Series: Monographs in Computer Science
and Computer Applications

N9 11/72

G/PL/I-EXTENDING PL/I FOR GRAPH PROCESSING

by

C. S. Santos
and
A, L. Furtado

Computer Science Department - Rio Datacenter

Pontificia Universidade Catélica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20
Rio de Janeiro — Brasil

G/PL/I - EXTENDING PL/I FOR GRAPH PROCESSING

C. 8. Santos
v Assistant Professor
Universidade Federal do Rio Grande do Sul

and

A, L. Furtado
Associate Professor
Computer Science Department
PUC/RJ

This paper was published in the Fourth International Symposium on Computer
and Information Sciences ~ Miami, Beach, Florida - December 14 - 16[.1972

Series Editor: Prof. A. L. Furtado 1 December/ 1972

ABSTRACT

G/PL/1 extends PL/I to handle both directed and undirected
_graphs, which may be multi - graphs. An arbitrary number of attribute-
value pairs can be associated with the graph itself and with it nodes

and edges.

Special kinds of sets together with set theoretic operations

are provided.

The impiementatibn uses pre-processing. It consists of a
supervisor and modules for several extensions to PL/I, G/PL/I being

one of themo

I. Introduction

‘ G/PL/I extends PL/I to allow graph processing. Some of its

features are:

1. Both directed and undirected graphs, which may be multi-

graphs, are handled; an arbitrary number of attribute -

“'value palrs can be associated with the graph itself and

' with its nodes and edges, . .

:A heterogene@us 11nked representation is used which fa-

cilitates the sttuctural operations of creation, dele -

5.

tion, and 1nterrogat1qn of‘graph and graph elements.

Spec1a1 kinds of sets 1nvolved in graph pr@cess1ng to-

gether with set - theoretlc operatn@ns are provided.

Initialization, input/output, loop control, and several

‘auxiliary processes are also included.

-

G/PL/I gives the user a concise and natural notation for
wthlng graph algorlthms, by extending the syntax of
PL/I. Although the present implementation is intended

for batch processing we claim that the notation is well

. suited for a conversational environment.

The implementation uses PL/I's pre-processor. It con-
sists of a supervissr and modules for several extensions

to PL/I, G/PL/I being one of these.

A comparison with other existing graph processing systems
would show that G/PL/I takes from GRASPE [}] its creation, deletion |,
and interrogation operations, and that it follows GRAAL [2] and GEA [3]
insofar as it extends a host language. The choice of PL/I as the host
language was motivated by its growing use as a general purpose = lan -
guage, and'by the presence of several very convenient features, notably
a pre-processor in high level language, and based structures. For an-

other system using PL/I see [4]0

After a brief description of G/PL/I and its implementation,
we present a program to determine the coefficients of the chromatic po-
lynomial of an undirected graph, its chromatic number, and all of its

optimal colorings, by using a version of Zykov's algorithm.

II. An Informal Description of the Extension

In describing G/PL/I we begin by introducing its notation

in a very informal way. «

Let G be a graph, and N1 and N2 any two nodes. In order

to represent an oriented edge A from Nl to N2 we write:

A: N1 -> N2

We now consider the creation (+), deletion (-), and inter-
rogation (?) operations, having graphs and graph elements (nodes or

edges) as operands.

The value of the following expression would be G with edge

4 added to it

G + A: N1 -» N2

addition of N1 and N2 being implied, if they are not already in G.
The removal of A, retaining N1 and N2, is indicated by
G - A: N1 -~ N2

or implicitly by either of the node removal expressions

G - N1
G - N2

However, as one might expect,

G + N1
G + N2

merely indicate the addition of nodes NI and N2 respectively, without

implyiﬁg the_addi;iqn of an edge A.
If the edge is in G, and we write for instance:
G A: N1 -» ?
G ?: Nl -» N2
G ?: NL - ?
we get, respectively, the sets {N2} , {A} ,'{(A,NZ)}@ i
When in an interrogation we do not care what a particular

element - (edge or node) is, an asterisk is used in the position of that

element. Thus

G %: N1 => 7

would again result in {N2}. For a more interesting example, suppose G
has Al: N1 -> N2, A2: N1 -> N3, A3: NI -> N4, Then

G %*: N1 -> 2

would give {N2, N3, N4} , and here we stress the fact that the result

of an interrogation is always rendered as a set.

Another case where sets of several elements are to be ex-
pected arises when a multi~graph is involved. If G has Al: Nl -» N2,
A2: N1 -» N2, then ‘ =

G ?: N1 -> N2
gives {Al, A2}.

Inpoiting (<~) and symmetric (<->) arrows are also
permitted; the latter is the device used in representing undirected

graphs.

The following expressions show, respectively, how to in-
dicate the creation of an empty graph, the deletion of an entire graph,
and thé interrogations to obtain the set of all nodes, the seﬁ‘@f all
edges, and the é@t of all triplets (edges together with the two nodes

incident to them):

G +
G -
G ?
G ?:
G ?:%

What we call composite expressions is a convenient way to

indicate several additions and deletions in a single expression, such as
G ((-N1, + A2: N3 <- N4, - A7: N3 -> N8))

meaning the graph G plus the edge A2: N3 <- N4, and minus the node
N1 and the edge A7: N3 -> N8. '

There is a distinction between

. G + N1
and o
G+ 'NL'

In the former case we are dealing with a character string
variable whereas in the latter we have a character string constant which
represents itself, Of course a variable will stand for a previously as-
signed constant, and the constant that is assigned to it immediately be-
fore the + operation is executed will be the actual element to be added

to the graph.

The reference to a graph (G in the example) is a speclal kind

of variable that must be declared and initialized as follows.

DECLARE (Gl, G7(3,4)) (3 GRAPH;

DINIT((GL, G7));

noting that G7 is an array of graphs. Procedures having graphs as ar-
guments and graph - valued procedures are permitted. Variable@ of the

type graph have the same properties as pointer variables.

A graph .is actually created {(allocated) when an expression

of the form
G:«%

is encountered. The name of the graph is a character string constant
identical to the variable referring to it, unless another name is spe-

cified as in
G 'GNAME' +

Attribute -~ value pairs are adjoined to graphs, nodes, or

edges by the operator / :

/ AT = VL
N / AT = ((VL1,VL2,VL3))

G
G
€ A: / AT = (VL)

noting that an edge is represented without specifying its endpoints,
.and that the value corresponding (=) to an attribute may be a list of
vglues, indicated by two pairs of brackets. Each value can be a charac-
ter string constant or any variable (whose value will be converted to

a character string comstant), or a set variable or set expression within

single brackets.

The addition of pairs causes the removal of pairs with the

same attribute that happen to be attached to the graph or graph element.

Deletion and interrogation operations are defined in a

manner analogous to the one for graph elements. Thus

a. G/ AT - b. 6/ -
G'N / AT - 6N/ - |
G A: / AT - G A: / -

indicate the deletion of the pair with the given attribute (case @) or

all attribute - value pairs {b), and likewise

a. G /AT = ? b. 6/ 7.
G N /AT =2 cN/?
GA: /AT = 2 . cA: /2

will deliver the set of values corresponding to the given attribute

(case a) or the set of all attribute - value pairs (case b).

Several addltxans and deletxons of attribute - value pairs

are pe‘rmltted in compos:!.te expressz.ons.
G N/ ((AL = V1, A2 = ((v21, V22)), A3'-)

When an element (N or A) from a graph Gl is being added to
another graph G2 one frequently wants to carry to G2. the attribute -
value pairs that the element has in Gl. This is indicated by the "qua-

lification" operator (o)

G2 +GL . N
G2 + 61 . A:

A graph expression can be assigned to a graph variable, as
in the following statements:

G2 =Gl + N
Gl = G1 + A:N1 -> N2

Graph assignment statements and graph expressions are given
to the preprocessor enclosed in brackets and preceded by the keyword

(2 G. The same requirement is done for the input/output statements:

G <=
G ->

'Fdr_input a graph should be reptesentgdﬁgs?in the example
below:

C("GNAME' (AT1' = 'VL1', 'AT2' = 'VI2'"), |
'N1'('ATNL' = 'VLNL'), 'A3':'N5' -> 'N9'('ATA3' = 'VLA3'))

the name of the graph coming first and them the nodes and edges in any
order; both the graphs and its elements are optionally followed by
their attribute - value pairs.

‘For output the graph in the example above would be printed

in the form:

GRAPH

GNAME (ATL = VL1, AT2 = VL2)
NODES
Nl (ATN1 = VLN1)
N5 ()
N9 _ ¢
EDGES _
A3:N5 -> N9 (ATA3 = VIA3)

A number of auxiliary processes are provided as G/PL/I pro-
cedures. They allow the conversion of the standard representation in
G/PL/I (linked structure) into and from adjacency matrix and incidence
matrix represéntation; testing if an edge is direq;ed; conversion of
-the standard representation into and from a character string represen -

tation suitable for saving a graph in secondary storage.

Three types of sets are provided. They were introduced ex~

clugsively as an auxiliary facility.

Tybé one sets can be sets of godes, of edges (the names of
the edges only), dr‘df values. Types two and three are sets of edges |,
type two giving the edge name and one of its endpoints (sets of ordered
pairs); and type éhtee the edge.name and both its}epdpoints (set of

triples). Type_twp'éets are also used as sets of attribute - value pairs,

As in the case of graphs sets must be declared and initia -

lized:

DECLARE (S1, S2(2, 20)) (:SET;

(=} INIT ((SL, S§2));

Operations on sets and comparison between sets are provided,

the chosen notation being:

| union

€ intersection

€ difference

+ . adding an element

- ~ deleting an element

<= equality (mutual inclusion)
> . containment

> proper containment

<= inclusion =

< proper inclusion

= unequality

Set expressions are evaluated from left to right, and since
no operator priority is assumed brackets may be required to ensure the
desired order of evaluation. A set variable represents an empty set

whenever its value is NULL.

Set assignment is also included. As for graphs, set assign-
ments must be enclosed in brackets preceded by a keyword, which in this
case is (®S.

If a set is created by a set expression and is not assigned
to a set variable it is regarded as a temporary set and as such it is

freed after the statement in which it arises has been executed.

Loop control is achieved by means of a special statement,

- 10 -

(DO EACH (X IN S);

where the character string variable X takes in turn the value of each
element from type one set S. In case S is a type two or three set, X
will also be a set variable and it must be enclosed in brackets in the

GQDO statement.

" Procedures are provf&éd fof“converting a character string
into a’set element; retrieving the flrst ‘or the 1Eh element of a set ;
determ;nxng the position- (1ndex) of a glven element in a set - 1t is

Lmbortant ‘to note that G@INDEX(S X) > 0. means Xes; determ1n1ng the
type of a set' computing the cardlnallty of a set; converting the

standard set representation into or from a representation suitable for
isaving:sets in secondary storage0 Here we should note that since we are
‘dealing w1th unordered sets,’ the term pos1t1on merely refems to the

order 1mposed by the representatmn0

The example at the end of the chapter will hopefully illus-

trate how graph processing benefits from this limited set facility.

"III. Implementation Considerations

The linked information structures used to implement graphs
and sets are modular, in the sense that each part (module) will be in-

cluded only when required to record an effectively supplied information.

- 11 -

The modules and their composition are listed below. Note in

particular that multi-graphs are representable.

1.

2.

Active graph (entry in the graph directory)

- graph name

~ address

- address

of the header of the graph
of the next entry in the directory

Graph header

- address
- address

- address

of the list of attribute-values of the graph
of the list of nodes of the graph
of the list of edges of the graph

Node

- node name

- address of the list of edges incident to the node

- address of the list of attribute-values of the node
- address of the next node of the graph

Edge

- edge name

- tag that indicates whether or not the edge is directed

- address

- address

of the initial node of the edge

of the terminal node of the edge (of course if

the edge is undirected the terms initial and terminal

are equally applicable to both endpoints)

- address

- address

Link from
- address
- address

dent to

of the list of attribute-values of the edge
of the next edge of the graph

node to edge
of the edge incident to the node
of the mext link (leading to another edge inci-

the same node)

- 12 -

6. Attribute-value pair
- attribute name
- value
- address of the next attribute-value pair of the graﬁh

or graph element

7. Entry in the set directory
- tag indicating the status of the set (temporary or per-
manent) '
- address of the header of the set
- address of the next entry in the directory

8. Set header
- set-type (1,2, or 3)
- address of the first element in the set

9, Set element
- glement name
- address of the next element in the set (here the terms

first and next refer only to the order imposed by . re~-

presentation)

As previously indicated graph structures are explicitly al-
locatted and deallocated;-since no garbage collection mechanism is pro-
vided in the present implementation, the user should take the burden of

deallocating the graphs as they are no longer needed.
Both nodes and edges are "local" to each graph. This is at

variance with systems like GRASPE [I] » Where nodes are global and only

the edges are local.

- 13 -~

Another relevant point about the implementation is the use
of the standard IBM pre-processor to convert G/PL/1 programs into valid

PL/I programs.

Since ambiguities are avoided a one - pass scan through
graph or set expressions is sufficient to determine what actions should
be taken. Accordingly, calls are generated to one or more procedures ,

declarations, and other statements.

The IBM pre-processor is a high level (PL/I-1ike) language,
which makes it relatively easy to write, understand, and change (possi-
bly expand) anything in the presently implemented version. Moreover -
and this is true for any pre-processor implementation - the users of
“the non - extended language are not affected, since the compiler has

“not been changed.

We are also using the IBM pre-processor for several other
-extensions to PL/I (for list processing, additional control statements,
pattern-matching, etc.). The extension modules operate under a super-
visor, involving catalogued procedures and some simple utility programs;
a single JCL card indicates what extension modules will be combined in

a particular program.

IV. An Example

In order to illustrate some of the features of the language
we include a program (see Appendiz) to compute the coefficients of the
chromatic polynomial of an undirected graph and all its optimal color-

ings (to within renaming the colors) by a versionm of Zykov's algorithm,

- 14 -

The chromatic polynomial is given by a recursive function

Zon G “ a graph -, n - the number of nodes of G -, and t - any in-

determinate - (see [5] page 145):

Z(Gyn,t) =if complete (G,n)then f(n) /* basis */

where:

Gl

G2 .

else Z(Gl,n,t) ® Z(G2,n~let) /* recursion step */

computes the coefficients of the chromatic polynomial
of a complete graph G by expanding t(t-1)...(t-n+l);

is obtained from G by adding an edge linking two
arbitrarily selected non-adjacent nodes u and v;

is obtained from G by fusing the same non-adjacent‘

" nodes u and v;

< adds-the coefficients of corresponding terms of the

- chromatic polynomials of Gl and G2.

It has been shown Eﬂ that the complete graphs with the
smallest number of nodes represent the optimal colorings, each node re-

sulting from fusing those of the nodes from the original graph to be

assigned the same color. As'a consequence the number of nodes of such

....... 3

‘complete- graphs' is the chromatic number of the-original‘graph (which is
‘also the least positive integer value of t yielding a non-zero value

for the chromatic polynomial).

-15 =

The exponencial nature of the algorithm requires the in-
troduction of suitable branch and bound criteria. No such thing was

done here, since our purpose is to show briefly how G/PL/I is used.

An interesting feature of the program is the use of the
attribute - value lists of the nodes of the complete graphs for storing

the set of original nodes that were fused to form them.

As an example, consider the graph:

S @\i)
——3)

' s

(O

whose input representation is:

('INPUT', !A\):lli =S lz') lB':lzv Lom> '3" lcl:lz' =S l4|’
'D':'A' Cm> |59, nEv:vsv ComS> '6', 'F'2'6' LoD I7" 'G':'l' <= 971’

'H':'l' Cms 'S'D 'I':'Z' €S> '41’ IJI='3' <_>|7V)

The output consists of the input graph itself, the complete
graphs generated by the process (the set of attribute - value lists of
their nodes exhibiting the optimal colorings), and the coefficients of

the chromatic polynomial.

The chromatic number of the given graph is 3, and the 'fol-

lowing optimal colorings were obtained:

- 16 -

{{1,3,6} , (4} , {7,5,2}}
{{7,5,2} , {4,6} , {1,3}}
{{7,4} , (2,5}, {1,3,6}}

{{7,5,2} , {3} , {1,4,6}}
{{1,4} , {6,3} , {7,5,2}}
{{1,4,6} , {5,3} , {7,2}}

the coefficients of the chromatic polynomial being:

(1, -10, 44, -109, 159; =127, 42)

V. Directions- for Further Developments

Our first objective was to develop a good notation for
writing graph algorithms. Time and core storage requirements opti -
mization will become increasingly important issues as improved versions
of"G/?L/I and thé other extensions are implemented, leading possibly to
their formal incorporation in an extended language definition and to

the design of a new and complete compiler.

Adaptation to a conversational enviromnment is also being
considered. The use of display units would add the ability to visualize
graphs. in the usual way (see [? é] for a very Lnterestlng example of
thls)

A simpler and yet effective alternative for adding power to
“the system is to write as library procedures certain algorithms, which
other more complex ones will utilize as sub-algorithms. This approach
was used in [91 Among such sub-algorlthms we are 1nc1ud1ng automorphism

partitioning: [1@] palm tree constru@t1on [11] , ete.

-.17-

Also, since it is not clear that any particular graph re-~
presentation (linked lists, adjacency structure, adjacency matrix, etc.)
is the best in all respects for all algorithms, mappings between the
preferred representation and the other most usual representations are
desirable. We have provided some of these mappings as auxiliary proce-

dures (see section II), and others will probably be added.

- 18 -

APPENDIX

CHROM: PROCEDURE OPTIONS (MAIN);
"DCL G QGRAPH,

N BIN FIXED;
@QINIT((G));
/* READS A GRAPH FROM CARDS AND PRINTS IT */
@G (G <-);
@G(G->);

/* GETS THE NUMBER OF NODES =*/
N=@SCARD(QG(G ?));
BEGIN;

END;

DCL CPC(N) DEC FIXED(7,0);

/* CALLS Z x/

CALL Z(G,CPC,N);

/% PRINTS THE COEFFICIENTQ OF THE =/

/% CHROMATIC POLYNOMIAL %/

PUT PAGE LIST('CHROMATIC POLYNOMIAL COEFFICIENTS ');

PUT SKIP EDIT(CPCY((N) F(8));

Zs PROCEDURE(G CPC,N);

DCL G @GRAPH,

COLOR @GRAPH CTL,

(5,S1) @SET, -

N BIN FIXED,

X CHAR(12),

I DEC FIXED I“ITIAL(O)p

(TN, CPC(*),AUX(NY) DEC FIXED(7,0);
/* TN 1S USED TO GENERATE THE NAME OF NEW EDGES, AND
/% | 1S USED TO GENERATE THE NAME OF THE COMPLETE
/% GRAPHS TO BE STACRED
QINIT((S,81));

TN=10000;

CPC,AUX=0; v
/# PUTo THE NAME OF EACH NODE IN ITS =/
/* OWN ATTRIBUTE-VALUE LIST Y

@D0 EACH(X IN @G(G ?));
@G(G=G X/'N'=X);
@END; ‘

/* CALLS Z1 =/

CALL Z1(G,N);
/* PRINTS ALL MINIMUM COMPLETE GRAPHS */
DO WHILECALLOCATIONCCOLOR));
@G(COLOR =>);
FREE COLOR;
. END;
Z1:PROCEDURE (G,N) RECURSIVE;
DcL (8, G1) QGGRAPH,
(N,N1,K) BIN FIXED,
(ND1,{D2, ND3,EG1, GNAME) CHAR(12);
RINIT((G1));

-19 -

*/
*/
*/

THEN DO

[* G
ELSE

G IS COMPLETE THEN DETERMINE =/
5 CHROMATIC POLYNOMIAL %/
#(H~1)/2) = @5CARD(QAG(G 7:))

CALL F(N);
IF =ALLOCATION(COLOR)

CTHEW K=10009;

ELSE K=@SCARD(QG(COLOR ?)); '
/% IF THE NUMBER OF HNODES IN G IS LESS THAN
/% THE HUMBER OF HODES OF THE COMPLETE
/% GRAPHS W THE STACK THEN EMPTY THE STACK
IF N <K
THEN DO;
1=0;
NO- WHILE(ALLOCATIONCCOLOR) §;
QAG{COLOR=COLOR =)
FREE COLOR;

END;

END;
/* VF THE NUMBER OF NODES IN G IS LESS OR
/+ EQUAL TO THE HUMBER OF NODES OF THE
/% COMPLETE GRAPHS REMOVED FROM OR N THE

/% THE STACK THEN ADD G TO THE STACK
IF N <= K
THEN DO
ALLOCATE COLOR;
@IRITCCCOLOR))¢
f=1+1;
GHAME="COLOR" [| SUBSTR(I,5,47;
B3 (COLOR=COLOR GNAME +);
G{COLOR=G):

Dy

T

.

END
1S HOT
DO

/% CALLS NOTADJ TO GET TWO NOW-ADJACENT

/% NODES HDL AND ND2

CALL NOTADJ(G,RND1,ND2);

TH=THN+1;

EGL=*Q@E* | |SUBSTR(TN,2,2);

/% CREATES G1 FROM G BY ADDING AN EDGE

/e LINKING KDL AND - HD2
CGR(GL=G+EGLINDIK=->ND2);

/% CALLS 721 RECURSIVELY

CALL Z1(GL,M);

/* CREATES Gl FROM G BY FUSING ND2Z TO ND1.
/% FOR THIS WD2 iS5 DELETED BUT THE

/% ATTRIBUTE=VALUE LIST OF NP1 BECOMES THE
/% UHION OF WHAT 1T HAD BEFORE WITH THE

/% LIST OF ND2, AND THE EDGES LIHKING HD2

A COMPLETE GRAPH =/

-

- 20 -

*/
W/

:V/
*/
"X”/
%/

*/
'.'s'/

% [
v
%/
%/

%/

/% WITH NODES NOT LINKED TO ND1 NOW BECOME =/
/* INCIDENT TO ND1 */
@G(G1l=G-ND2); _

@S(S1=@G(G NDL1/'N'=?) | @G(G ND2/'N'=?));
@G(G1=G1l ND1/'N'=(S1));

QS(S=@G(G *:ND2<~->7?) &™ @G(G *:ND1<=>7));

@DO EACH(ND3 IN $); ,

TN=TN+1;

EGl="QE'||SUBSTR(TN,9,2);
@G(G1=G1+EGL:ND1<=>ND3);

@END; -

N1l=N=1;

/* CALLS Z1 RECURSIVELY. SINCE ND1 AND HD2 =/
/#* ARE FUSED G1 HAS N=1 NODES %/
CALL ZI(G1,N1);

/* G1 1§ DE- ALLOCATED %/
@G(G1=Gl-);

END;

END Zl
NOTADJ:PROCEDURE(G, ND1 ND2);
/* SEARCHES' FOR ANY TWO NODES ND1 AND NDZ WITH %/
/% NO EDGE LINKING THEM %/
DCL G @GRAPH,
(ND1,ND2) CHAR(12);
@DO EACH(ND1 [N @G(G ?));
/* CHECKS THE DEGREE OF ND1 =/
IF QSCARD(@G(G #*:ND1 <-> 7)) < N =~ 1
THEN @DO EACH(NDZ IN QG(G ?));
IF ND1 7= ND2
THEN IF BG(G ?:ND1 <=> ND2) = NULL
- THEN RETURN;
@END;
@QEND;
END NOTADJ;
Fe PROCEDURE(P),
/* OBTAINS THE COEFFICIENTS OF THE CHROMATIC * [/
/% POLYWNOMIAL OF A COMPLETE GRAPH WITH P NODES * [/
/% BY EXPANDING P(P=1)(P~2)...(P-P+1) %/
DCL (P,1,Jd) BIN FIXED;
AUX(1)=1;
iFP>1
THEN DO;
AUX(2)=-1;
- DO I=2 TO (P-1);
AUX (1 +1)==1*AUL(1);
DO.-J=1 TO 2 BY -1;
AUX(J)=AUX (J) =1 *AUX(J=1);
END;
END;
END;

_21 -

/* ADDS CORRESPONDINGLY THE COEFFICIENTS OF THE =/

/* POLYNOMIAL TO CPC, WHICH AT THE END WILL %/
/+ CONTAIN THE COEFFICIENTS OF THE CHROMATIC #/
/% POLYNOMIAL */

DO i=1 TO P;
CPC(I+N=P)=CPC(I+N=P)+AUX(1);
AUX(1)=0;
END
END F3;
END Z;
END CHROM;

-22 -

ACKNOWLEDGEMENT

We wish to thank our colleagues L. Kerschberg and Sueli
Santos who carefully reviewed the manuscript of this paper.
REFERENCES =

1, Pratt, T. and Friedman, D., "A Language Extension for Graph Proces-
sing and its Formal Semantics". Comm. ACM 14, 460-467 (1971)

2. Rheinboldt, W. et al, "On a Programming Language for Graph Algorithms."
Tech. Rep. TR-158. University of Maryland, 1971. ‘

3. Crespi-Reghizzi, S. and Morpurgo, S., "A Language for Treating Graphs."
Comm. ACM 13, 319-323 (1970).

4, Chase, S., "Analysis of Algorithmé for finding all spanning trees of
a graph." Tech. Rep. 401. University of Illinois, 1970.

5. Harary, F., "Graph Theory." Addison-Wesley, 1969,

6. Corneil, D. et al. Private communication.

‘7. Christensen, C., "An Example of the Manipulation of Directed Graphs in
the AMBIT/G Programming Language." In "Interactive Systems for Experi-

mental Applied Mathematics." (Klerer and Reinfelds, eds.). Academic
Press, 1969,

- 23 =

10.

11,

Christensen, C., "An Introduction to AMBIT/L, a Diagrammatic Lan-
guage for List Processing.' Proc. Second Symposium on Symbolic and

Algebraic Manipulation, 1971.

King, C., "A Graph Theoretic Programming Language." Ph.D. Disserta-

tion, University of West Indies, 1970.

Corneil, D., "An Algorithm for Determining the Automorphism Parti-

tioning of an Undirected Graph." Working Paper, University of Toromto.

?

Tarjan, R., "Depth-First Search and Linear Algorithms."” Working

Paper, Stanford University.

- 2% -

