Series: Monbgrgphs in Computer Science
and Computer Applications
NO 8/75

v ON THE USE OF POINTERS
AND THE TEACHING OF DISCIPLINED PROGRAMMING

by

Miguel Angelo X. Novoa
and

Sergio Carvalho

Departamento de Informatica

Pontiticia Universidade Catolica do Rio de Janciro
Rua Marques de Sao Vicente, 209 — ZC-20

Rio de Janciro — Brasil

Series: Monographs in Computer Science
and Computer Applications
Ne 8/75

ON THE USE OF POINTERS
AND THE TEACHING OF DISCIPLINED PROGRAMMING*

by
Miguel Angelo A. Novoa

and

Sergio Carvalho.

Series Editor; Larry Kerschberg _ December‘,b 1975

BIVISAO DE INFORMAGOES
BIBLIO fEn 4

cédigo,/registro data

A868 | 22 1 /%6

M6

RIO DATACENTRO o

RIO DATACENTRO
DIVISAO DE INFORMAGOES
.+ BIBLIOTECA

* This work was supported in part by the Brazilian Government
Agency FINEP under contract NQ 244/CT, and developed by the

Information Systems Group, Departamento de Informatica, PUC/RJ.

ABSTRACT

In the past few years there has been considerable debate over the
question of pointers in programming languages. Some maintain that pointers
should not be allowed , while others try to réstrict their use in a number
of ways. In this paper we try to justify our view that pointers are a natural
and useful way to teach beginners in Computer Science to manipulate list
structures, provided a group of strong limitations is placed upon them. We
define and give the implementation model of the use of pointers in SPL, a

language to teach beginners disciplined programming.

~

KEY WORDS

Disciplined programming, programming teaching, pointer, record,

programming language, type violation, dangling reference.

RESUMO

‘0 uso de variaveis apontadoras em linguagens de programagao tem sido
ultimamente um assunto bastante discutido. Alguns acham que variaveis deste
tipo nao deveriam estar presentes em linguagens de programagao, enquanto outros
preferem restringir o seu uso de varias maneiras. Nesta monografia tentamos
justificar o uso de variaveis apontadoras como uma ferramenta natural e util
‘a0 ensino de manipulacao de listas para principiantes em computacao, desde que
estas variaveis sejam submetidas a um rigoroso controle. Esta monografia con
tém a definigao e o modelo de implementacao de variaveis apontadoras em SPL,
uma linguagem desenvolvida para o ensino de programagao estruturada a princi

piantes.

PALAVRAS CHAVE

Programacao estruturada, ensino de'programaggo,' linguagem de progra

magao, verificacao de tipo, variaveis apontadoras, estruturas de dados.

CONTENTS

1. INTRODUCTION

1.1, THE SPL PROJECT

1.2. 'BRIEF COMMENTS ON' POINTERS.AND THEIR USES

2, . FACILITIES FOR THE CONSTRUCTION AND MANIPULATION OF

STRUCTURED DATA

2.1, DESCRIPTION

2.2. IMPLEMENTATION

3. 'RECORDS AND POINTERS IN SPL

3.1. GENERALITIES

3.2. THE DEFINITION: OF RECORDS AND ‘POINTERS

3.3. THE MANIPULATION OF RECORDS AND POINTERS

3.4, IMPLEMENTATION MODEL.

:3,4,1, General Description .of the Symbol Table Structure-

3.4.2, Data Structures Used to Implement Pointers -—==—-——-=

3.4.3. Pointer Management -

4, CONCLUSIONS

APPENDIX .: The Syntax of SPL

REFERENCES

11

11

13

15

19

20

26

"1, INTRODUCTION

1.1. THE SPL PROJECT

In 1974, while teaching a course on.Data Structures, one of the.éuthors
felt the need for the design. of yet another high. level programming language .
One of the main objectives of that course was the teaching of disciplined
(top-down) programming [WIR 7la] . Among the programming languages available
in the system, PL/1 was the one initially chosen to be used throughout the
course, .due to the inadequacy of all the others. Soon it was clear that this
was. a poor choice, since most of the students had a fair knowledge of PL/1

and an excellent knowledge of tricky programming in PL/1. It was felt that:

(i) = the teaching of top-down programudéVelopment wduld[bé‘frequently S
interrupted by students who would already know "the best way to
code the solution to that problem in PL/1", thus delegating the
task of disciplined programming to the background, in favour - of

the simpler task of coding;

(ii) top~down structured programming should be . introduced -with the
aid of simple control structures (compound statements, while
statements and if-then—else statements);. the knowledge of more
powerful control structures in PL/1 (such as ON conditions) would

be harmful to that presentation.

Some PL/1 characteristics (type conversions, the absence of a.''case" construct,
the undisciplined wuse of pointers [HOL 72, ZEL 74], for example) finally
led us to the development of a new programming language , SPL (Simple Programming

Language). :

The SPL system was created to be used as a tool in the introductory

teaching of programming languages and techniques. Its main objectives are:

- to be adequate in the teaching of disciplined programming;

- to allow efficient (diagnostic type) compilation;

- to be as simple as possible, yet presenting adequate control and data

‘structuring facilities.

In this paper we present the SPL solution to the use of pointers in
this class of high. level programming languages. In the remainder of the

'Introduction4we:quicﬁiy sﬁrvey.pointerS‘and,their problems.

In section 2. facilities for the creation and manipulation of
structured data in programming languages .are described. It is in . this context

that pointers areumainly‘used.

The SPL model is presented in. section 3. . The need for pointers in
introductory programming’ languages is discussed in 3.1, where pointers shall
_be related to records (structured. data types consisting. of one or more
.elements, where the element types are not required tOube;ideﬁtigal). In 3.2
the syntax and semantics of records and .pointers.is described. Section 3.3
presents the operations allowed on records and pointers. Finally.in section

3.4 the implementation of pointers in SPL is discussed.

In section 4 we conclude this.report. The syntax of SPL is presented

in the appendix.

1.2. . BRIEF COMMENTS ON POINTERS AND THEIR USES

The pointer type is a part of the repertoire of many high level
.programmlng 1anguages today: some. examples are PL/1, Algol W [WH 66] and
Pascal [WIR 71b J. In this section we briefly examine pointer types in

those languages and some current opinions regarding the use of p01nters.‘

, " The use of pointers in PL/1 may give rise to serious type.violations.
Due to the.existence of the function ADDR [ZEL 741, a pointer. ‘which _is
‘declared to point to a variable of some type can be set to p01nt via . the

ADDR function, to a variable of a different type.

Another problem is the dangllng refetence problem fcHx 73] A dangllng

ireference occurs. when the storage allocated for a varlable local toa block
:(but belng p01nted at. by a pointer global to:the block) is’ ‘deallocated upon
iblock ex1t. The global p01nter is left 1nd1cat1ng deallocated ‘area. .

P01nters in Algol W (called references) have less flex1b111ty than 1n
PL/lm They were 1ntroduced in the language as a mechanlsm to link. 1nstances‘

of records@ Futthermore, s1nce records in a program can have w1de1y dlfferent

fstructures, reference varlables are dertared to po1nt to classes of records
f(a set of Lnstances of records with identical structures) Thus type checking

for ponnters can be eff1c1ent1y 1mp1emented@

The fact that in Alpnl W trere is no functlon s1m11ar to PL/I s ADDR,
and the faet that in the deelaratlon of referenees the records classes to
whlch they are allowed to refer must be- exp11c1t1y stated, prevent the

occurrenee of the dangllng referenee problemoﬁ

v In Paseal poxnters -are used to refer not only to instances of records,
jbut elso to (dynamlcally generated) . variables of any other type. However,
;unllke PL/l p01nters are bound to sets of values of the same type thus o

fallewmng eff1c1ent type checklnge

Recently, the use of poxnters Ln hlgh level programm1ng languages has :

3been under con51derab1e debate0 Hoare [HOA 73 3 malntalns ‘that p01nters are

Slow level. constructs, and, as such, should not be present in hlgh level

;programmlng Ianguageq ("Thelr 1ntroduet1on into high- level languages has been :

”a step backward from whleh we may’ never recovera Ve

Problems llke type v101at10ns and danglxng references 1ed some to

malnta1n that p01nter types should carry the type of the obJect p01nted at,
3 n“Algol 68 [an 69] ' ' o ' L

Although p01nters are tradltlonally conqldered as a valuable a1d 1n
_ructurlng data, Hoare has shown [HOA 73b HOA 75] that one can’ actually fffv:,*

construct complex structured types without using.pointers.
More recently, Berry [BER 75] has surveyed. the .pointer problem,

suggesting as a compromise solution the use of pointers in connection

with the very high-level.concepts of. abstract data types [Lz 74 1.

2. FACILITIES FOR THE CONSTRUCTION AND.MANIPULATION OF

STRUCTURED DATA

2.1. DESCRIPTION

_There are several ways to structure data in programming languages; a
very thorough survey of such methods can be found in [HOA 72] . One such
method is characterized by the structured type "record". The following
facilities are required.for .the creation and manipulation of .records in

programming languiges:

(1) a way to describe the elements .(fields, nodes) :of a record
structure. As mentioned before, the element types of a.record
structure do not have to be identical. .Since.memory- allocation
for record type variables is done dynamically, a record v
deseription can be considered as a description of memory sections

which, at run time, are associated with the record;

(ii) a way to allocate memory. for record type variables and associate
it to record definitions. Such allocation:is dcnz at run time;
records are structures which may grow at random, and as such

allocation can not be done at compilation time;

(iii) a way to free memory which has become unnecessary for program. .
execution. This permits an efficient use of memory. In general
the allocating.and freeing of memory involves:the use of

-algorithms for garbage collection;

(iv) once memory positions are allocated for a record type
" variable it is important to know where those.positions are
in memory. Such information is normally conveyed by pointer
type variables. These are variables whose possible values are
- addresses in memory . which .can hold instances of record .
-variables. With the help: of pointerfvariables, access to fields
of an instance of. a. record variable can be.done, for instance ,

by specifying:

1. the name.of a pointer .to the.recerd variable instance;
-2, the name of the record type variable;

3. the name of the particular field wanted;

(v) away to speC1fy that record: f1e1ds can contaxn references ﬁto
other record instances; . 1n other words, it should be possible
‘to declare record fields of type p01nter. This is important for
- data strncturxng, since by linking together: Lnstances ‘of ‘records
‘one can construct representations of abstract structures such as

stacks, queues, binary trees, .and so on.

_ The mechanisms above are basic for the run-time creation and manipulation

of records. In the next section we discuss their implementation.

2.2, IMPLEMENTATION

_There are two main (and .interconnected) decisions torbe taken:regarding
_ pointer. implementation: we must’ choose a storage scheme, and we must decide
when, during the compilation process, the binding of pointers and the

structures pointed at is to take place.

The possible storage schemes are basically two. Either we give the
programmer- the ability to allocate and deallocate storage (as in PL/1) or

we. implement. the concept of retention [BER 70 J. In the latter alternatlve,

memory positions corresponding to'a.structure being pointed at remain
accessible until all references to those posifions,are eliminated; then
they are returned to a list of available space. This scheme calls for
the existence of a table of pointers, and a mechanism for: continuously

(and at run time.) updating pointer.values, thus being véry expensive.

On .the other hand, we:fee1 thét~aisystem in which the programmer
. has .the use of:a pair of functions like ALLOCATE and .FREE, plus the ability
to choose the binding time, is not compatible with the purposes of SPL, being

an invitation to undisciplined programming. The solution. found has to do

with the binding time.

Pointers can be bound to.structures either at compilation or at run time.
The binding of pointers that are not "typed" (declared independently of
“structures) can be done only at run time. This again involves the use of a
pointer table maintained duriﬁg the execution of a program,.thus causing
some heavy overhead. However, if we can.tie pointers tb’struétures at
compilation time, then no dynamic tables have to be maintained; type‘checking

can be efficiently done, and a more-disciplined use of pointers is achieved.
Syntactically typed pointers are present in languages as Algol W,

Pascal, Algol 68, among others. In this scheme pointer types are declared

together with the types of objects they are allowed to point- to.

3. RECORDS AND POINTERS IN SPL

3.1. GENERALITIES

One.of the most important: course for beginmers in Computer. Science
.is a course.on Data Structuring. In it some abstract data types, such as

stacks, trees and linked lists are introduced. To represent abstract data

types, programming languages provide users with an assortment of built-in
types. For example, one dimensional arrays.can be used to model stacks,

with the help of an integer variable that keeps track of the stack top.

Records and pointers were introduced invSPL to allow users to
more naturally represent linked lists. List elements are thus represented
by record instances, having one or more fields of type pointer, which

provide the linking mechanism. The main characteristics of the SPL system,

with respect to records and pointers, are:

(i) . compile~time binding of pointers to record classes, as in Algol W;

(ii) pointer type fields of a record are allowed only to point to

instancés of variables declared of the same record type;
(iii) possibility of user's allocation and deallocation;

(iv) SPL is block structured, with automatic deallocation on block

exit, and standard scope rules.

Adoption of (i) above saves overhead in compiling, as seen before. (i)
and (ii) provide efficient type checking. The main consequence of restriction
(ii) is that lists in SPL are homogeneous. We feel this is not a serious

restriction, considering the purpose of SPL.

SPL users have the ability to allocate and. deallocate record instances;
dynamic storage management in SPL is mainly programmer's responsibility. It
is our opinion that, due to (i) and (ii) above, SPL is an adequate environment

for the teaching of list manipulation.

In addition, since standard scope rules apply, all pointers declared
in a block are destroyed upon block exit. It is the programmer's task to
ensure that no instances of records declared globally to the block being
exited are left without accessing paths. It should be ﬁoted that the sintax

of SPL prevents pointers from being declared in a scope wider than that

of the corresponding record class.

3.2, THE DEFINITION.OF RECORDS. AND POINTERS.

~In-this section the syntax and semantics of records .and pointers in
SPL is presented. More about.‘SPL's:syntax can be found in: the Appendix.
In the syntax rules that follow, .lower case strings of Ietters,4with'possib1y
one or more underscores, are considered to.be.nonterminals; strings of
capital-letters represent reserved.words in-the system. .Square brackéts,denote
that the encloSedmsequence.of.symbolsamay'or may not be present, curly
brackets;followed'by-an~asterisk,denote“the"oceurrence of-zero,or'ﬁore

instances of the enclosed sequence:.of. symbols.
Records-are defined as: follows.

record=-type - ‘RECORD .(field-list)
field-list > field-name-list :. field-type

 {‘;,,field—namerlistg::fiéld—type']*

field-name~list. <+ identifier-list

field-type ~—+ simple=-type

| LINK

'A:record.is a list of fields,.each having‘a‘name\(sgleétpr):and a
specification of the type of values the field can held. Snchpﬁaiﬁes can
_be either simple (INT, REAL, BOOL, CHAR:(n).) or pointers.to the record
class being:defined (LINK's). To: illustrate, eensider: the.following example:

- TYPE person = RECORD (name: :CHAR (12) ;
age, ‘income: INT ;
. father, 'mother: LINK) T END

TYPE and T _END are delimiters for type;definitions. Type definitions
were introduced in Pascal and are a feature of SPL. In.the above a record

class called 'person" is defined, having." father" and "mother" as selectors

for fields of the type LINK (in other words, '"father" and:'mother" are fields

that- can contain: as value .addresses :of instances. of the :record type '"person").

Pointer types are defined.as.follows.
pointer—type - POINTER,(record-class&identifier)

record~class-identifier : .identifier

_ Record class identifiers:are names. which. are.assigned to.record types
through a.type -definitien-("person" in.the:.example abeve).. Note that:in this

‘way pointers. are syntaetically“bound to record classes.

As an example; consider:the: pointer:declaration: below:
DECLARE: - P1, P2, P3: ~POINTER (person) D END

‘P1, P2 and P3.are assigned:to memory positions which .can hold addresses

.of instances. of: the record.type "person'.

.3.3.. THE MANIPULATION OF RECORDS .AND'POINTERS

vA: tecord.definition' does not .cause.memory to be: allocated.. This is
done by the programmer,.through;the:CREAIE statément.lsupposewA1;§s_the name
of a variable declared of a-certain'recdrd.typeuR, and..that Pl is the name

of a pointer to' instances:of .the same record R. Then the statement.
CREATE- Al SET(P1) ;

‘causes the allocation of an area in memory compatible with:the description
of .the record class R.and sets Pl.to point to this-area. The general form

of a CREATE statement is "as follows:

CREATE record-identifier SET (pointer-identifier-list);

where record-identifier is the name of a‘variable of type record, and

pointer-identifier-list is:'a list of names .of -peinters.to :that same:record.

=10~

Record instances can be deleted explicitly by the programmer. The.

execution of a statement of the form
FREE fecord-identifier. REF (pointerridentifier-list);

causes the memory positions occupied by the instances of the record identifier
pointed at by the pointer identifiers in the 1list to be returned to the list

of available space. After this takes place, all pointers in the 1list have

their values set to NIL.

Pointer assignment statements are allowed in SPL. Their form is a follows:

pointer-variable := pointer-value;
Pointer variables are defined.as follows:

pointer-variable - ‘simple-pointer-variable
: . PP . . *
{#record-identifier « link-identifier}

simple-pointer-variable -+ simple-variable
simple-variable - identifier [(subscript-list)]

Pointer variables can be either simple or qualified; Simple pointer
variables are either identifiers (declared of type POINTER)}'cpmponents of
arrays of pointers or function calls returning a ﬁointer valhe. Qualified
pointer variables allow programmerS'to‘access instances of records through

the' link type fields of records in the class.

Pointer values are either the special value NIL or a pointer variable.

pointer-value -+ NIL
| pointer-variable

Pointers .can help access. record fields of types other .than LINK, whose
.values-can be used in expressions. The only other operations allowed on

‘pointers are the comparison .operations (= or ~ =).

3.4 IMPLEMENTATION MODEL

In: this section we wﬁll.show.how.pointers‘andulinks~are implemented

in SPL. We begin this descraption4by‘giving,an3everview of . the-symbol table

~organization used in our iﬁplementation. Then, all data structures used in
connection with pointers aré“presented, each follewed by a brief description
of its use. To:close this section, we explain how.we manage the symbol table

structures, with respect to .pointer, 1link: and. record implementationms.

:3.4.1 General Description of _the Symbol Table Structure

In the SPL implementation, the symbol table has. been.structured as
-a balanced tree [KNU 68]. Each node of the tree has the following format:

TREE_NODE:

LINK_GT

LINK LT

INST_LIST

VALUE

Where the fields have the following meanings:

LINK GT is a link to the node to the right, which- ' corresponds to
an identifier of higher (alphabetical) order; if such an
identifier does not exist in the program, this field has

_ the value NIL.

LINK LT is a link to the node to the left, which corresponds to
an identifier of lower (alphabetical) order: if such an
- identifier does.not exist in the program, this field has

the wvalue NIL.

=12~

INST LIST points to a list of instances of the identifier.
VALUE contains the value of the identifier.

The tree is artificially balanced by having as a root a node
corresponding to a dummy identifier, whose characters are taken from
a central part of the alphabet. The purpose.oghsuch a tree . structure
is to provide quick access to. any node, whilevallowing an efficient
sorting of the identifiers in any order. As long as the number of '
identifiers in a program (excluding reserved keywords) does not become
very large, this type of organization seems to be a good,choicé, and

it was tested in practice with good results.

Each identifier in a program may have one or more instances,
created by the appearence of the identifier in a prologue. The instances -
of a given identifier are. collected in.a list, called an INST_LIST .
Each node of this list (called an INST NODE) has the format below.

INST_NODE:

LINK_INST

TREE_NODE_PT

XREF_LIST

- BLOCK_NUMBER

 DESCRIPTOR NODE_INDEX

Where .
LINK INST is either a link to the next INST_NODE, or it has

the value NIL.

TREE_NODE_PT is a pointer back to the TREE_NODE.

XREF LIST is a pointer to a list of references . (this list 1is
"méintained for the pufpose‘of emitting a cross

' reference list at the end of the compilation).

BLOCK_NUMBER . is the number of the block in which:this instance

ﬁés declared.

DESCRIPTOR NODE INDEX is.an index. to a'node describing the type

~of declaration (procedure,srecord, pointer, etc.).

. The format of the descriptor node varies with the particular type
being deseribed.- We. will be. concerned only w1th _descriptors for p01nter

types. These will be. shcwn in-. the next subsectlon.

3.452@.DatamStructures‘MUsed;to;Implement~Poihteré

Each p01nter varlable, or link fleld has an associated descriptor

node w1th the following format:

DESCRIPTOR NODE : s

"IVPE |CLASS | RECORD_(NDEX

GENERATION LIST

POINTER_LIST | FUTURE USE

_other_information

Where:
“TYPE. 'gives the type.of the descriptér.node°”Weuwill write
TYPE='p' for .a.pointer type and TYPE='L' for a link type.

CLASS gives the class of the reference, i.e, if it is a parameter,

a common variable, a type.definition, or a record field.

RECORD_INDEX is an index to an entrj in the symbol table containing -
the INST NODE of the record poiﬁted at by this pointer; this
index is used to check whether in any reference involving
this pointer, it points to the correct record, ¢r record

class.

GENERATION LIST is a doubly linked list of all pointers and links
that point to a given generation of a record; thus, if a
record generation is destroyed (freed), all pointers in this
list can be set to logically point to NIL. Actually, this.
field is composed of two pointers: a FORWARD. PT that boints

. to. the next item, and a BACKWARD PT, that points to the |

previous one.

POINTER LIST is a list of all pointers and links declared in a given
block; when the end of the block is reached, this list is
scanned and all pointers in it are removed ffom‘their
GENERATION LIST's (if any), thus logically pointing to NIL.

other_information is the global name given to the remaining of the
node. It will probably contain any other. information needed
by the code. generation routines, like internal name, addressing

scheme, data length, and so on.

There is one GENERATION LIST for each generation of a given record.
The list is used to collect all pointers that point to this generation. Each
GENERATION LIST has also a GENERATION LIST HEAD, which is. a node allocated .

-outside the symbol table area.when a generation is created. The header has

the format:

~15-

GENERATION_LIST. HEAD:

LAST_IN LIST | FIRST IN LIST

When LAST_IN LIST and .FIRST_IN_LIST are both null, this means that

the 1list is empty, that is, no pointer or 11nk p01nts to this generatlon. In

this case an error message is issued,. te111ng chat some generation has lost

all its p01nters°}1t 1s 1mportant to notlce that the development of an Lsolated
ring of- generatlons cannot be detected.. An 1solated r1ng occurs when varlous
generations . of some record point. to each other, but no external poznter polnts

to them: the rlng has no accessing path. The preventlon of such a sltuatlon
couid be done only at run time, using a garbage ‘collector. In our 1mp1ementatxon

it is programmer s respons1b111ty that such a s1tuat10n never occurs.

Whenever -a- pointer or link no 1@ng@r p01nts to a data structure - (whlch
may occur by asslgnment, block exit, record creatlon or deletion), 1t is ‘
deleted from its generatlon list. This actlon can also cause the 1nsert1on i

of this pointer in another generation list.

- 3.4.3. Pointer Management

Here we will explain how the data structures previously described are
managed.in the SPL implementation. We will consider all events that may affect those
structures, such as record creation énd deletion, pointer assignment, block
exit, etc. At the end we give a summary of the error conditions that are

effectively detected.

a) Pointer and Link Declarations.

Whenever a pointer. or link is declared in a prologue,a.descriptor
node of the: type described in 3.4.2. is created for it. The initial values of

the fields are:

-16~

- TYPE = 'P' , or TYPE = 'L' if it is a pointer or link, respectively;

- CLASS = 'P' if it is a parameter, or CLASS.= 'T' if it is a type
definition, or CLASS = 'C' if it is a common.variable, or CLASS = 'F'

if it is a record field (LINK only).

- RECORD INDEX points to the instance of the record being pointed at.
If it is a pointer declaration, this record must be explicitly
.declared. In.the case of a LINK field, the record.is implicitly
declared to be the record: containing the field. Notice that this

record can be both a record variable, or a record class.

'~ GENERATION LIST is initially set to logically point to NIL. This is
done by making BACKWARD_PT and FORWARD PT point to the descriptor
node itself. So.all pointers and links are initialized to NIL.

- POINTER LIST is linked with the'last‘pdinte: or link declared in the

same prologue, if any.

b) BLOCK EXIT

When the end of a block is reached, the POINTER_LIST is scanned,and for

every node in it, the following actions are carried out:

- a‘consistency‘check'is done, by examining the TYPE field of the node:

if it is not.a pointer or link, a compiler error has. occurred;
-~ the node is deleted. from its generation list,: if present in such a lisf;

- the GENERATION_LIST HEAD of the gemeration list from which.the pointer
has just been deleted is examined to see if the freeing of the pointer
does not causé any record instance to lose all its pointers. Notice
that this will not be done if the record was declared in the block

being exited (in this case the header is also deallocatéd).

Note that for blocks that do not declare pointers, only a very small

amount of‘overheadbis added.

17

©) CREATE:statement
If a CREATE statement of'the form’

CREATE record-identifier SET (pointer-identifier-iist);

is found, a.GENERATION;LISTLﬁEAD is allocated, and-for every pointer in the:

SET:1list the following actions. are. performed:

- the‘REGORD«INDEX field .is.examined:torsee whether it indicates.
the record class of the previously given record_: identifier., If

a. mlsmatch is found, this partlcular ‘pointer variable is 1gnored,

- the:pointer-ris freed from its previous value, if any, since its

valueriyasichanged by thé CREATE:istatement;

- the pointer is inserted in the generation list being created.

If any garbage collection is performed at run time, it is possible

to fihd“any isolated ring that may have been develored during program execution.

d) FREE Statement
When a FRbe scatement of the form.
_FREE record-identifier REF (pointer-identifier-list);

is found, each pointer identifier in the REF list is removed from its generatlon
list (if. a pointer has the value NIL, an error message is issued). .All such
pointers must point toﬁlnstanceswof,record}dentlfler,.or.to.xnstances of its
record class: if this. is not the case, an errer message‘is,issuedf.If.the"record
_being freed .contains.any LINK fields, these will .also be removed from their
generation lists, if any. Before deleting a pointer from its generation list,
the list is scanned and all other pointers (and links) still pointing to this

generation are set to .point to NIL. The GENERATION LIST HEAD's encountered are

.deallocated. :

-18~

e) Use of Pointers
In a qualified reference of the form

simplé—pointer-variable‘{*record-identifier.1ink-identifieffﬁ

+record-identifier.field-name

every pointer-or link identifier must point to instances (géné:ations)fbf.thé“
same record class. This will be tested by cemparing the,RECORD;INDEX"figla‘offf.
the pointer or link descriptor with the index .of the INST NODEbdf ﬁhe‘recor&' f
class .associated with the record_: identifier. If a match cannot be - found the

reference is 1nva11d. It is at this time that null poxnters can also be

discovered.

. £) ‘Pointer Assignment Statement

A pointer or link can be assigned to another p01nter or 11nk ‘
During.the: assignment. sta:ement reductlon, the RECORD_INDEX flelds of the'?v
p01nters are compared-to see:if they p01nt to compatlble records. The on1y
exception is when the special.value NIL is :the source of:the: as31gnment°'

. then.no. validation of the.assignment. is needed.

Before. rece1v1ng its. new.value, the target. p01nter (or llnk) 5
must be: deleted from its generatien. list;: if this. causes.the 11st to be
empty, an error message. is- issued telling the programmer that avgenetatlon

has lost all its pointers.
. The final step consists of adding.the target;pointgtior'lihk‘;
‘déscriptér to the 39U:cers generation list.
g) Sunmary of Error Conditions

' The following error conditions can be detectedin:the previously -

~described: ‘implementation model:

-19~-

~ invalid pointer, or link qualification;

- loss of all pointers to a given generation of a record.

The following error conditions can never occur, because of the

syntax definition:

- dangling references, because a pointer cannot be declared in

a scope wider than that of the record it can point at;

- if a block exit frees all pointers and links that may point to
a éiﬁen record, it is. impossible, by the scope rules, to refer
again to this record. However, sughua situation causes - the
appearance .of a warning message; which is done for completéness

purposes only.

4, CONCLUSIONS

SPL is a programming system designed for beginners in Computer
Science. As such, some .of its features were given special attention. In
particular, language-structures which in other systems may give‘rise .td
undisciplined programming were carefully adapted to meet the purposes of
SPL. In this paper we showed how pointers and records are defined and
implemented in the SPL system. We stated that the only reason for the
presence of pointers and records in our language is to give programmers
the ability'to model and.manipulate list structures in aimore natural way. .
Some well known problems. associated with the use of pointers in programming
" languages (type violations and dangling references) were avoided_in-our

system,

-20-

APPENDIX: The syntax of SPL

Note?

nonterminals not defined here are assumed to be as in Pascal.

program -+ block

block - BEGIN prologue statement-~list END

prologue -+ [TYPE type-definition-list T_END]
DELCARE declaration-list D_END

type-definition-list - type-definition {; type~definition P*
type-definition - type-identifier = type
type-identifier + identifier

declaration-list - variable—declaration~1ist [routine-declaration-list]

| routine-declaration-list
variable-declaration-list - identifier-list: type {; identifier-list:typel
identifier-list - identifier {, identifier ¥

type -+ basic-type
.I structured-type .

]'type—identifier

basic-type - simple—type
| pointer-type

simple-type + INT | REAL | BooL | CHAR (unsigned-integer)

pointer—-type -+ POINTER (record-class—identifier)

-9}~

‘record-class—identifier -+ identifier
structured-type -+ array-type

| record-type
‘ afray—type -+ ARRAY (bound-pair-list) OF basic-type

bound-pair-list -+ bound-pair {, bound-pair J*

bound-pair + [simple-expression :] simple-expression
record-type - RECORD (field-list)

field-list + field-name {, field-name J* : field-type
{ ; field-name {, field-name}* : fieldftype']*

field-name + identifier

field-type - simple-type

| LINK

routine-declaration-iist - routine-declaration

{routine-declaration }*

routine-declaration -+ procedure-declaration

| function-declaration
procedure—-declaration - PROCEDURE ' procedure-head ro@tine—body P_END
function-declaration -+ FUNCTION function-head foutine-body P;FND ‘

procedure-head + procedure-identifier [(procedure-formal-parameters)]

procedure~identifier -+ identifier

-22~

procedure-formal-parameters - procedure-access-mode
formal-parameter—declaration

{; procedure~access-mode

formal—parameter—de;laration}*
proéedure-access-ﬁode - INPUT | REFER | ourpUT
formal-parameter-declaration -+ formal-parameter-list:formal-type
formal-parameter-list > identifier-list

formal-type - basic-type

| array-type
routine-body -+ [prologuel statement-list

function-head + function-identifier [(function-formal-parameters)]
RETURNS basic-type

function-identifier -+ identifier

function~formal-paramters - function—-access-mode
formal-paramter-declaration

{;function—access-mode formal—parameter-declaration}*

function-access-mode -+ INPUT | REFER
statement-list - statement { statement J*
statement + simple~statement

I structured—-statement

-23-

simple-statement + assignment-statement
exit-statement

i/o~statement

free-statement

|

N
| create—-statement
B
l procedure~call-statement
l

return-statement

 assignment-statement -.variable := expression;

| pointer-variable := pointer-value;
expression + [expression. OR] logical-product
logical=product -+ [logical-product AND] relation

relation - [simple-expression relational-operator]

simple~expression
simple-expression -+ [simple-expression addition-operator] term
‘term »+ [term multiplying-operator] factor

factor - memory-reference
| addition-operator factor
| NOT factor

| (expressionm)

' memory-reference - constant
! variable
constant -+ unsigned-number
| string

| boolean-constant

24—

_unsigned-number - unsigned—-integer

| unsigned-real
unsigned-integer + digit { digit ¥

unsigned-real - unsigned-integer . unsigned-integer
[E addition-operator unsigned-integer]

variable - simple-variable
| pointer-variable - record-identifier. field—-name

simple-variable + identifier [(argument-list)]

pointer-variable > simple-pointer-variable

| +record—1dent1f1er.11nk-1dent1f1er}*
simple-pointer-variable ~ simple-variable

'pointer-value,+ NIL

| pointer-variable

exit-statement - EXIT ;

i/o-statement -+ READ (i/o-1list);
| READON (i/o-1list);
| WRITE (i/o-list);
| WRITEON (i/o-list);

i/o-list » identifier-list

wcreate—statement -+ CREATE record-identifier SET

(p01nter-1dent1f1er-1lst),

record-identifier - identifier

-25~

pointer-identifier-list + identifier-list

free-statement - FREE record-identifier REF

(pointer—identifier-list);

procedure-call-statement + CALL procedure-identifier
[(argument~list)];

argument-list + memory-reference {;memory-reference}*
return-statement < RETURN [expression 1;
structured-statement +'¢ompoundfstétement
l'cbnditionalfstatement‘
| repetitive-statement

'compound—statement -+ block
vl group-statement

‘group—~statement *'GROUP'statement-list G_END
:conditional-statement + if-statement

l case-statement
-if-statement - IF expressxon THEN statement [ELSE.. statement] I END
case-statement - CASE: 31mp1e-express1on OF case-llst C_END |
case~list -+ case—element {; case-element}
- case-element - unsigned-integer {, unsigned-integef}*i!”statement

repetitive-statement -+ while-statement
| repeat-statement

| for-statement

while~statement -+ WHILE expression DO statement W_END
repeat-statement - REPEAT statement UNTIL:expression. R;END

for-statement =+ FOR identifier : = for-list DO statement F _END

for-llst - s1mp1e-express1on TO sxmple-expres31on

‘[STEP. simple-expression]

-26~

REFERENCES

BER 70 BERRY, D.M. Block structure: retention or deletion? Providence,
Brown Univ.., Center for Computer and Information Sciences, 1970.
TR-29. |

BER 75 BERRY, D.M. Correctness of data representations: pointers.

Draft report.

CHL 73 CHIRICA,L.M. et alii. 7Two EULER run time models: the dangling
reference, imposter environment and label nroblems, In:
ACM/IEEE SYMPOSIUM ON HIGH LEVEL LANGUAGE COMPUTER ARCHITECTURE,
College Park, Md, Nov. 73, p. 141-51,

HOA 72 HOARE, C.A.R. DNotes on data structuring. In: DAHL, 0.J. et alli.
Structured programming. London, Academic Press, 1974, p.83-174.

HOA 73a HOARE, C.A.R, Hints on orogramming language design. Stanford,

Stanford Univ., Computer Science Department, 1973, C$-403,

HOA 73b HOARE, C.A.R. Recursive data structures., Stanford, Stanford Univ.,

Computer Science Department, 1973. C€S=-400.

HOA 75 HOARE, C.A.R., Data reliability. SIGPLAN Notices, 10 (8): 328-33,

June 1975,

HOL 72 HOLT, R.C. Teaching the fatal disease. Toronto, Univ, of Toronto,

Department of Computer Science, 1972, RCH-1.

KNU 68 KNUTH, B.E. Fundamental algorichms. In: . The art of

computer programming. Reading, Addison-Wesley, 1968, V.1i.

LZ 74 LISKOV, B. & ZILLES, S. Programming with abstract data tvpes.
SIGPLAN Notices, ¢ ({4) : 50-Y%, Apr. 1974.

-27-

vin 69 VAN WIJNGAARDEN, A. et alii. Report on the algorithmic
language Algol 68. Amsterdam, Mathematical Center, 1969.

WH 66 WIRTH, N. & HOARE, C.A.R. A contribution to the development
of Algol. Commun. ACM ,.9 (6) : 413-32, June 1966.

WIR 7la WIRTH, N. Program development by stepwise refinemeht;
Commun. ACM , 14 (4) :.221-7, Apr. 1971.

WIR 71b WIRTH, N.. The programming language :Pascal.. . Acta Informatica,
1 35-63, 1971.

ZEL 74 ZELKOWITZ, M.V. Pointer variables within a diagnostic compiler.

College Park, Univ. of Maryland, Department of Computer Science,

19740 Tr-343o

