Series: Mbnographs in Computer Science
' and Computer Applications

N9 12/72

SDM - A SYNTAX DIRECTED MACRO - PROCESSOR

by

and
D. J. Nunes

Computer Science Department - Rio Datacenter

Pontificia Universidade Catolica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20
Rio de Janeiro — Brasil

SDM - A SYNTAX DIRECTED MACRO-PROCESSOR

S. R, P. Teixeira
Associate Professor
Computer Science Department
PUC/RJ

and
D. J. Nunes

Assistant Professor
Universidade Federal do Rio Grande do Sul

This paper was published in the Sixth Asilomar Conference on
Circuits and Systems = San Francisco - California - November 15 = 17 /1972

Series Editor: Prof. A, L. Furtado December /1972

ABSTRACT

SDM is a Syntax-Directed Macro-Processor which allows
‘one “to ‘extend-the- syntax and ‘semantics of a high level language.
It is a string processor which uses R-expressions to define the
'sYntax“of-neW{statementsv(macros) and a ianguage, SL, to define

the semanticé'of these statements.

1. INTRODUCTION

The basic 1dea in a macro-processor is the direct replace-
ment of certain symbols with their associated pieces of text. A good

description of the general idea-can be found in(!),

The macro concept-has thus far been mainly associated with
#ssembly“languages(z)(a), although it has proved useful in connection
with high level languages(l)(“)(7) In the former case, due to the
simple syntax of assembly languages, macro-processors usually do not
allow flexibility of format to macro-calls., This is undesirable when one
attempts to generalize the macro concept to high level languages. Also,
it is often the case that no syntax checking of the arguments is done
when thé macro is called and'errof messages are produced in'a sﬁage of
compilation after macro-processing, making it difficult to relate _an

érror message with the macro-call that produced it.

In this paper we describe a syntax ~ directed macro-proces-
sor called SDM, which is based on the idea of syntax macros(5)(6), spM
‘allows one to extend the syntax and'semantics of a high level lgnguage,
it is compiler independent(?) and is applicable to any languagek It is
"a string processor which uses R-expressions to define the syntax of
new statements (macros) and a language, SL, to define the semantics of
these statements. SDM provides flexibility of syntax to macro-calls and

good error detection.

2. R-EXPRESSION

An R-expression has strings and metavariables as its basic
elements. It is similar to a regular expression in the sense of finite
automata(®), It uses the following operations: or, concatenation, op-
‘tional occurrence' and repetition. These may occur recursively to any
level,

The notation used in an R-expression is as follows:

] vertical stroke separates alternatives.

? denotes optional occurrence of the immediately pre-

ceding syntactical unit.

denotes the occurrence of the immediately preceding

syntactical unit one or more times.
In the case of

'let' "(' (<variable>'='<expression>';') #

?<variable>'='<expression>')’ ¢))
we have that: <variable>'='<expression>';' may occur zero or more times.
A macro-call according to the syntax above could be:

let (a = b+ckd; b = a+d)

Another example of an R-expression is:

'if '<expression><oper><expression>'then'<all>
('else'<all>|<null>) (2)

Each R-expregsion begins with a reserved string. There is

one such string for each defined statement (macro).

The following grammar in Backus-Naur Form(?) defines the

syntax of R-expressions:

<R-expression> ::= <*str1ng><body>|<*str1ng>

<body> ::= <element>|<element> <body>

<element> ::= <*str1ng>|<*metavar1ab1e>|<llst of alternatives>

~<pption>|<repetition>
<list_of alternatives> ::= (<body>]<more>)
<more> :i= <body>|<body>'|'<more>
<option> ::= (<body>)?[<e1ement>?

<repetition> ::= (<body>) ﬁ# |<element> #

The star in <xstring> and <#metavariable> is to denote
that these syntactic classes are not belng defined 1n the grammar
above.

ST y

Each metavariable which appears as an element of an R-ex-
pression represents a formal parameter. They represent syntactic clas-
ses which are defined by the user in a nonrestricted Backus-Naur Form

“at the beginning of his program. As a macro-call is scanned, each
actual parameter is checked by a recognizer to determine whether it
belongs to the- syntactic class denoted by the corresponding metavaria-
ble. In case it does not, an error message is printed and the processor

proceeds to the end of the macro call . Nevertheless, other macro-calls
that may'oécur in the actual parameters of this one are fully analysed

by the processor.

So, for the R-expression (1), the user could define <ex -
pression> by writing:

<expression> : <term>|<expression>'+'<term>;

<term> : <primary>|<term>'*'<primary>;

<primary> : <variable>|<integer>; end
at the beginning of his program.

Some of the syntactic classes which are already defined in
the system are: <identifier>,<variable>,<integer>,<macro-call> and <all>,
The class <macro_call> represents a call of any of the macros which
were defined by the user. The class <all> represents any sequence of
characters terminated by the reserved word es. It is useful whén an actual
parameter may be any sequence of statements of a sophisticated base lan-
guage. In this case, the user may find cumbersome to define the syntax
of the whole base language and may use <all>, Nevertheless, any macro
gg%}riﬂﬂan actual parameter:q§sq;§pgq by <all> will be analysed and
expanded by the processor. For the syntactic recognition of actudl para-~
meters, the processor uses a version of(ll) , which is the most efficient
general context-free recognizer know.pr:themore, the recognizer wiil
work correctly even if the user specifies an ambiguous syntax. On the
other Hand, recognition of the structure of a macro-call, as specified
by the operators of an R—exﬁressibqé is done by a standard top-down

technique(lo) .

In order to make error recovery efficient, each macro call
ends with a reserved word. In the presently implemented vers1on of SDM,
this word (em) is the same for every macro, and does not appear at the
end of R-expressions. In a new version of SDM currently being imple~
mented, the reserved word that ends a macro call may be‘different for
different macros. Then, it has to be specified as the last element of

the R-expression that describes the syntax of the macro.

In order to be able fo refer to parameters and operators of
an R-expression, the processor numbers them from left to right. A new
number is produced for each formal parameter, ? , #, I aﬁd:eaéh)bthat
ends a list of alternatives. So:for the examples (1) and (Zlggbgve we

have:

'let' '((<vat1ab1e>'='<expre531on>"’) # 7 <variable>'=' <expre351on>)!
1 2 3 4 5 R

lif?ﬁexﬁression><oper><expression>'?hen'<a11>('else'<all>](nu11>)
1 23 4 561 8
A number which refers to a | or a) that ends a list of
alternatlves, has status 'true' if the preceding alternatlve has been
matched sucessfully to the macro call being processed. 0therw1se it has
status 'false‘ ’

Similarly, a nﬁmBéflasébciated to a ? , has status true
if and ‘only if the preceding syntact1c unit has been found on ,the macro

call belng analysed.

3. SL LANGUAGE

The semantics of a macro is defined by a semantic routine
written in the SL language. This routine is associated to the corre-
sponding R-expression. SL has output - statements, if-statements and

repeat - statements,

An output-statement has one of the following forms: line,
c<integer>,<string>, $<integer> and fL<integer>. The statement line
starts a new line of 80 characters (card image) on the output.
c<integer> causes any subsequent output to be positiomed such that
its first nonblank symbol starts at a specified column. <string> causes
the sequence of characters between quotes to be output. §$ <integer>,
where <integer> refers to a formal parameter in the R-expression,
outputs the corresponding actual parameter. 2<integer> is used in
the generation of labels. When £ i 1is executed for the first time ,
a three digit integer is generated and written on the outpﬁq, Another
occurrence, of 2 i will outﬁuf the same integer only if both occur-
rences are in the same semantic routine and are used in comnection
with the same macro-call, othgfﬁiéé”h different integer will ‘be output
and in ‘this respect this statement’ ‘will never repeat itself. If

i, #71i,, 2i, and 2, output' different integers in any case.

d(g) by the

use of begin and end. An 1f-statement has the form: 1£ boolean<expres-

In SL, statements may be grouped into a compoun

‘sion> then <statement>, where the basic elements of a <boolean expres—
sion> are integers which have status 'true' or 'false' with respect to

the R-expression.

The repeat - statements semantically define the repeat
operations in the R-expression, they have the form:
repeat <integer><statement-list> end, where the <integer> is associated
to a repeat operator. A repeat-statement r;, is said to be controlled
by another repeat-statement r, if and only if r_ is in the <state-

1

ment~-list> of r, in the semantic routine, and the syntactic unit u

immediately preceding the repéac 6per‘a;or #, (referred to by _rz)
contains the operator #1 (referred to by r.). In this case the<state-

2’

ment-li'st_#,._. of r, is executed as many times as u, was found in~ the
macro-call, For each of the}_se‘ogg:nrrehces of u, , the <statement-list>
of"r:1 is executed as many times as u1 was found.If r, is not being
controlled by another repeat-statémént then its <statement-list> is

exé‘_’éut'_éd as many times as ;11‘ »

the R?éxpression: 'C'("B''A' #) # , and the macro-call:
; 1 2 :

CBAAAABAAABAABA, then the routihe:

was found in the macro-call. If we have

repeat 2 'E'_E_p_:eii:;ll, 'H' end end
in thg-glgfinition, will cause tﬁé oqtéut:
EHHHHEHHHEHHEH
While the routine:
repeat 1 'E' L‘EBE.‘;‘E? 'H' end end
prodchs the output: |
EHHHHEHHHH (10 times)
| The syntax of the “'SL: language is given in the appendix.

-7 -

4, MACRO-DEFINITION

In order to define a certain macro, the user has to write:

macro<R-expression>define<semantic-routine>endmacro

where the <R-expression> defines the syntax of the macro and the
<semantic-routine> is a program in the SL language which defines de se-

mantics.

If we assume that <expression> and <oper> have been defined
respectively as the class of the aritmetic expressionms, anduthé'class of

comparison operators in FORTRAN, then the macro-definition:
égggg_'IFL'<e#pfes;><§pef$<e#pfess>'THEN'(ailS('ﬁLSE'<a11>)?
define ¢7 'IF (' §1 $2 $3') GO T0' 21 if 6
;@mg $5 é.r_lsi_&?m 'Go 10" 22
g? 41 c7 $4 2 22 7 '"CONTINUE' cl endmacro
will cause thglexpansion of*:

IFL X.LT.Y THEN
‘ IFL X.GT.Z THEN
R = (Z-Y)/2.
Y = R-X#%2 EM
A = A+B ES
ELSE
Y=0 EM

* Note that: ES EM may be substituted by EM only. -

-8 -

into:

IF (X.LT.Y) GO TO 997
Y=0
GO TO 996

997 IF(X.GT.Z) GO TO 999
GO TO 998

999 R = (2-Y)/2.
Y = R-X#*2

998 CONTINUE

" A = A+B

996 CONTINUE

5. CONCLUSION
SDM has been implemented as a preprocessor and it is com-

piler independent. Its main advantages are: independence of the base

language, good error detection and the flexible syntax of macro calls.

APPEND IX

Syntax of the SL language:

<semantic-routine> ::= <statement-list>

<statement-list> ::= <statement>|<statement><statement-list>

<statement> ::= <*string>l$<*integer>|g_*integer>|&f*ingerger>|
ligg|<if—statement>|<repeat—statement>

<repeat-statement> ::= repeat<xinteger><statement-list>end

<if-statement> ::= iﬁfboolean-expression>then<compound>

<compound> ::= <statement>]Eggigfstatement-list>ggg

<boolean-expression> ::= <term>|<boolean—expression> v <term>

<term> ;:= <factor>|<term> ~ <factor>

<factor> ::= -7 <primary>|<primary>

<primary> ::= <*integer>|(<boolean-expression>)

10.

11.

REFERENCES

Strachey, C., A General Purpose Macrogenerator, Computer J. 8 (Oct.
1965), 225-241.

Ferguson, D.E., The evolution of the meta-assembly program, Comm.
ACM 9 (March 1966), 190-193.

McIlroy, M.D., Macro Extensions of Compiler Languages, Comm. ACM 3
(Apr. 1960), 214-220.

Day, A.C., A Macro-Processor, for FORTRAN, Technical Report NO 2,

Computer Centre, University College of London.

Leavenworth, B.M., Syntax Macros and Extended Translation, Comm.
ACM 9 (Nov. 1966), 790-793,

Cheatham, T.E., The Introduction of Definitional Facilities into
H1gher Level Programmlng Languages, Proc. AFIPS 1966 Fall Joint
Computer Conference, vol. 29, pp. 623-637.

Brown, P.J., A Survey of Macro-Processors. Annual Review of Automatic

Programming, vol. 6, part 2, Pergamon Press, London, 1969, pp.37-88.

Ginzburg, A., Algebraic Theory of Automata, Academic Press, New York,
1968, .

Revised Report on the Algorithmic Language ALGOL—GO-Commc -ACM 6 (Jano
1963), 1-17.

Cocke, J., and Schwartz, J.T., Programming Languages and Their Compl-

lers, Preliminary Notes, New York University, New York 1970.

Earley, J., An Efficient Context-Free Parsing Algorithm. Comm. ACM 13
(Feb. 1970), 94~-102,

