Series{ Mbﬁograph§ in’Cemputén Sci@ﬁce
‘ and Computer Applications

Ne 8 /72

AUTOMATIC PROOFS FOR THEOREMS ON PREDICATE CALCULUS

by

Sueli‘M,‘§gﬁ;qs'
. cand

Computer Science Department:— Rio Datacenter




AUTOMATIC PROOFS FOR THEOREMS ON PREDICATE CALCULUS

Sueli M, Santos
- and ‘
Marilia R, Millan

Assistant ' Professors
Computer Science Department
PUC / RJ

This paper was published in the In;efnatiqnal Congress of
Cybernetics and Systems - Oxford - August 28 - September 1°% 1972

Series Editor: Prof. A. L. Furtado o November /1972



ABSTRACT

The attempt.;ogqqg'a‘computer to prove propositions of
formalized theories has characterized in the last few years a special
field of Cqmpuﬁer Science, artificial intelligence. Our aim in  this
paper is to prove theorems of.propositional and pure predicate calcu-
lus in a automatic way using the programming language SNOBOL~4. We
choose this language because it is appropriate for handling structures

such as arrays and trees.

R . The formal systém we use is the one developed by M,
Smullyan. This system constructs proofs for expressions in the propo-
sitiogal, as well as .in the\prédicate calculus, in the form of trees,

or analytic tableaux as Smullyan calls them.

The proofs for propositional calculus being straight-
forward, have the advantage of being very simple and elégant. It is
even more striking that thoseiﬁgopgrties are also present in proofs
ggwggéressions in the predicaféug;iculus for which we cannot provide
a decision procedure, Then it is rot a trivial task to find an auto-
matic way of constructing proofs for formulas in a subset of its the—

orems.,



1. INTRODUCTION

Most” of the recent research in the afea'of automatic the-
orem proving has been done using Resolution based theorem provers3’“and
investigating new heuristics to improve- thls method ., Attempts at intro-
ducing dlfferent methods to prove' theorems on a computer. also seem rea-

sonable. This paper reports on one such attempt.

Our theorem pfoving method is based upon the logical sys-
tem of "analytic tableaux", developed by R. Smullyanl. It is a variant
of the semantic tableaux of Beth?. Smullyan's tableaux are simpler than
Beth's: semantic tableaux because they utilize only one tree instead of
two. As it is a very;simplekand natural method of proving theorems auto-
matically, it seems to us to be a good method for a first approach to
theorem proving. Its simplicity is a more evident and immediate advan -
tage of the method, although we hope that, with further research, we
may find appllcatlons, in questiop~answering, automatxc programming,and

SO on.

The logical system is presented in the next section.Proofs
of the consistency- and completeness of the system are omitted since they
are found in the referenceI, In (3), we dlscuss programmable algorxthms
for prov1ng theorems ‘in the prop051txona1 ‘and predzcate calculus. The
algorithms are presented in’ appendix I and II. In the summary we only
mention the design of the actualvlmplementatlon using the SNOBOL 4 pro-

gramming language®,



2, SMULLYAN'S LOGICAL SYSTEM

In the ensulng discussidn we use the follow1ng vocabulary:
propositional connectives: ~ WV Ay T quantifiers: V 3; auxll:.ary
symbolss {, } , [, ] , (Y,

We have an 1nfxn1te set ofs'ﬁariablese x, ¥, Zyr+.} predicates: P,Q,R, ...

variables for formulas: A,B,C,, ..} parameters (constants): a,b,c,...

Pormulas and predicates are defined in the usual way, as
well as the notion of binary tree, Tree vocabulary, such as, EES& }iggi
and‘yath from one node to another, is used without further explanation
(see for example, Knuths) We borrow Smullyan's deflnltlon of branch

to be a path whose last node is a leaf or a path that is infinite,

The theoréﬁs'are proved’usfng a refutation method, If we
want to prove that a formula X in the prbbositional calculus is a theon
temJ we construct a Binary tree whose root is labelled by the negation
of X, Other nodes of the- tree are generated by the follow1ng rules:

a) AvAX D) XAY ¢) v XAY) ) XVY

j : "cI ’ V///s\x , //\\
X . AX VY X Y
Y
e) VEVY) f) XY g) v (XY

PR T

4
Lol
4
>
4
>

20



The formulas in the above rules are of two types:
(i) - those whese roots have only one immediate sucessor ((a), ), (e)
and (g)) are called o - formulasy (i) those whose roots have two

successors ((c), (d)‘gnd (f)) are called ‘8= formulas,

'$ggs$ gﬁ;eg can be represented in a synthetic way as:

- a2‘ :

)

ey and dz (Bl and B ) will be called-components of

an o = formila (B fotmula),

An\analy€1c bableau fot the formula X is a b1nary tree T.

'whose nodes are iabeiled by - forimlas in the theory. Nodes and their
labels are generated as followsi' Step (1) = Label the root of T by X ;
Step . (2) = Let Y be the label o! a leaf nof T, We may extend . T by one
of the two openatlons.A ) .

(i} I$ an a '~ formuléyoccurs .as;, ;hg label of a node ip:the, ﬁ@th from
the root to the leaf n, we adjbln as its immediate succeskor, a
nade lahelled by ulg (or a ) 4nd then to this new node ad301n
its immediate, successor, labelléd by o, (or a );

(ii) IfaB s £ormu1a oceurs” as fhe tabel of a node in‘the path from the
root to the leaf n,»wg 31mu1taneously adjoin the Ieft su Jessor of
n 1abe11ed by B ‘and’ thé ritht successor of n ;abglled by Bye



Operatien (i) ((ii)) will be called»gevgibgmeﬁt:of an o -
formula (8 «~ formula),

Afbraﬁcﬁ of a tableau T is said to be closed if and only
if it contains two nodes such that one is labelled by a formula and the
other by its negatxon, T is called closed ‘if and only if everybranch of T is
‘closed, By a p;oof of a formulaCx 1s meant a closed tableau whose root
is labelled by the negation of X, A branch © of a tableau is said to

be ¢ ggglete.lfm for every o = formula which occurs in ©, both a, and

@, occur in 0 , and for every . 8 = formula which occurs in @, at

2
least one of - B, occurs in © , A tableau T is comgleted if every

branch of T is exther complete or closed,

It has been proven by Smullyan that the system is complew
te, consxstent and dec1dable . The above analysis is sufficient for
proving formulas in the propositional calculus as in the simple example

given in Figure 1,



v >q) > (o AT+ a)]

rule

(0)
]
(1) p*q
]
() v (AT >a)
\ !
(3) pPAT
| ]
) Nvog
!
) p
| ]
(6) . r
(7) ~p” tron (1), by (8)

(£)

from (0), by rule (g)

from (0), by rule (2)

b‘gro'm (2); by rule (g)

from (2) :,“by.*‘rule (g)

from (3), by rule (b)

¢4 from (1), by rule (f)

Figure 1, The tableau for a formula in the

propositional calculus,

For the predicate calculus we add the rules;

D)

(Vx) A
b

k) &(3 x) A , vhere a is any parameter

[

n A%
a

m) (Vx)

[

X

a

K , provided that a has not occurred
" in the labels of any nodes in the
tree so far constructed (i,e,, a

is new)
. ——



A:~ denotes the result of the substltutlon of the parame=
ter a for all free occurrences of x in A, . The. constants a,b c,... are
elements of a unlverse or a domaln U that is by hypothes1s the domain

of an 1nterpretation of the formulas of the predlcate calculus,

Universally Quantified formulas ((j) and (k)) are called _
Y m»formulas; ex1stenc1a11y quantxfied formulas .((1) ‘and (m)) are

called § -.formulas. The above [ules can be represented in a Succint

form. P - v
(i) yhoow _ _ . e | (ii) o 8.
v(a), where a is any\parametef-‘ SR S(a)'; provided that a is

a new parameter,

An analytic tableau for a formula X in the predicate
calculus can be defined as a'simple eitension of the two steps given
earlier for the proposltlonal case, To Step (2), we append' (iii) If a
¥« formula occurs as the label of a node in the path from the root the
leaf n we adjoin as its only immediate successor a node labelled by
v(a), where a is any~parameter; (1v) If a G formula occurs as the
label of a node in the path from the root to’ the leaf n we adjoin as
its only immediate successor’ a node labelled by 6(a), where a is a

new parameter,

Por any formula X, X'the.label of ‘a node on a branch 0 of
T, define 0 to be fulfilled on @ if either; (i) X is an o ~ forw
M

mula and o are both labels of nodes in @3 (ii) X is a 8 -~ formu~

10 %
la and at least one of By B, is. a label of ‘a node in @y(iidX is a y-
formula and, for every ae U, y(a) 1s a label of a node in ©; (iv) X
isa &= formula and for at: least: one Ca e U S(a) is a label of a

node in 0 ,



By finished tableau is meant a tableau which is either inw

finitel, or is finite but all its formulcs’are.fulfilled, This is a
simple modification of Smullyan's definitlcn of finished systematic ta~

bleau,

The notions of closed branchf closed tableau and proof for
a formula are the same as in the case of propositional calculus, The
system for predxcate calculus was also prcven by Smullyan to be complet

and consistent, but of ccurse, it is not decidable,

In the proposltlonal calculus, if we have a complete, but
open tableau for a formula X we can conclude that the negation of X is
not a theorem, We can alwuys complete the tableau so the method constlH

tutes a decision procedure for the prop051t1ona1 calculus.

In. the predicate calculus we may have an open tableau
which is not fulfllled As there _may be no way . to finish the tableau in
a finite, number of steps, we cannot conclude that either X or the ne-
gation o£ X ig a theorem,.When X is satxsflable in a f1n1te domain, we
can conclude that the.négction ofﬁX is not a theorem, In such a case ,

the method may also provide a model for X,

Take as an ékample tO'illustrate the use of the rules in
the predicate calculus a tableau for the negation of the formula
[(Vx)(Vy)(Px v Q)]+ [(Vx) px v (Vy) qy| as appears in Figure 2,



(0)

¢))

(2)

(3

4)

)

(6)

()

(8)

9

vV () x v )] > [(V 0 v (V5]

[ -

(V=) (¥ ) (Px v Qy)

|
!

BT

]

v (Vy)ay

~ P a
1

v Qb

|
(Vy)(Pa v @

-

Pa v Qb -

Pa from (8), by rule (d) :

X

N
)
Vo

v (Yx) Px v (F y)ey)

.from'(Oir by rule
from (0)n by rulé
f'r;;n_ (2), by “rule
'frdﬁ (g?, by rile
| fr@m:(3)? by rule

from (4), by rule
"froﬁ (1); by rule

from (7), by rule

.(10‘) Qb  from (8)),
.

Figure 2, The taﬁleau forva'formula in the

predicate calculus,'.

(g)
(8)
(e)
(e)
(m)
(m)
)

)

by rule (d)



3, THE ALGORITHM

Smullyan1 suggests a systematic way for constructing the
analytic tableau fof a formula in the propositional or predicate calcu~
lus, In the propositional case, he suggests that all possible. develop~-
ments of nodes labelled by o ~ formulas should.be-carried our first,
This is a way of avoiding repetitions in tree of the components of o -
formulas, The difference is illustrated in Figure 3; The suggestion‘
helps to make the automatic construction of the tree more efficient,

8
o o
8/\8 |
1
! I ;
o S
f I X
uz 0.2 ‘ A .
| By B,
(a) Development of a B~formula - - : " X
.withouF using Smullyan's (b) Using Smullyan's suggestion
suggestion . : : .
Figure '3

- In developing a programmable algorithm, we decid;d on thé
following order in which to examine the nodes: begin by leaf of the left
most paéb, working along the path towards the root, a?dddéVeioping all
a - formulas before B - formilas, Our algorithm references the  fol-
lowing program variablesz’LEAFﬁE%Fhe set of the leaves of the g:ee;‘ORiv

if i counsts the number of B-formulas developed along a singlg path,then

. 9.



ORi is the set of nodes labelled by B - formulas occurring in the
path between thz i th and the (i-l)st 8 = formula development, That is
ORi is the set of B = formulas along the path marked in the diagram of
the Figure 4, MOREi ~ set of nodes labelled by components of the ith

B - formula developed; ADD - set of undeveloped nodes; k - a node in
T; & - the root of T; %(k) - label of a node k; left(k)(right(k)) -
left(right) successor of kj top(name.of set) = the last item added to

the set:

]’ (i~1)st dévelopment of a

path segment B - formula

considered for

OR,
1

i th development of a § -
formula

Figure 4, Order of development of B-formulas,

Our algorithm and the desecription of the function it uses
are given in Appendix I using an ALGOL - like language, The condition
of halting for the algorithm is given by one of two responses: X is a

theorem or X is not a thecrem,

A formula in conjunctive normal form that is typically
troublesome for some mechanical theorem provers is: (p v @Q)A(p v N QA
(vp v QAP v v qg). A proof for this formula is shown in Figure 5.
In this case, we had to carry out an exhaustive search. The size of the
tree increases rapidly due to consecutive.applications of rules to B -
formulas, However, if we do the type of analysis we proposed in the
previous section we need store only a fraction of the nodes (those on

open branches, in each step).



(0) Gv Alpvad APy A(wpvaq)

!

€9 PVQq
[
(2) PV~NQ
| !
) : . vPvae
(4) vp g .
//\'\/\yq\
7 ~p (8) q 9) ~p
/\ /\ /\ :
(10) vq p (11) ~ q
/\ S \
p q
X X ' X X

Figure 5. Tableau for'a formula in

conjuctive normal form,

In more complex express1ons the storage requlrements may be
worse, We need to find heuristics to control the explosive nature of the
~ exhaustive search, In1t1a11y, we are using a preprocessor to transform
‘the conjuctive (or disjuncti&e)aﬁofmal forms into equivalent forms (such
as a conditional) and ﬁestingéits;advﬁntages. Pfeferably, we would liké

to habe better heuristics for ordering the development of the formulas.



For the predicate calculus Smullyan suggeét develop}ng o -
formulas first- then & -~ formulas, B = formulas and, finélly, vy = for-
mulas, The delicate problem here is the one of instantiation of quan -
tified variables, For the & - fofmulasﬁ if wa;stfiétiy oBey the provi-
so of rule (R) and (m) in Section 2, we have to use a new parameter
for each & - formula, Smullyan! suggests a 11bera11zat1on of this
restriction for oneplace predicates only, allowing instantiation with
a parameter already used, As he proves this is pefmissable‘ we included
it in our algorithm, We suggest a further 11berallzat10n for cases of
several-place predicates, The strategy would be’ to instantiate § ~ for~
mulas by constants already used in the 1nstant1atlon ¥ =~ formulas, If
a"cbhtrhdiction related to si¢h’a’ ‘W1iberal” instantiation is found, we
repeat the instantitation of the § = forﬁula,’this‘time using an altor
gether new constant, But, if there is no contradiction, we have a model
for the negation of the formula, This case is illustrated by the fol-
ldwihg example, Suppose our problem is to find out whether or not
&[(V’Y)(H X) Rxy A n (3 x) inﬂ is a_theofem. We construct the tableau

in Figure 6,



©  ~v [(Vy) (3x) Rey A'v (%) Rxx])
] .

@ (YpED RyA (30 Rxx
I .
(2) (¥ y) (3 %) Rxy
(3) (3 xz‘Rxx
4) (3 %) Rxa.
(5) ' Rba
| 1
(6) _ "Raa
@ 3 xh) Rxb
(8) Rab
| )
9 ‘ “Rbb

"Figure 6, A liberalized tableau,

At level (7) 6f tﬁe tree we have an example of the liberaw
‘lization for some m’place predicates, If we used a new constant ~ for
instantiating ((3 x) Rxb) we would continue introahcing new constants
without finding a finite mbdél for thé formula, We cannot solve our
problem, This liberalization is»not_igcluded in the algorithm presented
below, If it were, we would be ablé‘té find a model for the example

(Figuré 5).

* 13 .



The algorithm for the predicate calculus requires further

variables. We have

ANY - set of undeveloped nodes labelled by ¥y = formulas; SOME - set
of undeveloped node labelled by & = formulas; AVAIL - a finite set
of available constants; SOMELIST(ANYLIST) - set of constants which

were used in instantiating & - formulas ( ¥ ~ formulas),

To guarantee that an open branch in which y = formula
occurs as the label of a node, is fulfilled, we have to instantiate the
y -~ formula using all constants (without repetition) that occur in
SOMELIST. To keep account of which constants have already been used ,
the algorithm references: LIST(k) = set of constants which were used
for instantiating a ¥y - formula (&§-formula) that labels node k, For a
8§ - formula the set is unitary and it is useful to a heuristic function
for choosing the constant to the instantiation of a vy = formula:
MOREANY ~ set of node labelled by y - formulas that must be instantiated,

using constant not in LIST(k).

The algorithm with the description of the functions it uses

is given in Appendix II.

The CHOICE function used in the algorithm is very important
from the point of view of the efficiency of the method. It is our inten~
tion to develop further the function by introducing new heuristics to
find instantiations for vy = formulas that will let us close (or fulfill)
a branch, when possible, in an efficient way, For now, we present only
a rough outline of a CHOICE function., Two sets are needed: AIDLIST and
TEMPLIST, AIDLIST stores the constants that were used in instantiating
8§ - formulas occurring along a given path, This is useful in picking,
from SOMELIST, a good constant for instantiating the next y - formula in
that path, TEMPLIST is just temporary storage for constants picked from
SOMELIST and which do not appear in AIDLIST, This may be used at a later
time, o

. 14



Since the predicate oalcuius is undecidable besides those
described for the propositiooal case we have a third halt condition in
our algorithm, In the pfeséntléffuafidnf if the AVAIL set is exhausted
before either all the branches are. closed or fulfllled then .. the
algorlthm halts with no dec1s1on. One possible improvement is the
algorlthm s recognltlon of an infinite loop condition 1mp11ed by the
necessity of creatlng new constants for the instantiation of & = formu-
las, This occurs for formulas that are nelther ‘theorems nor are their.

negations satisfiable in any fln;te,domaln.

It is obvious that ﬁhe'algorithm without the last halt conw
dition does not compromise the completeness of Smullyan's system. The'
last halt condition imposes an uoper‘hound on the size of AVAIL set,It
may be the case that we neéd more»tﬁan this finite numoer of‘paramoters
in order to close the tableau for thefﬁegation of a theorem, This limi-
tation as well as the one impliéd by an upper bound on the length of
the formulas we work with, is related to the implementation of the
algorithm, However, these limitations_do‘noc compromise Smullyan's

theoretical results,
4, SUMMARY

We are uéing‘the-§NOBOL~4{progfamming language for two main
reasons: flrst, it easily let us represent the tree (tableau) for fore
mulas by means of what is called'programmer = deflned data typeé’Second
the pattern features provides a synthetlc manner in which to program the
searches for the components of formulas, searches that are necessary for
the 1mp1ementat10n of the algorlthm.‘Smullyan s loglcal system leads
itself to automatlon. It is an especially frultful area for investigating

heuristics for solvlng problems of 1nstant1atlon of quant1f1ed variables,



_Appendix. I ~ The algorithm for the propositional calculus, |

comment ; initializatioﬁ

W ———— .

T+ ¢;5 2(8) «n X5 i+ 04 LEAF+ADD+OR « MORE; + ¢;
LEAF « LEAF {0}; k « &;

St’ep 1

s

" Step 2 = ‘.\:Lf 2(k) is atemic. t:hen then go to step 3
else if 2(k) is a B = formula then ] egln OR « OR VU {k};
else 8o to to Step 4; ‘ '

Step 3. -~ 1f ADD # ¢ xthen egln k + top(ADD)zADD*-ADDw{k};
g0 to Step 2; end;
else 80 to Step 5

Step 4 = comment: ‘de\'relopme_nt:vof the o = formula 2(k)

)
else for each j such that . j e LEAF;

‘_i_wg, LEAF = ¢ then X is a theorem '

'do if k is in the ‘path from & to j 5}_133
beglny A
E(lefe () « a3 t(lefr(left(§)) + o) LEAPLEAR-{5);
if CHECK(left(j)) fails then
© - 1f CHECK(left(left(j))) fails then
begin LEAF « LEAFU {left(left(j))};
ADD « ADD U {left(j), left(left(j))}; end;
end; B '
: end"_g_ to Step 3;

Step 5 - 1f OR° # ¢ then go'to to Step 6; :
else 1f MORE = ¢ then 1f i =0 then &_to Step. 7;
‘ o onielse lg_egy_x i+ il 80 to Step 5j-end;
else b &E_ k « top(MORE );MORE <+ MORE, v{k};‘g__ to ‘Step 2jend;

(*) In the case of rule .(a) » ‘section 2 we do mot need to have left(left(j)).

w 16 «



Step 6 - comment: development of the g = formula 2 (k)
if LEAF = ¢ - 'thén' X'is a theorem;
else begin k + top(OR, ); OR. + OR, = K}y i+ i+l

for each . j mgﬂs_ stEAFg
do if k is'in the path from ? to j then
v _lg_ta__gig_ z_(lgft(j)) < Bl;z(x_ight(j)) + B,j LEAFULEAF-{j}y
3‘{ CHECK(rJ’_.ght(j)') fails m
begin MORE.+ MORE,V right () }; LEAF<LEAFU{right (j)}yendy
E;:!'..?f.i.f. CHECK (Left(j)) fails_t;_l_x_g_r_x_
 Dbegin MORE «MORE.U{left(j)};LEAP<LEAFU{left (j)}jend;
else;
end;
else;

endj 80 to Step 3; end; »

Step 7 =~ if LEAF = ¢ then X is a'theorem; else_ X is not a theoremj

CHECK is the following boolean function:
BOOLEAN FUNCTION CHECK(m) |
~comment: m is a n’ode\ of T,
L@_ both £%(m) ahd the complement of 2(m) occurs in the
path from 4 to m then SUCCESS; else FAILURE}

Appendix II = The algorith’m.fdr‘the“predicate calculusy
Step 1 - comment: mltlallzatlon .

T « ¢3 LEAF«ADD<—0R<—MORE<—ANY<—SOME+¢; 2(8) « ~ X3
i = 0j LEAF « LEAFU{<I>} k + 9



Step 2 =~ i£ (k) ié atomic then go to Step 3;
else if #(k) is a v - formula then begin ANY < ANY U {k};
_ 80 to Step 3} endj

El&ﬁ,ii,z(k) is a 8. = formula then Eﬁﬁiﬁ.OR'* OR.U{k};

8o to Step 33 end;
else 1f 2(k) is a é-formula then begin SOME«SOMEV{k};
go to Step 3; end;

Elf.";i".f?. Step 4y

Step 3 - if ADD # ¢ then begin k < top(ADD)j ADD <« ADD - {k}j
go to Step 2; end;
else go to Step 8;.

Step 4 - comment: development of the a = formula z(k);

(same as Step 4 in Appendix I)
Step 5 - (same as Step 5 in Appendix I)
Step 6 - comment: development of the B'- formula (k)

(same as Step 6 in Appendix I)
Step 7 - if ANY # ¢ then go to Step 10;

else if MOREANY = ¢ then 8o to Step 14y
else gg_Eg‘Step 11;
Step 8 - if SOME # ¢ then g0 to Step 9;
‘ else go to Step 5; ‘

comment : development of the § = formula 2(k),
if LEAF = ¢ then X is a theorem; ’
else begin k « top(SOME); SOME < SOME ~{k};&(a)<SOMECOMPONENT (k) §
| for each j such that j e LEAF; ' |

Step 9

do 1f k is in the path from ¢ to j then
begln 2(1eft(3)) + 8(a)y LEAF <« LEAF -~ {j};
if CHECK(left(J)) fails then
begin LEAF « LEAFU{left(j)}; ADD«ADDV{left(j)}; end;
ends
endj 80 to Step 3;

end;



. Step 10 = comment: develdpment of the y‘h formula 2(k)
1f LEAF = ¢ \then X 1s a theorem;
. else else begin k«top(ANY); NY*ANY =~ {k}} MOREANYA-MOREANYU{k}
(a) * ANYCOMPONENT(R);
\for each ] such that je LEAFp
do 1f k is in the path from & to J then o
m&é&& (1eft(3)) + y(a)y LEAF < LEAF = {3};
if CHECK(left(J)) fails then
~ begin, ADD « ADDV{left(J)};LEAF«LEAFU{left(J)}'end; ,
else 1f ANY. # ¢ then ém to Step 10;

elses

endj
elsey
€nd ; 80 to Step 3y

end;

Step 11 w if SOMELIST # ¢ then go to Step 12;
~else go to Step 14;
Step'12 - if LEAF = ¢ then X is a_theorem;
else for each k- such that k e MOREANY;
do if CHOISE(k,a SOMELIST) Succeeds. then go to Step 13
g&gs 1f ANYLIST ¥ [ .and top(ANYLIST) ¢ LIST(k) tben
255&3 a + toP(ANYLIST); gm to Step 13; end;

else;

ends X is not a theorem;.:



Step 13 = LIST(k) « LIST(k)U{a}; x-BOUNDVAR (k)} s+SCOPE (k) jy (a)+REPLACE (s, x,a) ;
for each j such that j e LEAFy :
do\1} k is in the path from % to j then

\g‘e_ggz(left(j))wfca), LEAF « LEAF = {J};
if CHECK(left(j)) fails ﬁhen
~begin LEAF+LEAFU{1eft(j)}; ADD*ADD\l{left(J)}; end;
end;

' end; §,\t° Step 3y

*Step 14 = 1f LEAF = ¢ then X is a theorem;

else X is not a theoremj

Functions (ii), (iii), (iv) below are very simple, So we are .

not going to describe them formally;

(i) FUNCTION CHECK(m) = see Appendix 1.

(ii) FUNCTION BOUNDVAR(m) = returns as value the variable bound by the

most external quantifier in £(m),

(iii) FUNCTION SCOPE(m) = returns as value the scape of the most external

quantifier in z(m)

(iv) FUNCTION REPLACE(f x,a) = returns as value the formula whlch is
the result of the subst1tut1on of parameterxgi for all free occurw

rences of x -in the formula f,

(v)  FUNCTION - ‘SOMECOMPONENTS.(mi)
comment: m is a node labelled by a & « formulay the function
T —————— .

returns as value the component of %(m).,
Step 1 ~.comment: choice of a parametei for instantiating 2(m) using li~

beralization, .
x + BOUNDVAR(m)j s < SCOPE (m)}



1f ANYLIST = ¢ then g0 to to Step .23
-else begin a « ;op(ANYLIST)}
if a € SOMELIST or a occurs in s then 80 to Step 2
- : . ‘m e —— ——— K
~elge if exists b, b ¢ SOMELIST and b occurs in s thengo to 'Step2;
TR ——tot ) Ay R—— —
else gorto Step 3;

endy
bl

Step 2 = if AVAIL = ¢ then no decision;
' else begin a « top(AVAIL); AVAIL <+ AVAIL = {a};\end;

Step 3 - SOMECOMPONENT + REPLACE(s,x,a)j SOMELIST <« SOMELISTU{a};
LIST(m) <« LIST(m)V {a};

(vi) FUNCTION ANYCOMPONENT (m) o \
comment: m is a node whose label is a y - formulaj the function

returns as value the component of %(m), -

Step 1 - BOUNDVAR(m); s <« SCOPE(m);
if SOMELIST = ¢ then
1f ANYLIST = ¢ then 1f AVAIL = ¢\fhen\no dbc1s10n;
else else begin a«top (AVAIL) jAVAIL¢AVAIL ={a};
ANYLIST+ANYLISTU{a}; 80 to Step 2
end;

else b egln a <« top(ANYLIST) go to Step 2,\end'
else CHOICE(m a SOMELIST);

Step 2 - ANYCOMPONENT « REPLACE(S X a); LIST(m) <« LIST(m)U {a};

(vii) BOOLEAN PROCEDURE CHOICE (m,b,x)
comment' m is a node 1abe11ed by a ynformula; X is a set of
S ———————
parameters; b is an element of X;.the function returns SUCCESS
or FAILURE, In the first.caséeéieqfreturns’b as a value,
Step 1 = comment: initialization .
- TEMPLIST < ¢3

K 21 q.‘



Step 2 ~ for each bxsuch\that be X;
do if b ¢ LIST(m) then
begin for each J'suchnthat j € LEAFy

~do if m is in the path from ¢ to j then
begln AIDLIST <« ¢}

for each n Such that g(n) is a 6§ - formula

s

and n is 1n the path from mto j§ ’
4do AIDLIST « AIDLIST VW {LIST(n) end;
' 1f b e AIDLIST then successj b is the choice;

end
TEMPLIST < TEMPLIST {b};
end;

Step 3 - if TEMPLIST = ¢ then FATLURE;-else go to Step 4j

Step 4 = for-each b such that-b eATEMPLIST;
do for each j such that j e LEAF

do 1f m is in the path from & to j then

tegin AIDLIST < ¢; ‘
for each n- such that 2(n) is 2 & = formula

and n is in the path.from 9 to i
do AIDLIST « AIDLISTY LIST(n); end}
if b ¢ AIDLIST then SUCCESS; b is the choicej

end;

end;

Step 5 = b « top(TEMPLIST); SUCCESSj;-b i's the choice;

Acknowledgments

The authors express thelr gratltude do Adele Jean Goldberg
who helped with valious” suggestlons 1n the outline of the algorithms |,

read the manuscript and suggested_numerous improvements,



4,

6,

BIBLIOGRAFIA

R.M, Smullyan = First-Order Logic, Springer~Verlag, New York INC,1968.
E,W, Beth = The Foundations of Mathematics, North Holland,’1959.

J.A, Robinson.= "A Machine = oriented Logic based on the resolution

principle", J, ASS, comput, Mach., 12, pp. 23=41, 1965,

D. Luckham = "The Resolution Principle‘in-Theorem Proving", Machine

Intelligence I, pp. 47+61, Edinburgh: Oliver & Boyd, 1967,

. D, E, Knuth = The Art of Computer Programming, Vol. I, Addison-Wesley

Publishing Company, 1969,

R. E, Griswold; J, F, Poage, I.P, Polonsky - The SNOBOL 4 Programming
Language, Prentice-Hall, 1971.



