.....

Série; Monograflas em Ciéncia da Computagao
No, 9/77
(antiga/formerly: Monographs in

Computer Science and Computer
Applications)

INTEGRITY TECHMIQUES
IN
THE JACKDAW DATABASE PACKAGE

by
M. F. Chellis

Departamento de Informitica

Pontificia Universidade Catolica do Rio de Janeiro

iarqués de Sao Vicente 225 — ZC 19

Rio de Janeiro — Brasil

Série: Monosrafias em Ciéncia da Comnutagao
No. 9/77
(antiga/formerly: Monographs in.

Computer Science and Computer
Applications)

INTEGRITY TECHMIQUES
N

THE JACKDAW DATABASE PACKAGE *

by

M. F. Challis

Séries Editor: Michael F. Challfs August, 1977

* Work partially sponsored by the brazilian government agencies

 FINEP and CNEq.

MBIO{

’-"‘-PARMMENNO DE |
INF(
'I ATax DOUUMENngggﬁA

el

i s,z“é"'e D DOuUMENTACAO E 1w S0RMAGED

CGDKGO/REG!STRO o n T A
L3293 &&/u}w

2B e Aty e @

et

DEP! ° DE NFORMA ICA

'Rosane T L Castilho

Head, Setor de Documenta do-e !nformagao
Depto. de Informdtica - PUC/RJ 3
Rua- Marqués de Sd8o Vicente, 209 -vGavea
20.000 = Rio de Janeiro - RJ =.BRASIL

RESUMO:

A parte mais lmportante deste trabalho, Segao Il, e devotada 3
descrlgao de uma tecnica para assegurar a integridade de um banco o
de dados. Esta tecnica foi usada com sucesso pelo autor no’ sistema de

\
banco de dados Jackdaw, e a primeira segﬁo fornece uma breve

Introdugdo a este sistema. Finalmente, hna Segﬁo lll,'sao sugeridas
algumas outras apllcagoes da: tecnlca em um amblente onde varios

usuarios operam o slstema simultaneamente.

PALAVRAS CHAVE:

Bancos de dados, integridade, ccn¢orréncla

ABSTRACT:

The main body of thls baper,'Sectlon I, Is”devdted to the
description of a general technique for ensurlng the Integrlty of a.
database. This technique has been successfully employed by the
author in theudackdaw database package, and the first section
provides a brief intrqductioﬁ to‘this:sysfgh.»Finally;’ln'SGCtjon:
lii, some further applications of the'tecﬁhlﬁué‘ln.a multl-usér

enylronment are suggested.

Databases, Integrity, concurrency

CONTENTS

1 The dackdaw Database Package .-;f._,

1.1 Status . f‘; A Q'. ;', . e .y;

1.2 Structural Descrsptnon © e e

2 Database Integrlty ,,,“;,;v; “ieie e
,g.l lts lmportance :_; ;f,v{4; ..
:2.2 App1ications Programs Errors .

2.4

;,hysical and Loglcal Databases
:2 5 The Updating Process ‘e ane e

3 ¥Concluslons and further work i e

/3 1 Future Developments . . .,.].-.‘

,3 2 Summary A e

References v v v o v v v v vieu 4 s

iii

SECTION |

The Jackdaw Database Package

1.1 Status

The Jackdaw package is wfitten in a portable software
nﬁogrammlngflenguage called BCPL [1], and is currently available in

Brasil on the IBM 370/165 at PUC-RJ.

The "nucleus" of the system provides a library of "interface
procedures" whlch may be called from BCPL programs to Interrogate and
update entries‘in a database. Several general-purpose programs are
also avallable for "non=programmers” to use Including an
enquiry/update pregram designed for lnteractIVevuse, and a report

generator for pfoduclng'formatted listings.,

An essentially Yhetwork' approach is adopted for the
representation of data relatlonshlps, although the concepts involved

are somewhat,more straightforward than those of CODASYL [7].
1.2 Structural Description

The way. in Wthh information may be represented in a dackdaw
database is. best illustrated by example - for a more complete

account, see [3].

The fDllOWInE "deflnltlon*statements" define a database in which

Information about shops and the ltems they have for sale ls held:

ADD CLASS SHOP
BEGIN o
~ 'STRING ADDRESS
BOOL OPENONSUNDAYS
END
ADD CLASS ITEM
BEG|N ”
'STRING DESCRIPTION
INT PRICE
END

ADD LINK (SHOPS, STOCK) FROM ITEM TO SHOP

“The "ADD CLASS" statements define the baslic structure of. the

erent klnds of entry that may appear in the database: for

gxampie, each SHOP entry has a fleld called ADDRESS of type STRING

énd a'boolean fleld called OPENONSUNDAYS. In addltlon, every entry'

;have,an‘@dentlfer (unigue withln its class) by which it is
'ﬂéféhced; in the case of ITEM entries this might be thé item's
d fhumber.galthough it could equally well be the name of the item

ldedﬁthat?this was unique).

The "ADD LINK" statement deflnes a two-way relationship between
= and ITEM entrles. Unllke the CODASYL '"set" concept the
tionship is many to-many (see ﬂﬂ). one item may be stocked by

1 shaps, and one shop may stock several items, The lnformatlon
wh!ah shaas stoak a partlcuiar Item X Is held In a "l!nk

hf aal!ed SHOPS ln the entry for ITEM x"slmtiariy, the ltems

to ked by shap Y are referred to by the 1link fleld called STOCK in

-3-

Whenever a new link is created from one entry X to another entry
Y, the corresponding ilnk from Y.to X.is automatncaiiy Inserted by .

the package, and so an. applications programmer does not need to be

concerned about ‘the "dnrection" of the reiatlonship' he may add.
b jTocx field ‘of a SHOP entry or add SHOPs to the SHOPS

field of an ITEM entry according to whlchever is most convenient

The following diagram iiiustrates’two SHOP‘entries and three

ITEM entries together'with_reiaticnShips between them:

ITEM #253

DESCRIPTION
PRICE

SHOP S1

- e o o ¢

ADDRESS | "LONDON" |

DPENONSUNDAYSI TRUE I TEM #320

—p | "SCREW" | DESCRIPTIQN
R | B

SHOPS

40 | PRICE

| SHOPS
ITEM #340
7 > BOLT" | DESCRIPTION
B ot R
|15 | PRICE
ﬂ----b---—'

| SHOPS

51 stocks #253 and #320
82 stocks #320 and #340

-l

jWe conclude this section with some examples of statements in the

en ulry/update language which illustrate how entries and their

?fieldsumav~b@;manlpu\ated

E _s_;_a_s.g:m.t R Effect
i;TYPE SHOP 1 ADDRESS /prints "L ONDON™
TYPE SHOP Ss1 STOCK /prints "#253, #320"
ITEM #320 PRICE=60 /to update the price

NEW SHOPvS3 (ADDRESS=LEEDS
A OPEMONSUNDAYS=FALSE
ITEMSs(#SuO, #253) ,
) . /to create and
o : : / initialise
/ a new SHOP entry

TYPE ITEM #340 SHOPS R /prints "s2, §3"

SECTION |

Database Integrity

2.1 lts Importance

A database, especially in an,on-lihe environment, is a very
valuable object and it lg.essentialuto provide as much protection
for it as possible Fromathé effects of faulfy applications programs. .
For by Its very nature a databaséilS'central to many sepafate
applications, and a database‘torrupted,by one program will probably
not be useable by any qthér; Thls Js in conﬁrast to the "classical"
data processing envirdnméﬁt wheré é corrupt méster file only delays

applications dependent on that file.

Another impoktant‘dffferendevis in the manner of updating. In
the classical situation, a new master file Is usually a mod i f led
copy of the original, Which may be reinstated if anything goes wrong’
during the (batch) update run, A.database,‘howevek, will bé updated
"in=situ", possibly by'mény abp]icathns simultaneously; and it is
usually a difficult if nét impossibfe tésk to "back-up'" both the
database and all othériapplicatfpns in]thevévent that one
application should'corrupt the databaée,‘(Thls sltdation,ls similar
to that of a multi-pkogfammedIOpérating system Where failure of one

user program must not affect other, independent users).,

For the purposes of the Jackdaw system, & corrupt database s
defined as one whlch cannot be prpcesgaa,correctiy by the package:
examples of corruption would be’inconsfétent-indexes, or. a.
relationship between two ent?ies.rébresehtédfby“a'link‘inzbne

direction only,

The technlques described below to ensure integrity efficiently
'protect a Jackdaw database agalnst faulty applications programs and |
agalnst operatlng system faliures, but do not attempt to solve the

1probiem of deliberate attacks by malicious users.

_2;27A921iga;ignebPromrams Errors

”f,g;A Jdckdaw database Is held as a sequence of fixed size blocks on
disc, which are read into core, updated and written back to disc as

fneceasary. In the current impiementatinn (as a standard user program

;pnithe~iBM:360/37D series) package code, buffers and application
'prdgram (AP) COde all share the same reglon of core store, and so

'errors in the AP may result in elther package code or buffers being

0 rwrltten. In the former case, we can expect that the package will

-abpprmaiiy terminate if the corrupted code is ever exercised, and sor
Lthe/net effect:is snmiiar to that of an operating system crash., The
,iatter case is:moré'difficuit to deal with, but in practice it
}appears that simple internal checks carried out on buffers before
;they are wrltten back to disc are adequate. (For example, each
fS@ffgr inciudes‘its own block number which is checked for accuracy

}pefdreYthe'buffer is written back).

. The possibiity of overwriting buffers is also minimised by never
iprov1d|ng the AP with pointers to areas Wlthln the buffers. Indeed,
lthere is hevar any need for an AP to write or read directly from a
fbattar area, ainee aii infprmatipn passed between the AP and the
fdatabase is’ aiways copied to or from an Ap- suppiled data area by the
package itseif Addresses fdr such data transfers are of course.
fchecked by the package to ensure that they lie within the AP's part

pof the region.

-7=

Other kinds of parameter passed from fhe AP to the package can
be directly checked, since they are values which were previously
created by_the §ackage. For example, the following three Jaékdaw
interface procedures might be called to réad the value of the PRICE

field of the ITEM entry "#340";

X t= FINDENTRY(ITEM, "#340")
N 3= READWORD(X, PRICE)
RELEASEENTRY(X)

The value asslghéd to X, used to represent the located entry "#340",
Is the addréésibffé small data-structure created by the package to
describe thé“Tbﬁation and structure of the entry and to enable
subsequent references to fields of fhe entry to be processed rapidly.
Thus the package knows that the firét pérameter of "READWORD" must be'.
the address of such a data#structure and;sq‘can easily check its

vallglty,

It is worth_notingvthat if the‘backage code and buffers were
held in a separate region of store; inaccessible.to the AP exéept'by'
pRracedure call,lthen much of the éhecking described abovekwould not
be necessary. Onfbrtunately, 0S/MVT does'not provideﬂFacIlltiés of

this kind for.normal user programs.

2.3 System Crashes

The case of a system-wtde fallure dlffers from that of an AP
Laliure tn that 1t is not passible for the package to “trap" the
fallure and try to tidy up afterwards, and so protectlon of a »

databaseﬂagalnst4§uch failures cannqt depend on knowledge of what

-G~

lmmednately prior to the crash Indeed, the only version

tem crash will be that on

k place

he,database in existence after a sys
o ensure that

olution to the |ntegrity problem is t

and so,the s

atabase:onfdisc is always consistent.

3flle containing & Jackdaw database Is organised as a

fjxed -size blocks (which may be accessed at random)

Frdm 0 to gome maximum, say NP. This Is called the

al da;abase“.

"lqgical database" is organlsed in a similar way wlth blocks

fO ‘to NL (<NP), and a mapping from loglcal to physical

mterﬁdescribes where the blocks of the 1ogica1 database

Itﬁin”the physical database.

‘finters withln the database (representing 11nk fields, for

{Lreiheld as logical block number/offset pairs, and the

offthe package code operates in terms of such "logical
y "the lowest level (where paging and buffer o

s performed) needs to be aware of physical addresses,

| nvinterface separates thls from the rest of the package.

'A'al to physncal (LP) mapplng is itself held in the

'e:in such @ way that 1t can be read into core

ge af Icselfs the Flrst b1oak of the mapp!ng Is heid

fcatlcn ln the physicaI fl1e, and Itself oontains the;

Jock number of the next mapplng block, and so on.

?:ﬁﬁThe Updating Process

- When the database is flrst opened the LP mapping is read into

\re and used to translate lOﬂlca] addresses to physical aduresses

requests are made to read logncal blocks into core buffers. When
1of these buffers is first updated a spare physnca] block 1Is
lecated to the correspondlng 1oF|cal block and the LP mapping inl
reﬂis updated ‘to reflect this chanve. Thus when it becomes

cessary to write the auffer back to disc, it will go to a new
;tion |n the physical database instead of overwrfting the

iglnal vers;on of the correspondung logical block, The effect is
?the physical database now contains two loglca] databases: the
iginal one described by the LP mapping on dlsc, and the updated
3described by the LP mapping in core. At some suitable momen t
next sectlon) the LP mapping in core is written back to disc so -
atﬂthe updated logical database Is now described by both the disc
'hore mappings. If we ensure that only LP mappings describlng
nssstent loglcal databases are wrltten to disc, thehn only
ensistent databases wull be defined by the physical database which

hereby protected frcm the effects of arbltrary terminatson of

'llcatlon programs.

‘The fo]]owlng example nllustrates this technique for a logical

_base of three blocks held in a physical database of slx blocks:

-10- -

Open the database and copy the LP mapping (here held entirely

in physical block 0) intolcore; next read logical block 2

1)

into a huffer:

0 1 2 3 I 5
{L1->P3 | L2 | spare | L1 | sbare | spare | Disc
|L2->P1 | | | | |
L1->P3% 1 L2 | Core
L2=->P1 | |

 §)5‘Update L2 to make L2', and’assign a spare physical block to L2

in the mapping In core:

Core

L1->P3
L2->P5 : I |

purpose, we must

3) When we need the core buffer for. some other
Note that at this stage

write back the altered block to disc.

two versions of the same 1og|cal block

the disc file contains

(LZ and L2'): |

0 1 2 3 I 5
|L1-3p3 | L2 | spare | L1 | spare | L2' | Disc
lL2->p1 1 | o

: Core

L1=>P3 -

-11-

vh):‘Fina!ly the LP mapping in cofe ie copied back to the disc and
’phySieaI blocks referenced by the old mapping but not by the

- new are freed:

lLl >P3 | spare | spare I L1 | spare] L2' | Disc
IL2=->P5 | I o - I !

- D s s A 0Oy o Cn G b G0 - D G e w on m. - - o i s 4 o G o - - - - s -

A small but important point concerns the writing of a new LP

”ping from core to disc. The new mapping should always be written

spare blocks in the physlcal file, so that if the system crashes
the middle of the wrlting process the old mapping Is still

‘Wable}57hts technique also tnefeases the 1ikellhood of

cessfui recovery ln the event of parts of the disc file ltself

__fng unreadable.

The actlon of writing a new LP mapping from core to dnsc to

flne a new loglca] database is called "remaking" the disc file,
d;must always be done»before the detabase is-closed after a series
updates. During the execution of an AP it is only necessary to
make the file if the number of spare blocks becomes dangerously
w;‘or if the AP explicitly requests a remake in order to provide a

heckpoint" from which it may be restarted

’Dﬁ iha other hahd, there are times when we must pof remake the
ln order to aveid the appearanee of Inconsistent loglecal
tabases on ‘disc. For example, IF .a new link Is to be created
ﬁetween two entries the package must update both entries (probably

;separate logica] blocks) before the database is consustent.

=12~

Most such situations can be accommodated by ensuring the
’avai]abf1ity of a small number of spare physical blocks before the
updating process Is started: if sufficient are not immediately
3ava|1able, the disc file is remade in order to free blocks
}referenced by the previous mapplng but no longer required by the ney

; Qne. B

 1‘¢¢rtaiﬂ siguations, howevér, may require a large number of spare
;ﬁgjacksa the worst possible case would be the deletlon of an entry
;which had 1inks to at least one entry iIn every blocP of the
iidatabase, thereby requiring the updating of every logical block
?fbefQVG the database Is consistent. In such cases, the package
ﬁffééprqs extra information on the disc when the file Is remade to
j ihd1¢ate‘that some (as yet Incomplete) operation is in progress; If
“j#he:systém crashes before a further remake there Is then enough
‘ ihfofmatl°n on disc to enable the completion of the operation when

~the database Is next opened,

By careful use of these techniqﬁés, the current implementation
bbof the dadkdaw package not only ensures that only consistent

o databases appear on disc, but also that each interface procedure is
ffj"ihlelsible"- in other words, any interface procedure call will

balther complete its SPEC|fled action or do nothing at all.

-13-

'SECTION 111

Conclusions and future work

3,1 Future Developments

:The current implementation ef»dackdaW~aIIOWS'only one AP to
date a database at a time, although many -users may read
u}taneously. Future versions wnl] a]low concurrent update by
'rai users, and new procedures need to be defined to al]ow

peration;and;contro]led interaction between individual users, B

ane'prpb]em'ln an on-line défabase-environment with one or moref
rerqonfinuaily updating the database is that of obtaining &
nsfstenf‘reports (see fili‘ For example, conslder the case of a
‘ram whlch generetecva sumnary of items In stock Foilowed by e
al! report showing the location of these items by warehouse. If
oek fogures are updated whilst this proyram is belng executed thef

,tels In the two reports will not tally.

Thls problem may be solved by ”freezlng" ‘the LP mapplng used by
report generator for the duration of its run. During this
perjod any updates performed by other concurrent processes continue
_Bevreflected in new LP mappings in the usual way, except that 4
phueical blocks referred to by the "frozen" mapplng are not reused

e effect |s that the physica] database contnnues to hoId the

ffrozen" as we1l as the current logicai database until the repcrfS"

‘e epmpvete.
: A stml1ar Lechnlque may be used to safely test new applications
fprograms on a "1lve" database, When the database is opened In "test"'

mode, a. copy of the current LP mapping is made For the program be:néf

ﬁtested Any updates made are reflected in this copy, but not in the'

-14-

eajﬂ LP mapping. At the end of the run, the copy mapping would

:aTTy be thrown away,'but could alternatively be preserved to
"post*mortem" programs to see how the test had progressed

galn, the effect is that the physncal database reflects more

i

‘e Iog‘cal database. in this case the "real" database togetherf”'

hat modifled by the program under test.

s paper’has described a general. technique for protecting a
se on dlsc from the effect of system and appllication program
essentlally dependent on the abllity of a single physical

“;eflect more than one logical database.

thgrﬂépglfcations’of the technique in a multi-user

ronnent'were’suggested lncluding a facility for obtaining

histent reports in an ever- changing environment, and the abillty

g new applicatlons agalnst a "llve" database,

_ss technlque is enployed by the Jackdaw database package which
keen used to support an administrative database at the

vers:ty of Cambridge Computing Service for almost four years., As
;dfeatlon of the success of these techniques it may be noted

It has never been necessary to recover the administrative

:ase from a backup copy on tape, although updates are made

ctively on a daily basis,

-15=

3.3 Ack ledgement

Part of the research described in this paper was realised
whilst the author was employed by the University of Cambridge
Computing Servfée, England, ahd furthervdevelopment Qf the
Jackdaw packaggbis now being parf]y supported by CNPg at

Pontificia Universidade Catblica, Rio de Janeiro.

BB! erences

1) Richards, M., 1974, “The BCPL Programming Manual', Computer

Laboratory, University of Cambridge, Cambridge, England,

2) CODASYL, 1971, "CODASYL Data Base Task Group Report', April

3) Challis, M.F., 197k, "The Jackdaw Database Package", TRI,
Computer Laboratory, University of Cambridge, Cambridge,

England.

4) Date, C.J., 1975. "An Introduction to Database Systems”,

pp231-24%, Addison-lesley Publishing Company, London.

5) Palmer, 1., 1975. "Database Systems: A Practical Reference",

pp2.29-30, C.A.C.1 Inc., London.

