lp.(A)R)/k
with the elements of the (Lp (A)R)/k that areljust
constructed (s = T:—T—:_T). if some element of the

first set is equal to some element of the list alrea-

dy obtained, the grammar is not tL(k).

The system answers if the grammar is LL(k), for k
varying in the interval [i, sj s iﬁ this order.
If the condition doesn't holds for a value of k
up to five, the system give the corresponding mes

sage.

3. LL(k) RECOGNITION AND CODE GENERATION

The implementatibn of the LL(k) recognizer follows the al
gorithm described in [1|, and becomes straightforward due the fact
that we have the information from the (Lp(A)R)/k sets physically

stored in the list.

This recognizer is similar to those of the deterministic
pushdown automaton type |3] , and also includes the utilization of a
bi-dimensional array where the information about the alternative pro

ductions: for each variable of the grammar is stored.

Everytime a terminal is accepted, the semantic informati~-
on associated with the element,necessary to the code generation is
stacked in a second stack-semantic stack. While each production is
recognizedvin its entirety, the control is transfered to a semantic
subroutine (in PL/I) for that production, which uses the elements on
the top of the seyantic stack to generate code and information that
will next be placed on the new top of the stack. In order to know which
subroutine we have to call in each case, we can number it according to

the production of the grammar.

Example:

Let a grammar, supposedely LL(k)*, have the following pro

duction:

AE > T(l) | + T(2) | AE - T(3)] AE + T(4) I T(5)
r oo 2 ® | pas® g, p®

F = i(g),,where i= 815 8y, 835 ees

Suppose we want recognize the string a; * a, / aq —fi. The

illustration below shows the process of code generation

PUSHDOWN SEMANTICS

READ HEADER STACK (PD) STACK (S)
¥ . |
a; * ay / ay —] A —
a; * a, / a3-—| - E |

T

I

F fr——a——
¢ | -8
a, * a, / a3v~—] . - 15 » e

1

* At the end of this paper we present an example of a gram-
mar for arithmetic expressions that is LL(2). The grammar

above is used to provide us with 'a sample example.

READ HEADER

a, * a, /| a, —|

a, * a, / a3~—|

1

ap * a8y / ay—|

PUSHDOWN
STACK (PD)

I

T

i)

H

T

|

4

41}

=]

il

1]

SEMANTICS
STACK (S)

READ- HEADER

+ .
al*azla3——[

a *.azla

1 3

.alf'az/a3———l

‘aﬁl * 8, / 5.3 —

PUSHDOWN
STACK (PD)

9
6

KRR *l(1

EXEC 9
EXEC 6

it

I

-

1~

. ;.l|

10 .

SEMANTICS

- STACK (S)

add. a4 l <« p

“P

aad a]

READ HEADER

ap *a, /a3 —]|

ay *ay /a3 —

a, * a, / a

a; % a, / a, —~7|

PUSHDOWN
STACK (PD)

;.

1

1=l

.11 .

SEMANTICS
STACK (S)

add a,
*

add ay

e e

}add al a2

<+

P

tions:

READ HEADER

¥

a, * a, / a, —|

¥
ay % a, / a3-——|

PUSHDOWN
STACK (PD)

it

rre—sre——

e

BES

EXEC 9

EXEC 8

SEMANTICS
STACK (S)

add

add(al*az)/a3

add(al*az)/a3

“P

“p

The semantic subroutine executes the following types of opera

9). It would be a CONTINUE, for instance

7). It generates a code to multiply the content of the address

pointed by Sp and Sp—Z’ and ‘store the result in an third

address (temporary address) which is stored in Sp_2

After this, it sets p+p -2,

12

.

1). It generates a code to turn negative the content of the
address pointed by Sp , and stores the result in another

address (temporary address) which is stored in S

p-2

After this, it sets p <« p - 2.

We assume here, to simplify the example, that the lexical ana
lyger which preprocess the variables, gives the storage location of the
variable and not the position in the symbol table where theirs properties

are stored, as it normally occurs.

One could also think of subroutines for detecting error that
would take over the control everytime a test for a terminal in the top
of the pushdown fails. In this case, the first stack would also stores

the number of the production being looked for.

APPENDIX

LL(2) grammar for arithmetic expressions.

A - Qs

S > + QS I - QS | -

Q - @li*q|i/ Qli
B > QP

P

> +qQ |- @ a7/ ab

.13 .

(L

(2)

(3)

(4)

REFERENCES

M. Lewis II
and
E. Stearns

J. Rosenkrantz
and
E. Stearns

E. Hopcrof
-and '
D. Ullman

T. Macedo

14

"Syntax Directed Transduction"

Appendix I - Recognition of LL(k) Langua
ges.,

JACM - vol. 15 - N? 3 - July 1968.

"Properties of Deterministic Top-Down

Grammars"
Information and Control 17, 226 - 256 - 1970

"Formal Languages and Their Relation to
Automata"
Addison - Wesley - 1969.

"Manipulagao de Gramaticas Livres do Contex
to e Reconhecimento de LL(k)"
Pontificia‘Universidade Catolica do Rio de
Janeiro - Tese .de Mestrado - 1971,

