Series: Monographs in Computer Science

and Computer Applications

N? 1/75

USING GRAPH GRAMMARS FOR THE DEFINITION
OF SETS OF DIGRAPHS

by

J. Mylopoulos
and
A.L. Furtado

Computer Science Department — Rio Datacenter

‘,'l_’onfiﬁcia Universidode Catolica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20

Rio de Janeiro — Brasil




USING GRAPH GRAMMARS “OQ THE DEFINITION
OF SETS OF DIGRAPHS

~J. Mylopoulos
Assistant Professor
Department of Computer Science

University of Toronto

A. L. Furtado
Associate Professor
Computer Science Department
(Informatica) PUC/RJ

Series Editor: Prof. S. M. dos Santos Jannuary/ 1975
DIVISAD ©F F . S ié
codign/ egis. o a E

L032Y i LY % 1|

iz

\M 8»\ D

RIO DATACENTER y
S$ETOR DE nsacumwm, A

e

—



ABSTRACT

A graph grammar formalism is described and used
tQ define seversl 1nterest1ng sets of dlgraphs such as
.strongly connected graphs, rooted acycllc graphs and 1att1ces.
It is argued that the formalism 1is descrlptlonally powerful
and. 1nexpen51ve and that it constitutes a constructlve method
for the precise definition of many structures arising in.
combutervscience} A discussion comparing*constructive methods
for the definition of sets of struétures to axidmatié:ohes.isi

élso included.



‘1, Introduction

L Graph-grammars have been known sinée the;iate sixties
‘and there have been many theoret1ca1 studies of their properties.
‘Unfortunately, less effort has been dedicated to the 1nvest1gat10n'
of their appllcablllty and usefulness

‘Some . of ‘the ex1st1ng studles concentrate on ‘the 1ntro-

ductlon of new graph grammar formallsms and an 1nvest1gat10n of
_thelr propertles and the1r relatlonshlp to other formallsms

7[1, 'y 3 4, 5, 6] A few papers have dealt w1th ‘the recognltlon;
fproblem for graph grammars, i.e., the problem of deCIdlng for

ra graph g and a graph grammar G whether g can be generated
_by G 12, 5, 12} . There are only two papers we know of =

’whlch study exten51ve1y the appllcablllty of graph grammars by
hdeflnlng, in terms of graph grammars, 1nterest1ng sets qf
bundlrected graphs [7, 8] . For a more thorough survey . of
sresearch on graph grammars the reader is dlrected to' [10]

Thls paper explores “the appllcatlon of a formallsm
fdeveloped exc1u51ve1y for the deflnltion of classes of d1rected
lgraphs, rather than for the study of propertles of graph grammars;
IWe hope to show that by imp051ng certain reasonable restrlctlons j
pon the kinds of graphs that can be derlved we can arrlve at a i
;formalism Wthh 1s algor1thm1ca11y 1nexpen51ve and at the same;:if

ftlme deflnltlonaily powerful and flexlble..

‘ Section 2 descrlbes the restrlctlons we W1sh to 1mpose

;on derived graphs and the graph grammar formailsm to be:used’“

th also discusses some of the ba51c prop,,



In section 3 we consider several well-defined classes.of

directed graphs from graph. theory (e.g., Eulerian and

Hamiltonian graphs, acyclic graphs, Hasse diagrams, finite
lattices etc.) and present graph grammars for them. It is

our intention to demonstrate in this section how one can use

the formalism proposed'in section 2, but also to contrast the
well-known axiomatic definitions for these classes to the more
constructive graph grammar ones, and to give the reader at least
an idea of the kind of correctness proof he would have to provide
to prave his graph grammar correct. The classes of graphs were
not.chosen randomly. They share many algebraic and topological
propertieslﬁhioh we have used to "build" graph grammars for the
more difficult classes to define constructively (e.g., lattices),
_in terms of those proposed for simpler classes (e.g., acyclic
gréphs). This technique also helps in the, formulation of
correctness proofs. Section 4 discusses potential areas of
‘application of graph grammars, what methods have been used in

the past to define classes of graphs and how do these methods

compare tobthat proposed in this paper.

2. Definitions and Notation

\ It is assumed that the reader is familiar with the
,ba51c deflnltlons of graph theory [13] and formal 1anguages [16].
| | ~ The graphs we will deal w1th here are rooted dlrected

,W1th unlquely 1abe11ed edges 1eav1ng each node. More prec1sely



a rooted 1abe11ed dlgraph (or RLD 0T 51mp1y graph) is a

6 tUPle '(N NL EL’ V’ 6, I‘) ’ Where : -
”"‘*Nxefa non empty f1n1te set of nodes, denoted by p051t1ve
,‘1ntegers ‘ » ‘ =
tﬁS‘NLﬁQvls A non empty f1n1te set of node labels

”‘ttﬁvérls ‘a total functlon Wthh a551ons a node 1abe1 to

e I

is a f1n1te set of edge labels

! *Hevery node of the RLD
A ‘_yu': NN
1§d;d15 a total functlon whlcb assoc1ates an edge 1abe1
a:;d to every edge | '
&1 NxEL+Nu {ul
H.l,whereviu stands for "undefined"}

’gffjis a”node,“”r‘s N , such that for all n'e N there

"eists a’ sequence of nodes, (nl, nz,,..; nk) wlth

f'ahr} and nk = n- such that for l s i < k there ‘J

e;isc édéefiabeie"dE?b‘ EL such that G(ni, e)

r is oalled the root of the RLD and it is

Note that 31nce

th that ‘begins at 1ts roota 6



another node reference n and a sequence s of edge

labels which defines (uniquely) a path starting at n .

We shall call such edge label sequences 0-sequences.
Note that sometimes there will be no path which cor-
responds to a particular o-sequence for an RLD and one
. of its nodes. |
- b. RLDs admit canonical forms that can be obtained through
.a systematic traversal of an RLD. One possible way.to
“do this would be to start at the root and perform a
depth-first search for whiéh the edges from each node
are selected according to some lexicographic order of

their 1l1labels.

Lef p be the number of nodes of an RLD, q‘ the
number of edges and v the number of edge labels. The complexity
of the traversal algorithm described above is completely domin-
ated by the complexity of sorting the edge 1abels, which is
roughly O(p-vz) s Since the éomplexity of the depth—fiist
search is O(max(p, q)) and q s p~V' in an RLD.
. We will use the following conventions in representing
RLDs schematically: capital letters will be reserved for node
labels, small ietters f;om the beginning of the alphabet, poss%bly
with‘tréiling digits, will be reserved for edge labels. The
'(intéger)vhode reference for each node will always be:located
next to the node label. FIG. 1(a) shows an RLD. ﬁThe root‘of

an RLD will only be meritioned when needed.



“An RLD grammar (or graph grammar or simply grammar)
is ‘a SEtuple (V_,.VT, VEL’ P, 8) , where

vy, - is a finite non-empty set of non—terminal node labels

iVT“- is a f1n1te non- empty set of termlnal node labels,

o :vunllke phrase structure grammars, the set" VN n VT .
need not be empty. | - |

VELh‘ 15 a non empty set.of edge labels

fPt?'ls a f1n1te ‘non- empty set of productlon rules (or
A product1ons) | B R ' '

l"Sf;'rs the startlng non termlnal symbol Se Yy {:h”

N leote that accordlng to th1s def1n1t1on, only node
}labels can play the non- term1na1 or term1nal role symbols play
1n phrase structure grammars. Moreover, a node label can be
both termlnal and non- termlnal Th1s makes 1t p0551b1e to ‘
;con51der derlved structures of an 'RLD grammar both as RLDs TV
;belonglng to the set deflned by the RLD grammar, but also as
;1ntermed1ate structures from wh1ch other RLDs can be derlved

A product1on has the ferm |
e » LHS => RHS
QWhere LHS and RHS are scion patterns, to be deflned below
‘”pp, = The concept of a scion is 51m11ar to that of a sub-ﬂ
;graph.‘ More precisely, a scion S ,of a graph g is a sub-\7‘
igraph induced by some. subset N' ¢ N, where N is the set ».‘"

7,and a 1abe11ed cutset contalnlng the edges

{of nodes*off g
ﬂbetweenvaﬁb andz.N = N’ (1ndependent1y of thelr dlrectlon) ibf

'FIG l(b) shows a sc1on of the RLD oF FIG l(a) In representlng}

:the sc1on schematlcally, we w111 use negatlve 1ntegers tonk%}hmﬁﬂ



indicate nodes in N - N' ., FIG. 1(c) and 1(d) show two more
scions of the RLD of FIG. 1(a). .
Every scion when considered independently of any

graph is a scion pattern. The scion pattern of FIG. 1(b)

will match any graph which contains two nodes labelled A ,

an edge labelled a 1linking the first to the second node and
two edges labelled a, b respectively leaving the second node
and pointing at different nodes. For a given graph g , if
Y(l),\y(Z) denote the nodes of g which are associated with
nodes 1, 2 of the scion pattern of FIG. 1(b) during the
match;“thelscion induced by {y(1), v(2)} ié the scion matched
by the séion pattern Cand looks identical to it).

SR Thus scions are also scion patterns when considered
indépéndenflf of any ﬁarticular graph. Every scion pattern,
héweyer; is not neceséarily a scion. R

: _ Scion patterns consist of a finite number of nodes
intgfconnécted with édge pattérns‘rather than simble\edgés;
:FIG{Izbshows‘the edge pattérns thaf will Ee used here. _Small
letters from the‘eﬁd of the alphabet will serve as variable
hamés. Since node labelé and node references are‘not,importént‘
here, we represent nodes by small circles.

The-edge pattern of FIG., 2(a) will match an edge
labelled a . That of FIG. 2(b) will match if there is an
edgerlabeiled fraht Or'theré is no edge at all cdnnecting;the
two nodes under consideration. &he?speCifiCationﬁof,an"edge

iaBeifig'nbt*nécessafy; ‘Thus théwedge,pattérﬁ“of”PIG; 2(c)
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.willumatch'if.there exists an edge (of any label) and that of
FIG. 2(d) will match independentiy of whether there exists an
edge.

Arbitrary, directed, rooted graphs will be represented
in terms of RLDs by‘labellingpthe edgesrthat leave any given
node with labels~such‘as ;dl, dZ,;.. or el, e2,... which
simply serve as indices, »The edge}pattern of -FIG. 2(e) wiil
match any edge whose'labe1~is ei , for some positive integer
i, and-it will»assign}that_label to varlable X . Any of
those‘edge patterns cannbe'nSed-as_elenents of the cutset of
a given scion pattern in.any'combination. 'Thisjexplains why
any'scion is also'a‘scion?pattern,}hut.clearly the configuration
of FIG. 2(f) ‘is a scion pattern but not a scion.

Cutset edge patterns may be such that they match a
set ot outgo1ng or 1ncom1ng edges associated w1th a node, Such

'set edge patterns w111 be 1nd1cated by an arrow -pointing towards

or aWay from an arc. FIG. 3 shows 1nstances of the types of

set edge patterns we w111 allow. The set edge pattern of
'FIG.'3Sﬂ) will match a set of ei- and dj-labelledv incoming
edges with at 1east one -ei and one dj , where i, 3 are‘
positive 1ntegers. This set will be assigned to x . Finally;
the set pattern of FIG. 3(d) w111 match a possibly empty set
which does not contain any ei- labelled edges and W111 a551gn
it to y . The notation of FIG 3(a), S(b) w111 also be allowed
‘for 51mp1e (non set) edge patterns, to spec1fy a551gnments of

:edge labels'with no restrlctions on the type of label that can

,befa551gnep.3
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Matching a scion pattern with associated node refer-
ences 1, 2,..., i, -1, -2,..., -j against a scion of a graph
g with associated node references vy(1), v(2),..., v(i),
Y(-l),..., vy(-j) involves considering k and vy(k) for
1 <k si and performing the following test:

Let €95 ez;..., €m be the (possibly set) edge patterns
associated with k . Partition the set of edges associated
with v(k) into m subsets, say ei, eé,..., e& and make
sure that €q matches e& for 1 s q sm . The match must

be such that if an edge pattern €q links n, to n, in the
scion pattern then e& links Y(nl) to y(nz)

In applying a production to a graph we must complete
two steps:

a. Match the LHS scion pattern to some scion in the graph.

If this match fails, the production is not applicable.

b. -Use the RHS scion pattern and the information from the
match of the LHS scion pattern to modify the graph.

- In order for a production to modify a graph, it must
be possible to specify node and edge additions and deletions.
Node additions and deletions can be determined by comparing the
LHS (positive) node references to the RHS ones. If a node
reference appears only on the LHS, then the node that is
associated to it during the pattern match with the LHS scion
pattern, will be deleted during the application of this pfo-,
duction. ‘If a node reference only appears on the RHS, a node
will be created and will be added to tﬁ%‘graph during the

‘application of the production.



RHS‘scion patterns may use as labels for their edge
_patterns variables, which‘are,always assumed to have been
.;ssigned values during the match of the LHS scion pattern.
_They°mey“also’ose'labels suoh-es x(ex, d%) which indicate
'that’the.edge'set aSsigned to x 1s to be changed in the
following way: | |
»V ‘Let 'z be the set of ‘ei edges in x , ordered according l
to7the»increasiﬁg value of their subscripts. Each ei edge
visjtaken in’order; if n 'is its starting node, the edge is
‘renamed"dj P where i-1 ’is‘the highest subsoript of,any'_dk‘
edge running from n-. |

A new edge may be named e+ (or d+, f+ etc.). This
means that it is to be assigned label ei (or di, fi -etc.)
if (i-i} is the lergest integer such that.there.exists an
:r(1 1) 1abe11ed -edge leaving the source node of the new edge.

FIG. 4(a) shows a- productlon whlch when applied to the;
_graph‘of‘FIG 4(b) gives the graph of FIG. 4(c) Note that,m'( ‘
.node 2 of the graph of FIG. 4(b) was deleted’ completely by the‘.i
[productlon. Moreover, node references have been re- arranged .
from FIG. 4(b) to FIG. 4(c) to stress the fact that they are ‘“"
to_be'used‘only for reference purposes. '

| Appllcatlon of a production to an’ RLD is only allowed 3

if the resu1t1ng graph satisfies the cond1t10ns descrlbed at =
fthe beglnnlng of thls sectlon.- A der1vat10n w1th respect to an‘l
RLD grammar con51sts of a f1n1te sequence of appllcatlons of thef
:RLD grammar produdtlons. A derlved RLD all of" whose node labels'

fare termlnal is an element of the set of RLDs deflned by the o

:RLD grammar.
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For a more formal definition of RLD grammars the
reader is referred to [14, 15].

We consider the RLD grammar formalism inexpensive
primarily for one reaéon: it avoids the general subgraph
isomorphism problem, a solution to which is essential for a
‘decision on the aﬁplicability of a production, and replaces
it with the subgraph isomorphism problem for digraphs with
uniquely labelled edges leaving each node. The improVement
in efficiency is quite dramatic sinée the complexity of the
~general algoritﬁm is suspected to be an exponential function
of the subgraph to be matched, whereas for the restricted
algorithm it is a quadratic function on the number of nodes
of the graph.

We end this sectioﬁ with a simpie example of an

RLD grammar. Consider the grammar GChain

G = ({8}, (s, B}, {e}, P, §)

chain

-where P includes the single production named pl of FIG.'S.

This production will add a new node iabelled S and
ﬁill connect it to the node previously labelled S with an
edge labelled e . Moreover, it will label with B the node
“previously labelled S ; Thus if we start with a single node
labelled S , which is always the starting configuration for a
derivation, and apply pl n times, we will obtain the RLDs
shown in FIG. 6 all of which belong to the set defined by
since both S and B are terminal node labels.

Gchain
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This grammar defines the set of all chains with first
node labelled S and the rest of the nodes labelled B , and
a proof that this is the case is straightforward. Note that
the graﬁhs derived by this grammar can be considered as push-
down stacks, sihce new nodes can be added only at one end of
the chain, and the production pl‘ as an abstract 'push'" operation.
The-grammar can be modified by adding to it production p2 ,
shown in FIG. 7, which amounts to a pushdown stack "pop"
operatidn. The generative power of the 'new grammar Géhain ,

is the same as that for Its productions, however,

} Gchain
reflect the kinds of operations that we may wish to perform
on elements of the set defined by the grammar. We will return

to this point in section 4.

3. Examples of RLD Grammars

In this section we present RLD grammars which define
2,

P 2 ‘
closed chains, ordered trees, unilaterally connected graphs,
‘ N Y S £
strongly connected graphs, Eulerian graphs, Hamiltonian graphs,

3 ]
complete acyclic graphs, acyclic graphs, Hasse diagrams and

lattyzes. The grammars we will actually propose will, in some
instances, generate graphs which may include more structure

than that required for the Set under consideration (see [8]).
This structure is there to help the actual derivation and may be
deleted eventually in terms of node- and‘edge-deleting pro-
ductions that will only be given occasionally. The sets of

graphs mentioned above were chosen mainly because they can be
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'B oAt T B . nthrapplication of pl

© FIG. 7.
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formally defined and are well-known and understood, also because
they are interrelated. Thus the reader may view the éxamples
as a sequence of steps which lead to the definition of an RLD
grammar for lattices and to an argument we consider convincing:
that the proposed RLD grammar does in fact define the set of

all lattices.

3.1 (Closed Chains

By closed chain we mean graphs of the form shown in

FIG. 8(a). The grammar G is defined by

cchain’
({s}, {s, B}, {e, al, P, §)

and the productions are given in FIG. 8(b). Production pl

is only applicabie during the first step of a derivation, since
this is the only time the node labelled S has no incoming or
outgoing edges. During every other step of a derivation,
production p2 is used and it keeps adding another node to

the top of the chain always linking it to the bottom of the

chain with the a-labelled edge.

3.2 Ordered Trees

The grammar G, . is defined as follows:

({s}, {S}, {ei | 1<i}, P, S)

where P consists of the single production pl of FIG. 9.
This productioh simply adds another successor to an already

existing node. If the edges that already exist leaving this
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‘node are 1abe11ed 1, e2, ..;Hei’, the new edge will be
1abe11ed e(1+1) < It is, again, straightforward to show that
ordered trees and only ordered trees are generated by this

grammar.

3.3 fUnilaterally"ConneCted Graphs

A graph g 15 unllaterally connected if and only if .
~for any two nodes m, d of g it is possible to move from n
?ta, n/ or n ’to. m through a walk, i.,e., a path some of whose
nodes and edges may be v151ted more than once.

The def1n1t1on above is axiomatic rather than con-
structive in the sense that it tells us how to recognize
nnilaterally connected‘graphs.but not how ro construct tnem
or operate on then so-that the unilateral‘connectedness pro-
perty is preserved To solve this problem we will use a-
_simple theorem shown 1n [13, p. 199] which states ‘that a graph
%15 unllaterally connected ‘if and only if it has a(:;annlng “

_wa;i) .e., a walk that V1sits all nodes.

is def1ned as follows..r“

o The(grammar 'GUCOnnected

({S A}; {A}; {61 | 151}, P S)

fand the productions 1n P are glven in FIG. 10, We will now

ﬁshow thatithls grammar defines prec1se1y the set of a11 unl-'

‘{iiateraiiy'connected graphS- :

‘Let us prove that any RLD generated by the grammar

‘is un11atera11y connected.! F1rst note that at any part1cu1ar_§§
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time in the derivation there will be exactly one node labelled
S , except after the last step when S 1is replaced by A
through an application of production p5 . Ihstead of proving
that any derived RLD is unilaterally connected, we will prove
the (equivalent) statement that any derived RLD has a spanning
walk whose last visited node is the node to which p5 is applied.
The proof is an induction on the length & of the derivation.

For % =1 the above statement is trivially true.

Assume that it is true for & = k and we will prove
it for & = k+1 . Consider any derivation of length k+1 'which
involves application of

pil, piz,.,,, pik, p5

where pij is pl, p2, p3 or p4 . We know that if ps
- were applied instead of pik , the resulting RLD, say g ,
would‘be unilaterally connected, according to the induction
hypothesis, and in fact the last node labelled S , say n;
woulld be the last node visited'by the spanning walk. Now if
'instead of p5 we apply p2, p3 or pé4 and then p5 , the
resulting RLD, say g!' , is also unilaterally cohnected since
it differs from g structurally only in that it may have an
~extra edge., If pl is applied to node n, on the other hand,
a new node, say n, , is created and there is an edge from ny
to n, .‘-But then there is clearly a spanning walk for g'
which visits n, last. | | ,

We must now show that any unilaterally connected graph

can be derived by the grammar, or that any graph which has a
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epahning'walk'can‘be'derlved by the grammar. The proof is an
1nduct10n on the length % of the.welkt

For 2 = 0 the. RLD (whlch consists of a 51ng1e
node labelled A ) can clearly be created.

' Assume that this is also true for ol = k and we
will”show‘lt for f % = k+1 . Consider any RLD g Whlch has a -
spehnihg wa1k of'length k+1 , and 1et thellaSt;tWO.nodGS |
vieited*by the'walk be}, 1 and n, . Without any loss;of l‘
generallty we w111 assume that n, -is visited only once by o
the spannlng welk.(otherw;se the RLD has a spanning‘walk_of_::;_
length k- andhitween therefore be.generated_by the grammar).:

- Let the incoming edges of n, be el, €gsires er |
and‘the outgoing ones..fl, £5,..05 £5 while the other nodes y
these edges -are connected to are respectively nyqs n12’t"’ |
‘nlr"FZI’.HZZ"""nZS ;._Con51dervthe RLD g! obtalned by
_deleting.;nz. and the edges associated with it. g' has a
!spahning Walk Witht n, as lastvnodedvisited, therefore;there”
eexists a derivat1on \ |

pil, plz,..., p1t, pS 3

1for 1t in G Con51der the RLD obtalned after the g

uconnected
applicat1on of p1 and say that n3 is the node~1abe11ed-t
:S at this po1nt. Add then the following appllcatlons of eﬁf
-productlons to. the der1vat1on o :

;i plt, p4, p4,---, p4
fwhlch move S to n13 from n (clearly thls 1s p0551b1e

:51nce there ex1sts a path from n1 to fnso) Extend now the]}
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derivation to construct the new node and create edges

f

f garees Eg 8

e L PPRRPL PR S f

.., P4, p1, p2,..., P2, P3,..., P3

Finally apply p5 to obtain g. This completes the proof
that every unilaterally connected graph can be generated by

Gueonnected '

The RLDs derived by G obviously have

, uconnected
labelled edges. If the labelling is important, additional

productions can be given which will basically enable the
interchange of edge labels for two edges leaving the same
node. This problem did not concern us in the definition of.

G and will not concern us for the rest of theapaper.

uconnected

3.5 Strongly Connected Graphs

A graph is_ strongly connected if and only if it con-
 tains a- closed spanning walk,il TN a spanning walk for whlch

the flrst and last node visited are the same.

The grammar G we will propose is different

connected

from G only in that it guarantees that there is

uconnected
always a '"backpointer" edge labelled a from the last node

visited by the spanning walk to the first:
({S, X, A}, {A}, {a, ei | 1<i}, P, S)

‘ where the productions in P are given in FIG. 11. The proof

that this grammar generates a graph 1f and only if it is strongly

connected is similar to that given for G . . . .cted and will not
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_ﬁghgiven here. ‘Prodnction pl is applicable only when we
wish to derive the one-node RLD.: Production p2 constrncts
a smallest closed chain wh1ch is- expanded each t1me p3 is
applled. Productlons p4, p5, p6 allow the creation of edges
whlch connect any node to that at the end of the walk, or
enable the walk to move on along an already ex1st1ng edge (p6)
Productlon p7 re- labels the node at the end of. the walk as

A when the derlvatlon is complete.

3 6 Eulerlan Graphs

A graph is Eulerlan if and only 1f there ex1$ts a
closed spannlng walk which visits every edge of the graph
exactly once [13, p. 204].

It follows from the above statement that the grammar -
Gconnected
will do- for Eulerlan graphs as well after the deletion of ‘
productlon p4 (whlch allows the creatlon of an edge which ‘
‘will not be traversed by the walk, and p6 wh1ch allows the 5f
walk to move along edges that have already been v131ted) and
u‘the replacement of pS by product1on pS' (FIG 12) (whlch

'a11ows the walk to come back to a prev1ously visited. node

;'throughia new‘edge){ o

l3,2deaniltonian Craphs
A graph 1s Hamlltonlan 1f and only 1f it contalns a

épannlng cycle, 1.e., a spannlng walk whlch V131ts each node

on. the graph exactly once except for the flrst and last node

v151ted, wh1ch are 1dent1ca1.

whlch ensures that there is a closed spannlng walk, j'
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The grammar we propose simply constructs a closed

chain and then proceeds to add edges as needed:
({s, X, A}, {A}, {a, ei | 1si}, P, S)

where P 1is giveﬁ in FIG.'}%.'

4
£
Mo

3.8 Complete Acyclic Graphs

A graph is complete acyclic if and only if it is
possiblé to number the nodes so that i<j implies that 1
is’ adJacent to j [17].-

The grammar G is given by

cacyclic

({S}, {A}, {ei | 1<i}, P, S)

where P is given in FIG. 14.

3 9 Acycllc Graphs

A graph is rooted acyclic if it is rooted and contains
‘no cycles.. It can easlly be shown that the nodes of any such
_graph can. be numbered so that i<j implies that there is no
‘edge from i to 3

‘The grammar G is defined by

acyclic

({s, R}, {A}, {a, ei | 1<i}, P, S)

where P 1is given in FIG. 15.

Production pl = constructs another node which is
‘ placed at the top of a chain of ﬁodes‘connected with a-labelled
_edgés.,~Every node of the derived_graph appears on this chain.

Productions pZ, p3 create an ei-labelled edge for izl
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lwhich’connects»the node at_the top of the chain to some node
ﬂconstructed earller The'neceesary andfsufficient condition
for acycllc graphs will clearly be satlsfled because of this.
;‘c_ohstructlon, . '

o The chain of a-labelled edges, which can be con-
hsidered as auxiliary, can be deleted, by adding three simple
productions to the'grammar. Note however that this can only
‘be ‘done if the rootedness property is not v1olated by the

jappllcatlon of such rules.,

f3.1o‘,uaseeiDiagrams-'

| Every acycllc graph deflnes a partial order and con-
versely. Hasse diagrams are acyclic graphs such that 1f there
hie'a_path‘from’node i to node j » then there 1s-mo edge from |
’im”for'jv.‘ ‘4 L : :
. : The grammar we will propose is 51m11ar to that for‘
‘(rooted) acyclic graphs, it always checks, however before con-f“*
‘structlng an edge that there is no .path (of = ei- 1abe11ed edges)
_already connectlng the two nodes associated with the edge.,.Asﬂ"vﬂ
:w1th the grammar for acycllc graphs, we - w111 use aux111ary edges f
ﬁlabelled a to define a linear order on the nodes of the graph

whlchnls compatlble W1th the part1a1 order we are attemptlng to

3The grammar ‘GHasse} 15 deflned below and 1ts productlons

'@B}, {A}, {a h, c, el, dl | 1<1}, P S)
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We will now show that every graph generated by this
grammar is a Hasse diagram and conversely, every Hasse diagram
can be generated by this grammar, ‘

First we will prove the first statement by an inductionv
on the following proposition:

" The (m+l)St node of a derivatidn, ‘méo » Will be generated
through the application of P2 or p3 and at the time of
appllcatlon the partlally derlved graph must have the form
shown in FIG. 17

The proof of this statement is an induction on m .

For m = 0 the statement is trivially true since the
starting configyration is simply S

Assume that the statement is true for msn and we-

; will prove it for m = n+1 . Consider a partially derived graph

at the tlme its (n+1)st node is about to be generated. It

. must have n  nodes and be in the form 1nd1cated above The

(n+1)St node is generated either by production p2 or p3
| In the first case the new graph has the form described .
in FIG. 17 and the induction step is true.

In the second case, i.e., when p3 is applied, the
‘new graph has the form sﬁown in FIG. 18(a) and only p5 is‘
applicable resultlng in the form shown in FIG. 18(b). Now we
can apply either p6 or p8.vfollowed by p6 obtaining the
form shown in FIG, 18(c) - Production p4 or p5 is now appli-
7cab1e. Application of p4 résulfs in the form of FIG. 18(d),
‘while the appllcatlon of p5 will not be pursued since it is

similar,
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_ We can . next apply p6 or p7 followed hy” p6 to
obtaln the form of FIG. 18(e)‘, ‘This process can'be‘con4
t;nued until eventually the form of FIG. 18(f).is obtaihed;
At'thiefpoint* P9 is applicahie followed by a number of
appllcatlons of plO and one application of pll resulting
in- the form of FIG. "Thue‘the only possible partially
derived graph that can be obtalned after applylng p3 toha'
graph hav1ng the form of FIG. 17, and such that p2 or.'p3"
can be applled agaln has itself the form spec1f1ed by FIG 17.
Th;s proves the statement._ ’

» . v We are in a p051t10n now. to show that every graph
generated by the grammar is a Hasse dlagram Flrstvof all,.ltv

;eaeasy’toeshow that any generated graph is acycllc 51nce the

hiind 1t 1s easy to see that no cycles .

can be created.by'such derlvatlons We w111 show that the Hassef

be a‘po1nt»in t*”derlvation when p7 is applled creatlng an gf;

'??ftahd d1 s ) cohnectlng them. But thls“is,
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di (production p4 ). Thus it will never be the case thaf
the Hasse diagram condition will‘be violated for a derived -
graph. o | |

This completes the proof that every node generated
by the grammar is a Hasse diagram.

| We will now show that every Hasse diagram can be

generated by thls grammar.

The proof is an induction on the number, m,,:of
nodes that are members of the diagram. |

For m=1 fhe‘graph can be generated trivially.

Assume that any Hasse diagram with ms<k nodes can

be generated by G , and we will prove the claim for

‘ Hasse )
~m = k+1 . Consider any Hasse diagram with k+1 nodes and
assign an integer to each node so that if i<j then‘there is
no edge from i to j . It is easy to show that such an
1ndex1ng exists. .
Let n be the highest index and remove it from the]
Hasse diagram. The resulting Hasse diagram has k nodes and
‘it can therefore be generated by Gy, .. with the nodes with
higher indices coming first in the chain of a-labelled edges.
It follows from the statement shown earlier that before the kth
node (first on the chaln) is re-labelled A from § , the graph
has the form of FIG. 17, and all edges that do not involve node
_n are already on the graph Instead of applying pl , we can
applyv p2 , if n has no ei- labelled edges 1eav1ng 1t, or |

‘hpS;,.‘If p2 is applled we can then apply pl to get the
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Hasse diagram with k+l nodes. If p3 is applied we proceed,
as ihdicated'earlier, to construct'edges from the newly
created node to all the nodes it is adjacent. The resulting =

graph w111 be exactly the Hasse d1agram under con51derat10n

13 11 Lattlces v |
= “ The edges labelled ei , 1si , define a partial
rder for any Hasse d1agram generated by GHasse . ‘By‘a lattice_.
we mean ‘here a Hasse dlagram such that any two of its nodes have '
?a'unlque least upper bound (1ub) and a unique greatest lower
bound (glb) wlth'resoect to“this partial'order. | '

| The grammar we will propose is an extension of
GHaseeh“‘It generates graphs the same way GHasse does; on a
chain with the-most recehtly generated node at the top of the
,ehaln.”Unlike ‘GHasse , however, it tests forlevery nealy |
created node i and every other node j - with only incoming
iedge that defining the cha1n that i and- j have a un1que
'glb o Moreover, at the end of the constructlon it tests that
only the flrst node on the chain has no 1ncom1ng e1 labelled
fedges (clearly the ex1stence of a glb for all pa1rs of nodes =
1imp11es that only the last node will have no outg01ng e1 labelled
?edges) Both tests are such that a partlally der1ved graph whlch
&does not satisfy the lattlce cond1t10n w111 never lead to the
fderivatlon of a termlnal graph e |

'The‘grammar ‘Glattlce“_is deflned as follows

’({S ‘ :Af’ P B’ C]‘, {E}, {a, a ’ b b ’: C, F:l ; d ’;.'a""i[
e1, e 1, f f' | lSI},VP S)
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| The productions of the grammar include productions
pl, p3 - p8 and plO,gER of Gy, .. - FIG. 19 shows the
additional productions needed. |

Before we prove this grammar correct, we need two
1emﬁas about lattices and partially constructed lattices. The

proofs of these lemmas are given in the appendix.

Lemma 1: A Hasse diagram is a lattice if and only if any two
iof its nodes have a unique glb and there is only one node

with in-degree O (see [18, p. 112]).

Lemma 2; Suppose that a partial structure has been generated

by G (it need not be a lattice) such that any two

lattice _ _
nodes have a unique glb , and 2 new node m. is added to -
this structure. Let hl, né,,.., nk be the nodes of the
.structﬁre‘with no incoming ei-labelled edges. Then m

"end'any’other node n wiil héve‘a uniqhe glb if and‘onlyf;'

}:ifl m ‘and ny ; 1<i<k heve.a uhique glb A

: It follows4ffom‘1emme Z.that‘ohce a new ﬁode3is cfeated
with 1ts associated ei-labelled  edges, ‘we need‘ohly test LQ /
iwhether it and already constructed nodes w1th no 1ncom1ng
e1 labelied edges have unlque glbs B ;

i ‘We will now show that a graph generated by Glattlceve
is a lattice. Cons1der any such graph g . It must be a |

’Hasse dlagram 51nce the productlons in G1att1ce whicﬁ are'not L
in GHasse ‘never create or destroy nodes and edges, except forfl

_d -labelied edge created by p9", which is 1mmed1ate1y
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deleted when, p9 1 is applled It follows from lemma 1 that
1t suffices to show that the two condltlons spec1f1ed there are .
in fact satisfied for g . | |
» Productlon p9' handles the 5pecia1 case where a
lattlce w1th only two nodes has been generated so far. It
merely tests whether there is an , el edge from the first node‘
to the second, in whlch‘case the two condltlons are obv1ously
satlsfled, After the appllcatlon of p9' , pl or p3 o
can be applied.

Productions p9", p9.1 - p9. 13 test that the newly
created node, labelled T , and any other node w1th no 1ncom1ng
»elelabelled edges have a unlque glb . This is accompllshed ‘
‘as follows: Productlons p9" , p9.1 - p9.3. search the *
’chaln 1ook1ng for the flrst (next) node %ﬁ w1th no 1ncom1ng
fe1-1abe11ed .edges._ When one is found it,ls labelled C f7f35”
FProduction p9 4 hensures that nodes~below' iV in the part1a1
’order deflned by ei—labelled’edges.can:he reached through :
paths of e'i- labelled‘ edges, in the same way nodes below the
jnewly created node can. be reached through paths of di- 1abe11ed

, ‘

iedges T he flrst node with incoming ei- and d1 1abe11ed

; , < .
fedges is theﬂ glb of J& and the. newly created node and prO*‘ag

iductlon p9 6’5renames 1ts d1 labelled edges to d'1 labelled |

Product1ons p9 7'- p9 9 guarantee that every other

:”ower bound (”\e., every other node Whlch 1s found to have

ve21 labelled edges) is belowdthe\"“

Qalready'found:(l;e., has an 1ncom1ng d'1 1abe11edw“dge :
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Eventually thq;end of the chain is reached and productlons
po9.10 -’p9.12ffsearch for the next node down the chain with

. (@;\M /}’J@'&) AT Cen)
no incoming ei- or di-labelled edges. This searchVis

complete when production p9.13 is appllcable and it opens

1)
rd p
1« ;;;;; =0 f ﬂ,;ﬁ.&wﬁ

Thus according to lemma 2 and the preceding discussion

the door for the application of pl0°

any two nodes of a derived graph have a unique glb .
Productions pl2 -'p134 are only applicable once the
first node of the chain has.been labelled A , and they test
that every node of the.chain, except for the first one has at
least one incoming’ ei-labelled edge. It follows from prb—
| position 1 that any,graph‘generated by Glatticé is a latticé.v
| The converse is easy. We have alrecady argued that.
GHasse will}generaté any Hasse diagram. If the structure
'satisfies‘the two conditions of lemma 1, it will be generated
by Glattlce .- as we11- since it differs from Gy, .. only in
. that 1t tests for those two condltlons

e D15cussxon and Conclusions

There are many areas of computer science where directed
1abe11ed graphs are used. Consider, just to name a few examples,
,vflowcharts [19, 20], program schemata [21], Petri nets. [22], |
1VDL obJects [23] (which are prec1se1y the ordered trees deflned
in 3. 2), syntax graphs [24], several graph theoretlc models of

udata structures [11, 25, 26] and semantlc networks [27].
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v In dea11ng with any one of the above examples of :
1abe11ed graph uses, we often w1sh to
,'af vdescrlbe the meanlng of node and/or edge labels
(e.g., the node labels for Petri nets 1nd1cate ”places"
| "or "tran51tlons") | |
';h.h establlsh the restrlctlons that should hold for the
. well formed 1nstances of the class (e g., for flow-
“charts of programs every node should be reachable from

’fat least one entry p01nt and should reach at 1east one

;etermlnatlon polnt)

'fspec1fy subclasses of 1nterest (e g., the class of

'flowcharts of structured programs [28])
enumerate the perm1551b1e transformatlons that may

'}map one well formed 1nstance 1nto another w1th1n the

h”same class or’ subclass (e g y the syntax graph reductlons)’

The methods that have been used to accompllsh thesefudjf7

”tasks fall roughly 1nto three categorles, 1nforma1, ax1omat1c

,‘nd constructlve.; S1nce the empha51s 1n computer sc1ence has

fare not constructlve in’ that they do not spec1fy what types of
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operations preserve the properties of a class of labelled
graphs. It is in this respect that constructive definitions,
which include graph grammar formalisms, are superior. More-
over, it is not always the case that axiomatic definitions

are cleaner and easier to understand. To illustrate this point,
consider the definition of threaded binary trees [29] in terms |

of the RLD grammar G defined by

threaded-trees

s, H, A}, {H, A}, {a, b, c, d}, P, S)

where the productions in P are given in FIG. 20. An element
of the set defined by -this grammar is given in FIG. 21. c-
and d-labelled edges indicafe the predecessor and the successor
of a node in an in-order traversal (traverse left subtree, visit
root, traverse right subtree).

The concepts of '"predecessor™ and "successor" could
- certainly be expressed by using some axiomatic‘approach [30].
However, such an approach would probably fail to convey the.
"constructive" information that we have incorporated in the
" simple grammar above, namely that ''when a left son is created,
it becomes the leftmost node in a subtree and as such it
-ihhérits the c-thread from its parent, and points to the
'parent with a d-thread". An analogous statement holds for
the addition of a right son.

It is also important to note that the grammar not only
pqrmité'the creation of any threaded binary tree but also re-
stficts the valid operations to the addition of left or right

sons. Deletions could be permitted by expanding 'the‘grammare
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ias 111ustrated 1n sectlon 2, so as to include the inverses of
fproductlons pZ and p3 e | | | | |

‘" , Proofs of program correctness can be greatly facili-
!tated by deflnltlons of classes of structures (1abe11ed graphs)
iwhlch restrlct the perm1551b1e operatlons on the structures to
fthose contalned 1n the (constructlve) deflnltlon of these
istructures. Wlth thlS prov1s1on 1t would sufflce to prove once
iand for- all that the allowed operatlons 1n fact preserve the
;propert1es of the class, as understood by the person who deflned
'1t. ThlS is not a new claim (see [31, 32]; also, for a treatment
of data structures in terms -of transformatlons see [11, 15]).
iThe p01nt we have tr1ed to make 1n thls paper is that graph
'grammars can. serve as formallsms for constructive deflnltlons,
prov1ded they are not v1ewed merely as extensions of phrase -

{ tructure grammars, but rather as means of expre551on.

o | Much of the early 1nterest 1n graph grammars arose
‘from the bellef that they could be used to define classes of
;real 11fe obJects Wthh are 1nherent1y mu1t1 dimens1ona1 (the
“class of a11 p1ctor1a1 draw1ngs depicting series- parallel net-l
;works, houses, etc ) It is the authors' be11ef that research;
ion graph grammars should concentrate on appllcatlons 1n areas 7

Fof computer science such as those ment1oned above, whlch deafw”‘

:W1th classes of graphs susceptlble to a formal (syntactlc)
1def1n1t10n. Thls or1entatlon can be much more rewardlng thaH_ ,
"any attempt to use graph grammars for the def1n1t10n of rea1 11fe‘

?concepts.
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Appendix

We prove here the two lemmas used in section 3.

Lemma 1: A Hasse diagram is a lattice if and only if any two
of its nodes have a unique glb and there is only one node

with in-degree 0.

Proof: Every lattice clearly satisfies the two conditions.

- Consider now a Hasse diagfém which satisfies the conditions.
First of all, the unique node with in-degree 0 must be
“greater than all other nodes since the nodes are partially
'ordered. It follows that every two nodes have an upper
bound, phe unique node with in-degree 0, and therefore at

- least one 1lub . Now suppose that i, j have two 1lubs

n, m .  Then it is easy to show that =n, m ‘have two . glbs
it, j'  thus contradicting one pf the two conditions. This

completes the proof ofvthe lemma.

- Lemma 2: Supposé that a partial structure has been'generated,

by G (it need not be a lattice) such that any two

lattice
nodes have a unique glb and a new node n is added to
this structure. Let i,, iz,..;; iy be the nbdeé of the’
structure with no ihcbming' ei-labelled édges. Theﬁ n and
any other node ‘m will have a'unique glb - if and only if

n  and ij » 1lsjsk , have a unique . glb .

beof:_ We assume that n and ij‘; 1<j<k , have uniuqe glbs

and we will show that the same is true for n 'and any other
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node m . The node m must be less than at least one of
:the nodes_ ij , lsjﬁk , Or be one of them. In the latter
.casé'there is nothing to prove, so assume that m' < ij . |
_Then cleaily ij AmM=m, N AM=nA (ijAm) = (nAij) Am o,

Let n‘Avij =p , sothat nAm=pAm.

The node p cannot be n since newly created nodes

are never below already existing ones (this is true for RLDs

_ggngra;e¢-by 'Glattice‘ as well as  Gpaqse ). Thus [p .must be
‘below n and ‘ij . Comparing p to m , we can have

(i) pzm - implies n Am =m and therefore n and m
‘ have a unique glb . E

~(ii) p sm - implies n Am =p and since n and ij:
AT g have'a‘unique glb , so does n and m .-
b(ii;)Q'ﬁ';andfvm_ aré,incomparable,-'then naAam=paAm and -
e 'since p was created earlier, we already know
“that p and m have a unique glb . B

‘This proves lemma 2 in one direction. The converse is

trivial,
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