Series: Monographs in Camputer Science
and Camputer Applications

Ne 3/72

EXTENDING THE CONTROL STRUCTURE OF PL/I

by

J, C. P. Bauer
and
A, L., Furtade

Computex Science Department - Rio Datacenter

'Pontificia Universidade Catélica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — zc-20
Rio de Janeiro — Brasil-

EXTENDING THE CONTROL STRUCTURE OF PL/I

J. C. P. Bauer
Research Assistant

Computer Science Department
PUC/RJ
and

A. L. Furtado
Associate Professor

Camputer Science Department
PUC/RT

This paper was submitted for publication elsewhere

Series Editor: Prof. A. L. Furtado - March/1972

A number of control statements have been suggested as extensions
to ALGOL 60. Several languages such as ALGOL W, EULER, BLISS and PASCAL [1]
have implemented one or more of them.

Besides contributing to a more natural style in programming,they
can be used in situations where a go to statement would seem to be unavoid-
able. Same authors now tend to believe that the go to statement should not
be present in well structured programs [2].

The implementation described here uses the preprocessor facility
of PL/I.

This approach has the following disadvantages:
a. the preprocessor phase consumes additional computer time;

b. some characteristics of the new statements were imposed for
the convenient use of the preprocessor.

and as advantages:
a. being written in the high level preprocessor language the pro

gram to implement the statements is easy to understand and
modify;

b. since the PL/T compiler itself is not changed the regular
PL/I programs are not affected.

Tt may be expected that if the new statements prove their
value through actual use, which is made possible by this implementation ,
their addition to the PL/I language could then be considered.

1. The REPEAT - UNTIL group

Syntax:
REPEAT;
UNTIL (bit - expression);

Function: The statements in the group beginning with REPEAT and terminat-
ing with UNTIL will be repeatedly executed until the bit-expression

is
“"true" (in the sense of PL/I).

The diagram below shows the situation where the REPEAT-UNTIL
group applies:

REPEAT ~ UNTIL groups can be nested.

Example 1:

/* EXAMPLE OF REPAT - UNTIL

SOLUTION OF AN EQUATION BY THE NEWION - RAPHSON METHOD */

X=1;
TOL = 0.0001;
K=0;
MX = 20;
REPEAT;
T = FP(X);
IFT 1 =0
THEN D = F (X) /T;
ELSE DO;
PUT LIST ('ZERO DERIVATIVE');
STOP;
END;
X=X-D;
K=K+ 1;

UNTIL(ABS(D/X) < TOL | K = MX);
PUT LIST (X, D, K);

® 4 e e @ o s e =

2. The LFAVE statement [3]

Syntax:
. LEAVE (paragraph - label);

where paragraph 1abe1 is a constant - label appearmg at the head of a
_block or.group, under the fo:r:m :

$ (paragraph - lak_:el): head'of’the block or group;
and at the end of the block or group, as:
‘END $$ (paragraph - label);

- Function: control is tranferred to the statement following the END state
ment of the block or group having the paragraph - label.

The diagram shows the situation where LEAVE would be used.

The LEAVE statement itself may appear in a block or group that
is nested, to any depth, in the block or group whose execution LEAVE is
required to terminate. '

Example 2: |

 /* ' EXAMPLE OF LEAVE -
THE ‘PRIME NUMBERS FROM ‘I TO J */

I=10;

J = 100;

DON=TITOJ;
$(L) : DO; - :

DOM =2 BY 1 WHILE (M #% 2 < =N);
IF MOD(N,M) = 0; o
THEN LEAVE L;

END; ‘

PUT LIST (N);

END - $$ (L) ;

3. The DO FOREVER group

DO FOREVER;

Function: the statements in the group beginning with DO FOREVER and ending
with its respective END statement will be repeatedly executed until same
statement inside the group causes its termination or termination of the

program is caused elsewhere.

DO FOREVER is specifically designed ‘to be used in connect.ion to
- multitasking, .

The diagram is quite simple:

Example 3:

/* EXAMPLE OF DO FOREVER
' SIMULATION OF A PRINTER. */

® * & @ 2 9 e e o e »

CHARACI‘ERPRINIER PRCX:EDURE v

L] . . - * - . . -

DO FOREVER;

WATT (PRINT_EVENT) ;

- COMPLETTON
CHARACI'ER

END;
END CHARACI'ER _PRINTER;

e e o o o 0 6 s 8 6 08

(PRINT ' EVENT) =_'O' B;
MEMORY (ADDRESS) ; ,

'PUT SKIP EDIT (CHARACI‘ER) (A(l)),

CALL CHARACTER PRINTER TASK; /* START I/0 */

COMPLETION (PRINT_EVENT) =

DO FOREVER groups can be nested.

'1'B; /* PRINT A CHARACTER

*/

4. The CASE - ENDCASE group

Syntax:
CASE (element ~ expression);

case-label option 1:
OF (element-expression): simple statement or block or
group;

case-iabel option 2:
OF ((element-expression [, element-expression...])):
simple statement or block or group;

ENDCASE ;

Function: the value of the element expression in CASE is tested for equal
ity with the value (option 1) or values (option 2) of the element-expres
sion(s) in OF; if the test succeeds (option 1) or if it succeeds at least -
for one member of the list of element - expressions (option 2) the simple
or campound (block or group) statement corresppnding to OF is executed ,
and then control is. transferred to the ENDCASE statement. Otherwise, the
next statenent (which must be another OF, an ELSE clause or an ENDCASE)
will be executed.

- The rules for comparing the-elextent*exPressioné are the usual
PL/I rules for the = operator.

Whenever the statement identified by a case - label is an IF
statement ‘it must include an ELSE clause (possibly dummy).

CASE itself admits an ELSE clause, If it is included it must
come afterallstabanen ments with case -~ labels.

The diagram below shows where CASE is applicable

CASE~ENDCASE groups can be nested, in the sense that the group
identified by a case-label or in the ELSE clause can be a CASE-ENDCASE
group.

. 10..

/*

E:__:g_rgq__a. le 4:

EXAMPLE OF CASE
INTERPRETIVE EXECUTION OF AN ARITHNEI'IC-O‘._PERATICN

® o & » @ e 9 8 o s .5 0 & s & o

X=0;

A=12;

B=3;

OPR = ',';
.CASE(OPR);

COF('+'): X=A+B;
OF('~'): - X=A-B;
OF(('*','.")): X =A*B;
OF('#%'): X =R # B;

. ELSE PUT LIST ('ILLEGAL OPERATOR');
S

PUT LIST (X) SKIP;

L4 L] * ° L d o *® » @ L) ° L] % ? ® © ® L ©

.1l

*/

5. Adding the Ppreprocessor program

a. creation of a data set.

//NEW DD DSN=INFSRC,

// UNIT=2314,

/7 - VOL=SER=DC0002,

// SPACE=(TRK, (100,,10)),

// -~ DISP=(NEW,CATLG) ,

// DCB=(RECFM=F,LRECL~80 ,BLKSIZE=80),

// LABEI=EXPDT=99365

b. making the preprocessor program a member of the data set

// EXEC PQU=IEBUPDIE,PARM=NEW

//SYSPRINT = DD SYSOUT=A |

//SYSUT2 DD DSNAME=INFSRC,DISP=0LD

//SYSIN DD * B /

o/ ADD NAME=PLIH,LEVEL~00,SOURCE=0,LIST=ALL
the preprocessor program

~

. 12 .

6. Using the new statements

After inserting the preprocessor pmgram mto the system, it is
left to the user to submit his decks as follows:

// EXEC PLILFCLG,PARM.PL1L='MACRO,SOURCE2'
//PLIL.SYSLTB DD DSN=INFSRC,DISP=SHR
//PL1L,SYSIN DD #
» + » tPROCEDURE OPTIONS (MAIN) ;
% INCLUDE PLI1H:

This will cause the print out of:
a. the user's original program;
b. the preprocessor program;

c. the user's program compiled into standard PL/I by the pre-?
proce'ssef progran.

It is clearly necessary to print a. Printing c will sametimes
be useful in the debugging phase, as we shall see; anyway it is easy to
avoid this print out by changing the EXEC card B

It is clearly unnecessary and wasteful to print b, ut the

preprocessor itself will have to be changed as to the autcmatic listing
resulting from the @ :mcum statanent '

<13 .

Inordertokeepspreprocessorpmgramassﬁtpleandshort as
possiblewedidnotadderrormessages (Butthiscanbedone, for exam -
ple, under the form of comments generated together with or instead of
PL/I statements). So the user should be aware of error messages given by
the prev-processor, the PL/T ccmp:tler, and run-time error messages.

This is why we mentioned that print out c could be useful in
the debugging phase. Also, the interested reader may wish to see how
' the new statements are campiled into legal PL/T.

Our experience shows that REPFAT - UNTIL, LEAVE and DO FOREVER
are relatively_ simple to assimilate and errors very seldom occur.

_ On the contrary, CASE - ENDCASE is quilty of same typical er-
rors: |

a. the user writes:
- OF (element-expression) ‘: IF ceee
h ‘ ‘ THEN sene ;
the correct sequence being:
OF (element - expression): IF
; ‘ . THEN ses n;
‘ELSE;
since where there would not be an ELSE clause an ELSE with
aNULLstatementhastobe included.

.14,

b, the user writes:
OP ‘(EIemIent-rexpressich): statement;
’ - statement;
the correct sequence being
OF (elarent—e:ipression): DO; _
: statement;
statement;

¢ o ,e¢ o .0

END;

since a campound statement is aliowed but not a sequence of
simple statements. '

C. the user writes:

OF '(element-expression, element-expression, ..cu): se..

th_e correct form being:

OF ((elemnt—expression, elenmt~expression, cee))leeo

since option 2 of the case-label requires an extra pair of
brackets to denote a list of element-expressions rather than
a single one.

d. the user writes~

L] L] . o L] L e L

"END CASE;

. 15,

the correct form being:
ENDCASE;
no.intervening blanks being allowed.

Certain words become rese.wed words and must not be used. These
are, first, the keywords of the new statements, the word OF the single
and the double:dollar-sign. Secondly, words beginning with REP and CASE
followed by an,. integer (ex: REP0015) . '

.‘One of the inconveniences resulting from the fact that = such
words become reserved words is that the built-in function REPEAT - dealing
with strings:- cannot be invoked explicitly wherever the REPEAT state~
ment is also used.

.16 .

7. Listing of the pre-processor program

The sections of the pre-processor program to deal with each of
the new statements are indicated by comments.

An"interesting feature is the use of character strings to
provide stacks (variables PIIHA in the REPEAT - UNTIL section and STACK .
in the CASE « ENDCASE section) The push-down and pop-up operations are
respectively done’ by concatenation and by the SUBSTR built in function.

For CASE ENDCASE the lengths of the "cells" in the stack are
not necessarily the same A s:i:mple solution was adopted: a delimiter is
entered together with each new cell.

We me'nt'ion this detail to suggest that the PL/I pre-processor

facility is not so weak as it may appear from its severe restrictions
(such as not allowing the use of arrays)

« 17 .

/* REPEAT - UNTIL - */ . - :
$DCL REPEAT ENTRY RETURNS (CHAR) ;
$DCL UNTIL ENTRY (CHAR) RETURNS (CHAR) ;
$DCL - (COUNTER,N) - FIXED;
$DCL, PIIHA CHAR; . .

%DEACT: COUNTER,N,PILHA;
$COUNTER: = 10000;
IN. = 0; -
PILHA = " ; .
SREPEAT : PROCEDURE ' RETURNS (CHAR) ;
: = COUNTER + 1;
SUFFIX = SUBSTR(COUNTER,S,4) ;
PILHA = SUBSTR(PILHA,1,N) [SUFFIX;
, N=N+4; .

RETURN ('REP' || SUFFIX || ' : DO");
SEND REPEAT; | -
SUNTIL: PROCEDURE (ARG) RETURNS (CHAR) ;

- DCL: (ARG, SUFFIX) CHAR;

N=N-4; - , :

SUFFIX = SUBSTR(PITHA, N+l, 4);

RETURN' ('IF =7(' || ARG |[')

. S THEN GO TO REP' || SUFFIX i *;' || 'END');
$END UNTIL;

.18 ..

/* LENE */ '
%DCL $ ENTRY (CHAR) RE'IURNS(CHAR),
$DCL $$ ENI'RY(CHAR) mms(crm)a
%DCLIEAVECHAR ’
$LEAVE = ' GO.TO ';

8% PROCEDURE (IABEIL) RETURNS (CHAR) ;
,DCLIABELCHARy :
 RETURN ('$' || LABEL);
%END-‘F,‘ ‘
38 : PROCEDURE(IABEL) RETURNS (CHAR) ;
RE'I'URN(!B'IBLABELH'-' i raBer, v :v),;
. 8END $$.

/* DO FOREVER */
$DCL, FOREVER CHAR; _
$FOREVER = 'WHILE (''l'' B)';

.19 .

/* CASE - ENDCASE */
$DCL OF ENTRY (CHAR) RETURNS (CHAR),
CASE ENTRY (CHAR) RETURNS (CHAR) ,
ENDCASE ENTRY RETURNS (CHAR) ;
$DCL (NUMBER,KEY) FIXED,
(EXPR,STACK) CHAR; .
SDEACT NUMBER,EXPR,KEY,STACK;
$NUMBER = 10000;
$STACK = ' ';
SEXPR = ' '; o
$CASE : PROCEDURE (COND) RETURNS (CHAR) ;
DCL COND -CHAR;
KEY = 0; ;
STACK = EXPR Il ':' || STACK;
. EXPR = COND;
RETURN ('DO');
SEND CASE;
%OF: PROCEDURE (COND) RETURNS (CHAR) ;
DCL (COND,CHAR,AUX) CHAR,
STRING CHAR,
(PAR# , QUOTE, K) FIXED,
HEAD FIXED;
NUMBER = NUMBER + 1:
AUX = ') = (' || EXPR;
IF KEY = 0
THEN DO;
STRING = 'IF (';
KEY = 1; '
END;

. 20 .

ELSE STRING = 'EISE IF(';
IF SUBSIR(COND,1,1) = ' ("
THEN STRING = STRING || COND || AUX;
PAR# =1;
QUOTE = 0;
K=1; ”
HEAD = -1;
SCAN: K=K + 1;
CHAR = SUBSTR(COND,K,1);
IF QUOTE = 1
THEN DO;
. IFCHAR = '''!
THENQIDI'E= 0;
‘GO TO SCAN;
ELSE IF PAR# > 1
IF CHAR = ')’
THEN PAR# = PAR# - 1;
ELSE IF CHAR = '('
' THEN PAR# = PAR# + 1;
GO TO SCAN;
END;

. 21,

IF CHAR = = ')
'I'I-lENDO;
IF CHAR = ' ('
'THEN PAR# = PAR# + 1;
mmm—""
' THEN QUOTE = 1;
ELSE IF CHAR = ',
'I’HENDO; :
STRING = STRING || -
SUBSI'R(CCNDHEADK—HEAD) i
AthH SIS |

HEAD K+1~
END;
GO TO SCAN;
END;
JIF HEAD > 1

THEN AUX = ' = (' || EXPR 1 ")';
STRING = STRING || SUBSTR(COND,HEAD) !I AUX;

END;
RETURN (STRING || ') THEN CASE' || SUBSTR(NUMBER,5,4));
®END OF; -
$ENDCASE : PROCEDURE RETURNS (CHAR) ;
DCL I FIXED;
I=0;

LOOP:I = I + 1;
IF SUBSTR(STACK,I+1,1) = ':'
THEN GO TO LOOP
EXPR = SUBSTR(STACK,1,I);
STACK = SUBSTR(STACK,I+2);
RETURN ('END');
'SEND ENDCASE;

.22 .

8. References
1] - wirth, N. - "The Programming Language Pascal" - Acta Informatica -
vol. 1, fasc. 1, 1971 - pp 35-63. S

[2] - Dijkstra, E. W. - "Go-to Statement Considered Harmful" - Letter to
the Editor - CACM, 11,3, March 1968.

[3] - wulf, W.A. - "Programming without the goto" - Proceedings of the
IFIP Congress, Computer Software, August 1971 - pp.84-88.

