Series: Monografias em Ciéncia da Computagao
NQ 02/78

PERMITTING UPDATES THROUGH VIEWS OF DATA BASES

by

A. L., Furtado
K. C. Sevcik

Departamento . de Informatica

Pontif(ciaUniversudade Cat6lica do ‘Rio .de Janeiro
Rua Marqués de Sdo Vivente; 225 — ZC-19
Rio de Janeiro — Brasil

| Informatica ~ PUC | Doagao

Series: Monografias em Ciéncia da Computagao

N9 02/78

Series Editor: Michael F. Challis January, 1978

UC- 24543 -1

PERMITTING UPDATES THROUGH VIEWS OF DATA BASES#*

by
A. L. Furtado(q%%

K. C. Sevcik#*#

% This research has been partially supported by Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico
(CNPq) National Research Council of Canada, Canadian
International Development Agency, and Financiadora de
Estudos e Projetos (FINEP)

*% Computer Systems Research Group, Univeristy of Toronto,
Canada. : : v

For copies contact

Rosane Teles gins Castilho

Head, Set. Doc. Inf.

Depto. Informatica - PUC/RJ

Rua Marques de Sao Vicente, 209 - Gavea
20.000 - Rio de Janeiro - RJ - Brasil

' ABSTRACT

Prov1d1ng dlfferent views (logical images of the structure _
of a data base) to various users creates the problem of determlnlng
 how,update operations expressed in terms of the v1ews should affect

the stored form of the data Base. For data bases w1tn a relatlonal
‘organization, we 1nd1cate the effects of a wide range of update :
operations on views. We conclude that some operations must be pro
‘hibited in erder to assure harmonious 1nteract10ns among data base'
ﬁsers, but that many .other operatlons can be allowed even though

the structure of the view may differ substant1ally from the actual
Hstructure of the bata base. We consider views not only as ng
. w1ndows through which to see a data base in a partlcular way, but
also as "shades" to conceal and protect informatien, and as screens'

to 1ntercept any update operatlons that could leave the stored form

‘of the data base in an unacceptable state.

KEY WORDS:

Data bases, relational model, update operations,

constraints, views, algebra of quotient relations.

RESUMO

Prover diferentes visoes (imagens 15gicas da estrutura'ﬂei'
um banco de: dados) para varlos usuarlos cria o problema de de -
jtermlnar como operagoes de atuallzagao expressas em termos de

visoes devem afetar a forma armazenada do banco deé dados. Para

bancos de dados com uma organlzagao relaclonal, 1nd1camos os €
feitos de uma ampla gama de operagoes de atuallzagao sobre vi
soes. ' Concluimos que algumas operagoes devem ser proibidas a
fim de assegurar ihterégaes hérmoniosas‘entre os usuarios do

bancb de dados, mas que muitas outras opera§5e5~podem ser permi
tldas ‘embora a estrutura da visdo difira substancialmente da es
trutura real do banco de dados. Consideramos visoes nao somehn-
te como "janelas" atraves das quals se ' veria um banco de da
dos de um modo particular, mas tamb&m como "cortinas" para es
conder e proteger a informagdo, e como "telas" para interceptar
qualquer operagao de atualmzagao que possa deixar a forma arma= :

“zenada do banco de dados em um estado 1nace1tave1.

_PALAVRAS CHAVES:

‘Banco de dados, modelo relacional, operagoes de atualiza

¢30, restrigdes, visbes, algebra de relagoes quocientes.

CONTENTS

1 - Updates From Views—=---- S e e]
2'4vapes of Reiationships in<Viewsf—f--—#———-*—-—-——-——% 7
3 - Updates on Views Derived by Single OperatorSf——Ff—~——'12'

4 ~ Views Derived With Specific‘Operator Combinations4——f 22

5 - Enforcing and Checking ansfraintS'by_Viewsf**4?;-~f- 29

6 - Discussion and_Conclusiohs ——————— ———-*-—%———f———~~——— 34
‘References====—=~ —--————f—-¥ ——————————— ~——f——4 ———————————— 37
Appendix-=—~=-m—mme e e e e ———————————— = 4

iii

1. UPDATES THROUGH VIEWS

The need for allowiig various ugers to have different logical ima-
ges of the structure of a data base has been w1de1y recognlzed (es, TKJ $ueh}
!5235 or external schemas are supported by prov1d1ng transformatlons of ﬁhee
‘stored data base representation. into the representatxons for each user. If‘f
updates to the data base are expressed in terms of user views, however, theh
reverse transformat1ons are also requ1red Because of the dlfflculty inl T
specxfyxng changes to the stored representatlon that are approprlate responses
to updates on V1ews, geveré and rather arbltrary restrxct1ons on whlch updates
can be expressed thiough views have been proposed [Dat, cGT ABCﬂ Generally, '
,these restrlctlons permit updates only on views whose structures essentlally

coinclde wlth the structure of some parL of the stcred representation. . In
ithms paper, we indicate how to permit a broad range of updates to be expresSed7

through views while recalnlng the 1ntegr1ty of the stored representatlon.

The structure and operatlonal pollcies of an enterprlse, along with’

.the dlvxslon of responsxbllxty among structural units for creatlng, uging ani

changing 1nformat10n, determ1ne the model of the enterprlse that is represented?
1n the data base. The structure of all 1nformat1on of relevance is. expressed
as the conceptual schema', while portions of the 1nformat10n relevant to
:structural units are expressed as "external schemas" or user views [rx]. The
‘organization of the mﬁformatmbn in each view i approprlate to the needs and
responsrb;lltles of the users of the V1ew.‘ o
Certaln limitations on activities involving the data base can be

expressed as various kinds of constraints [5ro, CGT, HM, Sch, Sto, WeB]

Here, we consider segeral types of constralnts. Operatlonal p011c1es of the’
'enterprlse that constrain relatlonshlps among data base items can be forma-

lized as policy constraints (e.g. "no ‘employee's salary may be below the

minimum wage', or "supervisors must have at least one year of experlence in
the enterprlse . Limifations on the information provided to or changeable

by groups of users can be stated as authorlzatlon constraints. The consis-

tency of redundant information in the data oase can be exprcssed as .consis—

tency constralnts (e.g. the enterprise budget should eaual the sum of the

departmental budgets). Finally, assumptlons made by users about the relﬁtlnn~

ships represented in their views are presented as assumption constraints.

Policy, authorlzatlon, and cons1stency ‘constraints are expressed in terms of

the conceptual schema, while assumption constralnts are expressed in terms

"2-'

of views. Violation of a policy or an authorization constraint indicates éJ“j
conflict between an action by some user and an enterprise policy. Violation

of a consistency constraint indicates a failure to reflect activities of thel
enterprise in the data base correctly or completely. Assumption constrgintgh\
provide a formal basis for assuring that users ‘have cdmpatiblé béliefs ahéut“

the significance of the information represented in their view.

The mechanism for providing updates through user viewé plays a
role in preserving various constraints. While views have primarily been con—
sidered as "windows" through which different users see the data bage in
different ﬁayb,vWé will also conSider views as "shades" to limit what can bgf
seen through a window, and as “screens" thét'limit how the data base can be
affected througﬁ the window. Specifically, by prbperly constnuc;ing,user
_Views, it is possible to detect and intércept operations on the view that

would lead to the violation of some types of cqnstraints.

In this paper, we indicate, for one type of conceptual SChema,'how
updates on user views can be transformed into updates on the conceptual schema._
The criteria by which transformations are chosen are the follow1ng. (1) The.
change in a data base as seen through a view.due to an update on the view shquidﬁ
be exactly the change that would result if the stored representation coiﬁcidéd}
précisely with the view, (2) the change in the stored representétiqn should
not lead to the violation of any policy, authorization, or cbhsiSténcy cons=
traint, and (3) the c¢hange to the data base as seen in other vxews 'shou1d5
not lead to the violation of any assumption constraint. Thus, the updates
allowed to one user are indirectly restricted by the assumptlon constraints

of other users.

Although similar considerations arise for any data base organiza-
tion, we will consider only the context in which both the stored data. base
representation and all views are expressed as sets of partltloned relatlonsl
and the relations which compose the views are derived from the stored . re-
lations by operaplons of the algebra of quotient relation [FK]u Partltioned
relations are relations whose tuples are grouped into blocks so that ail
tuples in a block have the same values for certain attributes, éalled‘ the.
partitioning attrlbutes. For czample, if the rclation EMPLCYEE (EMP# , JOB-
TITLE MGR, SALARY) is partitioned on the set of attributes {JOBTITLE MGR}

3.
then each block will con51st of the tuples for all employees with a given Job'

title who work for a glven manager.

The algebra of quotient relatlons 1nc1udes six bas1c operatlons.
(Let X and Y be sets of attributes and let R mean that relatlon R 1s par-'

“titioned on attrlbutes in X).
(1) Partitioning
Rx/ Y yields | R v y
'(2) De-partitioning
R}'{* Y yields R
(3) Projection
N . : ' K3 L " .
R _[Y] yields R} e Vith attrlbulLes Y
(4) Restriction

R _[A 0 8]

where O is a set comparison operator and A and B are atﬁributes
with ©O-comparable domains yields: R' which is composed of a :
subset of the blocks of R . The blocks of R that are 1nc1udedil
in R; are those for whlch the sets of values in the block . for
attrébutes A and B respectively satisfy the set comparison

operator O .
(5) Union
R_®S_,
CUx X

where X and X' are pair-wise compatible sets of attributes

[bodZ] yields R'” whose attributes are pair-wise compatible
with those of both R and 8 .« The attributes x" are. ‘those
that correspond to X and x', and the ‘blocks of R 1t each
contain the unlon of the sets of tuples in the oorreSpond1ng

blocks of R and §XJ..
(6) Product (or Cartesian Product)

dolde R'

T, 88, yields ery
where the attributes of R' Xty are the disjoint union of the
attributes of R_ and S . .The tuples of R xby . are all those
that can be composed by concatenatang ‘a tuple of R with &

tuple of S .
P y

From these six b351c operatlons, it is- pOSSlble to synthesize
301n, division, intersection and difference operatlons. Thus, the algebra
of quotient relations is relatlonally—complete" [@odi] More precise de~
finitions of these operations and examples of the utility of partitioned
relations [FK] and a definition of partitiomed relations as an abstract data

type EIO@] are given elsewhere.

As is clear from the definitions above, the operation that differs
‘most from its counterpart among conventional relational operators is restrig-
tion. An indication of the poWepoof the restriction operator on partitioned

relations is conveyed by the following two examples.

Example 1: Consider the relatioﬁ=MABE—0F(DEPT PRODUCT, COMPONENT) in which
each tuple spec1fles ‘one component used by a department .in asseg-
. bling a product, The relation

(MADE-OF . [PrODUET. 2 COMPONENT]) [pEPT]

{pEPT}
then'consisru of precisely tbose departments which are self-sufficient in the
sense that they make all the components used in any of their products. Becausa
MADE~OF is partitioned on DEPT, the_reerlctlon treats all tuples for a given
‘department at once. If any COMPONENT used by the department is not a PRODUCT

‘of the department, then all tup¥es for that department arc eliminated in the

5.0

.'restriction. The projection on DEPT simply picks out all departments\eorxes4

"bbnding to-blocks‘of tuples in MADE-OF that satisfy the restriction.

‘Example 2: Consider thevrelatiOn
'EMPLbYEE(NAME,SAﬁARY;MGR,MGRrSALARY)a

Then the relation

EMPLOYEE

(R} [SALARY > MGR-SALARY]

v COntaLns all employees who work for managers that earm less than at least one

of their employees. For the purpose of set eomparlson, A>B is 1nterpretted asﬁ

"some value for A is greater than someé value for B". Three related operators g
>y >0y and W3, express respectwely, "a11 A > gome B", "some A > ali B"
and "all A > all B". Similar quantified extenslons of other camparlson opera*c

tors can also be used in restrictions.

It is important to distinguiéh the problem of supporting updates

through views from several related but separable problems:

(1) Internal representation — once having specified insertionms, deletions, OF
modlflcatlons to stored relations, we will not consider how these opera-
tlons are carried out on the internal representatlon of the stored rela—

t_lOI\S.

(2) Authorxzatlon - aside from enforcing the stated authorization constraintsy
‘our concern will be only with how to affect updates, not with asse351ng

their permlsslbéllty.

(3) Concurrency - we will assume that a concurrency mechanism provides the
effect of serializing update tramsactions. (Each transaction is a se~
quence of logically-connected updates which leaves the data base in a

consistent state [pat]).

In the next section, we describe a number of types of relationship$

that can hold between attributes,and that must be retained in user views.

5_'

Sections 3 and & discuss updates on user views that are derived by, respec-
tively, single operatlons and combinations of operatlons. In section 5, ve
give examples of how the careful design of user views and the use of the

transformations indicated in sectiomns 3 and 4 can assure the preservatlon

of constralnts in the presence of updates through user views. Section & 1n~

cludes some comments on related topics and directions for further research.

2. TYPES OF RELATIONSHIPS IN VIEWS

In order to support updates through user views, the semantic sig-
nificance or "meaning" of the 1nformat10n held in the data base must be con-v
‘51dered The deflnltlon of relations as sets of attrlbutes falls to capture
a range of important kinds of relationships among. attrlbutes . The fact that:
these propertles must be retalned no matter what relatlons are. chosen to
form the conceptual schema and user views prov1des guldance in the treatment

of updates on user views.

_Relationships may invélve attributes from several relations (c¢om~
posed relatlonshlps), or may 1nvolve only gome of the attrlbutes of a 51ng1e
EMPLOYEE (NAME, DEPT) and DEPT~HEAD(DEPT NAME) together represent a relation~
shxp between an employee and the head of his department The last relat1onshxp
is formed by the composition. of the first two. Slm11ar1y, the relation L
SUPPLY (PROJECT SUPPLIER PART, QUANTITY) canta;ns the relatlonshlp of projects

to the sets of suppllers that supply some part to them.

Software engineering principles of modular design [Yd] encourage

the use of relational schemas in which each relation expresses a 31ng1e fact.
Such 4 schema has "high=strength” in that attributes wichln a relatlon are
related and is "looselyhcoupled" in that basic relatlonshlps are contalned
within single relations. Since normallzatxon tends to produce such relatmons,
conceptual schemas -for relatlonal data bases may consist of normallzed rela~
-tions [@odl, Fagln]. User views, however, will not in general consist of.
normalized relations, yet the‘relationshiﬁs atong attributes must be preserved.
Since several distingt meaningful relationships (and arbitrarily many. non=

meaningful ones) can hold between two attributes, it is vital that each user
know how the relatlonshlps in the stored relations are represented in his v1ew.‘
Assumption constralnts can be used to check that one user's understandlng of the

relationships is compatlble w1th the understandlngs of other users.

Because a data base typically modelsachanging world,_relationships:
expressed in the data base are time-dependent. For example, the transfer of an
employee to a new department changes the relationships of employee~to'depart—

ment and employee to department-—head. Time-dependent relationships. may however,

8.

have cértain time-independent properties. For example, each’gmployee may wdrkw
in several departments at different times, but at any specified time, be °

associated with at most one department.

There are. many amgnmfmcdnt properties of relatlonships that shoulda
be preserved in user views. Some propertxes presente& elsewhere [@eﬁ] along‘
with some additional ones are discussed below. For each property, we indicate
the limitations imposed on rglatlons that représent a relationship with that -

property.

(1) Punctlonal aependenca - If, at all cimas. each value of attrm*l

(2)

bute A (or.combination of values for attributes in set A) is
related to at most one value of attribute B, then attribute B

‘s functianally dependent on A[Dat]

For example, . since eanh department has only one head at & timé,
the relationship between DEPT and HEAD-NAME is one iﬂ which

HEAD-NAME is functionally dependent on DEPT. Thus, in the rew‘
lation DEPT~HEAD (DEPT, HEAD~NAME). the functional dependence 1s

‘violated if two tuples associate different HEAD-NAME's with the

game department. Similarly, in the relat;an EMPLOYEE (NAME , nEPT,;
HEAD-NAME) , each pair of tuples with the same DEPT must also
have the same HEAD-NAME. .

Multi-valued dependence - If, at all times,‘each value of
attribute A (or combination of values for attrmbunes in set AY
{s associated with a set of values for attribute B (or a set of
combinations of values for attributes in set B), then B is |

multx—v&lued dependent on A. (Note that functlonal dependence

is the special case of multi-valued dependence in which each
set of values for attribute B is a singletdn set). Far example,
if employees are d1v1ded into teams, then EMP-NAME is multi- -
valued dependent on TFAM. Because the relation has only two
attributes, it is impossible for any confnguratlon of TEAM-
ASMT (EMP~NAME , TEAM) to violate the multmmvalued dependenee.
(Note, however, that if employees are members of at mpst one
team, then the functional dependence of TEAM on EMP-NAME re-

quires that each employee name appear only once in TEAM-ASMT) .

9.

If each team is assigned to several projects, then the rela-

" tion PROJ-ASMT (EMP-NAME ,TEAM,PROJECT) v1olates the multi-va- .

3)

“of B on A are full—dependences 1f and only i# B is not depen*.“

1ued dependency of EMP-NAME on TEAM unless every set of tuples
associating a specific team to some project consists of exactly

the same set of employee names._”

Full-dependence - Both funct10na1 and multl—valued dependencesy

dent on any subset of the. set of attrlbutes, A. Full dependgneesv‘
are Of moré interest than partial dependences since they - cprﬂﬁ'?

respond difeétly to semantic relatlonshlps All dependenceS»

" discussed in the rest of th1s paper will be full dependences

(4)

(5

unless specified otherw1se.

Totallty - A relatlonshlp from A to B is Egggl if the presence.
of an A value requires that it be assoc1ated with at least: one
B value. For example, if enterprise policy requires (policy
constraint) that every employee be ass1gned to exactly one '
department at all times, then the relat;onshlp from EMP—NAME to
DEPT is total. The totality is violated in the relation
EMPLOYEE (EMP*NAME DEPT) if any tuple associates an EMP*NAME
with the value "undeflned" (which ‘is a spec1a1 value dxstmnct ;
from any possible value of any attribute), or if some emplcye‘s

appearlng under EMP-NAME in another relation are not 1nc1uded
in this one, If the relationshmp from EMP-NAME to DEPT were not
total, a tuple could assoc1ate an EMP-NAME w1th the undefxned
value in order to indicate the existence of an employee who 1$

notﬁass1gned to any DEPT.

Surjectivity - A relationship from A to B is surjective if theyl

presenge of a B value requires that it be associated with some -

. A value. (Thus, surjectivity is the converse of totality)" »fQiff

example, since all department heads must have a department the K

‘velationship from DEPT to HEAD—NAME is surjective. In the ,ée»g

lation DEPT-HEAD (DEPT, HEAD-NAME) , the surjectivity is Vlolated

_if any tuple associates the value "undefined" for DEPT with.

some HEAD-NAME. Note that the primary key of a relation 1s a

10,

. set of attributes whose relationship to each other attribute

(6)

in the relation is both a functional dependency and surjective.’

Containment ~ A relationship from A to B is a containmert re-
lationShip (B is contained in A) if, at all times, the set of
values for B is a subset ‘of the set of values for A, For exam*
ple, since department heads are also employees, the relatlon -

ship between EMP-NAME and HEAD-NAME is one in wh;ch the : sef

' of HEAD-NAMEs is contained in the set of EM?~NAMES.. Thié”“n

¢)]

a value for A is associated wnth some B value, no other value'!

(8)

(9

containment property is violated in the relation EMPLOYEE(EM?&
NAME,DEPT,HEAb*NAME) unless every name that appears as é‘HEAD~T
NAME in some tuple also appears in some tupie as an emplbyeeﬁ

name.

Permanence = A relationship from A to B is permanent if, once!

of B is ever associated with that A value. For example, 'f\i;
employee numbers are never re~used even after an employee '. ;
leaves theé enterprlse, then the relatlonshlp from EMP~NO .tai
SOC~SEG~N0 (social gecutity number) is permanent. In the re e
lation EMPLOYEE(EM?*NAME SOCbSEC~NO,EMP-N0), the permanenca :
is violated if any tuple aSBoclates a Soc~SEch0 with an EMP~
NO that is currently, or ever has been, assoclated with ’ﬂa-1§
different SOC-SEC-NO. (In th1s partlcular example, tbere ;19;
a one-to-one relatlonshlp between the two attrlbutes, 80 the
relationship from SOC*SEC~N0 to EMP—NO is also permanent)
Acycllcépomp031tlon - A relatlonshlp from A to B where attrl—
butes A and B have the same domain has the property of acycllc
composition if and only if there is no sequence qf pdlrs, _
(a3,51)5(2;,55), (a3,b5) 5+ 05 (a,b), such that by = a for
k=1 2,...,n 1 and a1= bn'- Por example, if no employee can
be his own manager, or his manager s manager, etc, then ' tba.
relationship from EMP-NAME to MGR—NAME has the property = of

acyclic composition.

Completeness - Rather than being a property of a relationship,

completeness is a property of one attribute in the context .

of a relation. If attribute A has a known,finite domain, theﬁ%
it is complete if and only if every value appears in the TR~
lation. For example, if the attribute DEPT in the relation
DEPT—HEAD(DEPT HEAD—NAME) is complete, then every department

of the enterprlse is represented by a tuple 1n the relatlon.«

v Consistency, policy and assumption constraints may require thaﬁd
 some relationships have certain properties. As w111 be dxscussed 1n sectlon :
5, the preservation of these properties can be guaranteed by the proper

selection of the set of user views.

12.

3, UPDATES ON VIEWS DERIVED BY SINGLE OPERATORS

Con31der a user view, k’ of a set of stored relations, Vo‘ For.
sufficiently large k, we can specify a sequence of user views, V1,V2,V3,...,Vk“1,‘
such that, for i from 1 to k, each relation in V. is derived from relatlons
in Vi_1 with at most one operation of the algebra of quotlent relations. . In
this section, we will consider which updates on view Vk~1 are appropriate in
response to updates on view V, . We consider six cases to account for each
possible operation by which Vk might have been derived frpm Vk_l.

Figure 1 (which is a generalization of Paolini's diagram [PP]) in-
dicates how iterative application of the rules for handling updates on slngle
operator views suffice to handle user views derived by any number of opera =
.tions. The requested update, Uk; on uger view V is transformed 1nto an update.

k 1 °n view Vk 1 according to the operatlon by Whlch Vk was derxved from Vk 1ﬂ
The update on Vk 1 is in turn transformed into an update on V 2 ? and so forth,
until an update Uy, on V,, the stored relatlons, is obtaxned After Uy ig
‘applied to Vys to yield Vg,the upddted view, é, can be derived. If the
update transformation rules are correctly specified, VL will be precisely

what the user would expect to result from applying Uk to”Vk.

The npdatea for which we will specify transformations are insert1
-deletion, and modification of a set of tuples: For insertion, the tuples muét 4.
be enumerated, while for deletion and modification they may be ether enumeratﬁﬂg
‘or specified as the set of tuples that satisfy some condition. Any update tb&ﬁ”
would cause some constgglnt to be violated must be 1ntercepted, and the |
approprlate corrective actlon must be taken. For an authorn?atlon Lonstralnt,
the update is rejected; for a consistency constraint, the inconsistency wxrhin
the data base must be resolved; for a policy constralnt, elther the action raw
‘presented by the update must be reversed or else the policy must be changed,m
for an assumption constraint, the discord between two users must be résblved“

by either rejecting the update of one or relaxing the assumptions of the other,

Initial ‘ - New ,
Stored Relations ' .Stored Relatioms

I

/‘ \

\
<
L&

-?

§ \ Denvagl: ion
‘Operations

Transforma-’
tions of
;//// Updates
g - h s\\‘ . :
A - 7
‘ v v S N
Initital Desired L expected R a,c?tual——/'
View Update ~ New . New o
: View - View:

Flgure 1. Iterative application of transformatlon rules
for views derived by a sequence of operations.

Y4,

An attempt to insert a tuple that is already present in a rela -
tion is acceptable, but, of courée, only one instance of the tuple remaiﬂ@yin
the relation after the operation. If the tuplé being inserted haé only somé
of its attribute values specified, it is sometimes difficult to determine
whéther or not it is a "new" tuple. Ouf conventlon will be that two tuples‘f,
are the same if they (:) have the same defined value for at least one attrlbut@,
and (11) do not have unequal defined values for any attribute. Thus, in the
émployee relation, EMP(NAME DEPT SALARY), the insertion of (SMITH, TOY, #)
w1th (SMITH, *, 5000) already present would leave the single tuple (SMITH,
‘TOY 5000) in the relation. The insertion of (%, TOY 5000) w1th (SMITH * 5000)
already present would similarly yleld only (SMITH TOY 5000) . However, the
* atter situation is less clearly ecorrect because the attribute for which the'f
tuples have the game value is not a key of the relat1on. In most pract1ca1
situations, it is pOSSLblehand desirable to:ensure that every tuple inserted. h;

into a relation have defined attribute values for some key of the relatiom.

Il gbfie ﬁases, the transformation of an al]OWable update is unlquely
,détermlned while in othets, there may be several equally acceptable transtar~h

fidtions. In the latter situation, the choice of a spaC1f1c transformation can

be based on the meaning of the relations in each specific user view.

Table I summarizes the transformations of updates for views derive@;
by a single operator and'the limitations on when they are allowable. In the:ff

remainder of this section, we elaborate on the entrles in the table by dis= i

cussing each operator in turn,
A. Partitioning and De-partitioning

Slnce 1nse§§10n, deletlon, and modification are all 1ndependent of B

partitionlng, the operatlons expressed on R' can simply be applled to R ..
B. Projection

The transformation of an insertion update on a projection requlrea
that the "undefined" value (denoted here by "*") be placed in each tuple to be
inserted for each attribute eliminated by the projection. For example, the
relation EMPLOYEE(NAME,EMP# ,DEPT) might be viewed as EMP—NUMBERS(NAME,EMP%5)=A
EMPLOYEE[NAME,EMP%‘] by thé person who assigns employee numbers to new employaé§;

15 .

TABLE I. Transformation of updates on views derlved with a 51ng1ev

operation.

T - a set of tuples

B ~ - a Boolean condition -
- A - an update algorithm

X,Y =~ sets of attributes

R' =~ a relation in Vk

R,S5 =~ relations Vk 1
Update :) T ' . Sl
- Operation INSERT T DELETE TUPLES MODIFY TUPLES’
On R’ INTO R' WITH B FROM WITH B IN R'
lf)é‘rived R BY A
Relation e
=t \\\5\x
Partition Apply to R Apply to R Apply to R
R' = R/X ‘]
De-partition
R' = R*X Apply to R Apply to R Apply to R .
Projection INSERT T#
INTO R .,
R' = R[X] where T* is T Apply to R Apply to R =
-augmented with ‘ .
"undefined" values
for each attribute
, of R not in X. L
Restriction Apply to R "Apply to R Apply to R,
R'= Rl}Khﬂ (Dlsallow unless every affected block of R satlsf1es) ’
[X6Y] both before and after the update.
Union . o
R'=R @& S Apply to R and S Apply to R and S Apply to R
. and S
Product INSERT t_ INTO R DELETE t_ FROM R MODIFY t_ IN
r . T r
& . ox ‘ R BY Ar or
INSERT t_ INTO S |DELETE t_ FROM S MODIFY t IN
s . s » S BY A S
or both s
or both
R'" =RRS 1/ where t. and t, are the projections of T on the at-
tributes of R and S respectively, and Ar and As are
update algorithms treatlng attributes of R and S
respectively. ‘ -7
(Disallow unless the cross-term cqhdition is- satis ~)
fied. : :

16.

Then the update "INSERT <SMITH,17452> INTO EMP-NUMBERS" would be transformed
into V"INSERT <SMITH,17452,%> INTO EMPLOYEE ". '

Deletions from and modifications to a projection can be directly
applied to the relation which is progected Note, however, that for each ’
tuple deleted or modified in the prOJectlon, one ot more tuples w111 be delew>
ted or modified in the relation which i§ projected,. For example; the relation

SUPPLY (PROJECT , SUPPLIER, PART,QTY) iiay bé viewed as
PROJ-SUPP (PROJEGT, SUPPLIER) = SUPPLY [PROJECT,SUPPLIER]

by a person concerned only with the identities of the suppliers for each pro=
ject. The termination of the association betweeh the "Nova" project and

supplier "United General Inc." vould be indicated by

"DELETE TUPLES WITH
PROJECT‘NOVA&SUPPLIER—UNIlED~GENERAL FROM PROJ-SUPP"

which would be transformed by simply replacing PROJ-SUPP by SUPPLY. The transw.
formed update would cause all tuples indicating that a part is supplied by
United General to project Nova to be deleted from the SUFPLY rLlatlon, Whl&b

is the appropriate effect. Similarly, consider modlfylng the relation ‘
PROJ~ASMT (EMP~NAME , TEAM, PROJECT) through the view TM~PROJ(TEAM, PROJECT) = PROJ~
ASMT (EMP~NAME , TEAM,PROJECT) . Changing the ass1gnment of team "Ace" from proa

ject "Velha" to project "Nova" is indicated by

MODIFY TUPLES WITH
PROJECT=V%}HA & TEAM=ACE IN TM-PROJ
BY PROJECT < NOVA".

The transformation of this update simply replaces TM-PROJ with PROJ~ASMT, and "

the tuples of all memberé'of the Ace team will be modified.
C. Restriction

Insertions, deletions, and modifications on R’ are all transformed
by simply replacing R' with R in the update operation. There is, however, a _
condition that must be satisfied if the update is to be allowed. The condition.

is that every block of Ry into which or from which a tuple moves as a result

17.

.of the update must satisfy the restriction both before and after the update.
(By convention, an empty block always satisfies the restriction).If this con~
dition did not hold, then the view of the user making the update ‘would change;
unexpectedly by the appearance or disappearance of some tuples ‘Note that the
'acceptablllty of updates on views formed by restriction depends on the current

‘data base contents, and thus can only be determined dynam;cally.

When deletxng or modlfy1ng through a v1ew formed by restriction, a
full characterization of the tuples to be affected should be given to avold
‘1nadvertently affectlng othérs. This danger is avoided by requxrlng that de~
letions and modlflcatlons speclfy the value of all attrlbutes on whlch the

restr;cted relation is parti%1oned.

Flgure 2a shows an 1nstance of the relatlon SKILL—ASMT(EMPLOYEE,,
SKILL PROJECT) wh1ch is partltloned by EMPLOYEE We w111 con51der updates on .
the three dlfferent views of SKILL-ASMT 1nd1cated in 2b. ASSume that NOVA and
BETA are prlorlty projects, while VELHA is not. Then the v1ews SOMB~PRI ALL—
PRI and ONLY-PRI are restr1ct1ons that 1nc1ude only those employees that
respectxvely work on at least one priority project, work on both pr10r1ty pro-
eJects, and WOrk on 1o pro;ects other than priority ones. Flgure 2¢ gives se—-
(verel examplé updates on the restrictions. The reader ecan verlfy that only the‘
updates sat1sfy1ng the condlcian stated above are allowable. Note that the
bulk inseértion and bulk deletlon on ALL~PRL are allowable even though there.

is no allowable sequence in which the tuples can be 1nserted or deleted indi~

vldually.

SKILL-ASMT (EMPLOYEE, SKILL, PROJECT)

§Ml$ﬂ$ PLUMBER ' VELHA
ARNOLD ELECTRICIAN VELHA
ARNOLD CARPENTER NOVA
ARNOLD ~___ CARPENTER BETA
JONES PLUMBER BETA
JONES PLUMBER VELHA
WILSON ELECTRICIAN "NOVA.

(a) The relation‘SKILL~ASMT partitioned on EMPLOYEE

18.

SOME-PRI = SKILL-ASMT[PROJECT % {NOVA,BETA}]
(where XY iff XNY # @)

ARNOLD " ELEGTRICIAN VELFA

ARNOLD - CARPENTER ‘NOVA
ARNOLD ~ CARPENTER BETA
JONES . PLUMBER BETA
JONES __PLUMBER - VELHA
WILSON ELECTRICIAN ~ NOVA

ALL-PRI = SKILL-ASMT [PROJECT 2 {NOVA,BETA}]

BRNOLD ~~~ ELECTRICIAN VELHA
ARNOLD CARPENTER NOVA -
ARNOLD GARPENTER- ‘ ‘BETA .

ONLY-PRI = SKILL~ASMT [PROJECT C {NOVA,BETAY]
. ,

[WILSON . ELECTRICIAN ______ NOVA |

(b) Three restrictions of SKILL-ASMT
update = ‘ : allowable? v : why not?

.On SOME-PRI:

INSERT (ADAMS,PLUMBER,NOVA) - . yes
INSERT (ADAMS,PLUMBER,VELHA) no inserted tuple doesn't appear *
INSERT (SMITH,PLUMBER,NOVA) no an extra tuple also appears
DELETE (WILSON,ELECTRICIAN,NOVA) ~ yes o
DELETE (SMITH,PLUMBER,VELHA) no tuple is not in view
On ALL-PRI:
DELETE (ARNOLD,ELECTRICIAN,VELHA) ~ yes ‘
DELETE (ARNOLD,CARPENTER,NOVA) “no entire block disappears

DELETE { (ARNOLD,CARPENTER,NOVA)
~ (ARNOLD, CARPENTER, BETA)
(ARNOLD .ELECTRICIAN,VELHA)} - yes

19.

INSERT (SMITH,PLUMBER, NOVA) o no . tuple doesn't appear

INSERT { (SMITH,PLUMBER, NOVA)
(SMITH,PLUMBER,BETA)
(SMITH, PLUMBER, VELHA)} : . yes

On ONLY-PRI:

" INSERT (WILSON,ELECTRICIAN,BETA) = yes
INSERT (WILSON,ELECTRICIAN,VELHA) no- - entire block disappears

'(c) Examples of allowable and not allowable updates.

Figure 2. Examples of updates on views derived by restriction.

As an example of the neéessity of fully characterizing the tuples.
to be affected, consider the following. In order to release Arnold from anyi
'dut1es as an electrician or to move him from the Velha prOJect ‘to the Beta

’ pro;ect, a user of the ALL-PRI view mlght use updates

DELETE TUPLES WITH SKILL=ELECTRICIAN FROM ALL-PRI
?,qr | |
o MODIFY TUPLES WITH. SKILL=ELECTRICIAN N ALL-PRI

- BY PROJECT <« BETA

j-However, because Arnold's name (the partltlonlng attribute) is not spec1f1ed
" in the updates, Wilson as well as Arnold would be affected by the transformed
pdates applied to SKILL-ASMI.

&

D. Union

Insertions, *deletions and mod1f1cat10ns on a view which is a unlon
should be applied to each of the relatlons merged by the unLon operatlon. The
only exception is that insertion mlght be done to only one relation or the -
other if some basis for the choice is available. Similarly, if it is known
- somehow that no tuple affected by a deletion or modificatiqn lies in one of
the relations contributing to the union, thea the update need not be appliéd:'f
to that relation. Because of the choice in inserting in a union, a modificé%:'

tion may not have the same effect on the stored relations as the apparently .-

20.

equivalent deletion and insertion.

E. Product

Updates to views formed by a product are allowable qnly under a
‘stringent condition that, in effect, never holds; In the next section, we

indicate a way of avoiding this apparently severe limitation.

Let T be a set of tuples to be inserted into R' = R 8 S and let
t. and tg be the projections of T on the attributes of R and S, respectively.

Then T is inserted into R' by inserting t. into'R:ané té into §. But
(R® Tr) Q (s ® cs)_= (R®S)o6 (R8 ;s) ® (tr R S) 6 (tr] ts),

so the insertion is allowable (i.e. the intended effect on the view is achigved)

if and only if

RB®S)eT=(RB8S)S (RA ts) 6 (tr Q 8) + (tr] ts)7
A sufficient condition for this equality to hold is

[(T =t 8 ts) agd (R = t or S = FS or R=S=¢)]

which we will refer to as the “cross-term condition". (Appendix A\cohtains'a‘
development of the condition). The first part of the cross—term condition re—
quires that T consist of all possible pairings of tupies from its projectioﬁ.i
on R attributes with tuples from its projéction on $ atﬁ;ibutesc This require-
ment is trivially sat®sfied if T consists of only one tuple. The second part.
of the cross-term condition requires that either R or § be identical to the

projection of T on the appropriate attributes, or else fhat both R and S ’be

empty. N

While the cross-term condition is not 'necessary" (in the formal
sense) for an updaté to be allowable, only intricately contrived examples in
which the set of tuples, T, has a carefully chosen structure yield allowable

insertions in the absence of the cross-term condition. For deletion andvmodi—

21".

ficétion, the same cross—term condition is sufficient to guarantee that the
update is allowable (but note that R=S=¢’éannot hold). Deletions . are
accomplished by deleting from either R or § or both and mbdiﬁicationsby‘chaﬁgiﬁg‘

either some tuples of R or some.tuples of S or both.

22.

4. VIEWS DERIVED W/ITH SPECIFIC OPERATOR COMBINATIONS

In the previous section, we discussed the transformatlon of update
operations on views formed with each of the six basic ‘operations of- the alga»f
bra of quotient relations. We indicated that views derived using more than one
operator could be treated by iterative appllcatlon of the transformation ruleé
for-siﬁgle 6pérations._1n th1s section, however, we will give special attentlon
to certain combinations of operatlons for which some updates are allowable that
would not be allowable if the transformations for ‘the operators were applled
individually. Some combinations of operatlons are partlcularly 1mportant va
cause they syntheSLZe more powerful operatlons (such as 301n") from the six :

basic operations.
A. Restricticn of a Fully-Partitioned Relation

If R 18 fully~part1t10ned (i.e. partitioned on all attrlbuteQ, s0
that each tuple is a block), then the restrictlon operation R' = R[@Oﬁ]
gpecializes to the usual restriction operation on relations [baé] Smncg
each tuple is a block. in R, updat:e operations on R’ cannot have the side-

effects of makmg tuples appear or disappear in R as a result of occupying .
the same block of R as a tuple affected by the update. All deletions aﬁd'alik
insertions or modifications for which the inserted or modlfled tuples satisfy-
the restriction are allowable. The allowab111ty of updates no 1onger depends

on the current data base contents.
B. Projection of a Restriction

In some views, a restriction is jmmediately followed by a projec— -
tion that eliminates the attribute on which the réstriction was based. ‘
Stonebraker [Std] gives” an example which shows that the restriction may de-

: Fermine a specific value for ome or more attributes eliminated by the projec-
tion. Thus, in transformlng an insertion 1nto a view formed by ‘restriction
followed by projection,‘we can do better than supplying “undefined" values for
all the attributes not in the projection. For example, if the relation
TEAM-ASMT (EMP-NAME ,TEAM) associates employees with teams and each team leader
is limited (authorization constraint) to adding employees only to his own

team, then an appropriate view for the leader of team Bravo to have is

f23gf
BRAVO-TM (EMP—NAME) - (TEAM~ASMT [TEAM—BRAVO]) [EMP-NAME]

Then insertion of the tuple (WILSON) into BRAVO-IM woul‘d be transformed into °
 the insertion of (WILSON BRAVO) rather-than (WILSON *) into TEAMrASMT. ‘Si—‘:
,,mllarly, if a restriction demands equallty between two attrlbutes, only onefﬁ
of wh1ch survives the projéection, then the value of the surV1v1ng attrxbute{ﬁ
is duplicated for the other attr1bute when an lnsertlon 1nto the prOJectlon:’7

is transformed xnto an insértion into the relatldn that 1s restrlcted and}

projected.
C. Union of Restrictions

. “1f a view is formed as the union bf several non-overlapplng res*”‘
trictions on the same relation, then the: ch01ce of the component relatlon lnto
which a tuple ingerted into the union must be placed is determined. con—_ﬁﬁ
sider again the relation TEAM-ASMT and its restrictions by teams,

L

BRAVO-TM = TEAM-ASMT [TEAM=BRAVO]

and so forth for all other teams. An insertion of (WILSON,BRAVO) inte the.
view _— l |
| TM~SET = BRAVO-TM & ACE-TM © ...

"should clearly be transformed into an insertion into only BRAVO«IM;
D. Union of Pertitioned Relations |

[T A ﬁeakeﬁimechanism(heuristic only)for resolving the ambiguity of.
transformiﬁg insertions into unions is available if the union merges pér—
tltloned relations. If only one of the relations merged by the union has a '
non—-empty block into yhich the tuple belng 1nserted could be: placed, then we
may choose to transform the insertion into the union into an 1nsert10n only
into that relatxon, with the intention of grouplng tuples with the same

values for the partitioning attributes.
E. Restriction of a Product

Restrictions of products are particularly important in the algebra:

of quotient relations since they are used to synthesize "join" operations. If

24,
attributes A and B are comparable and they partltlon respectlvely relatlons
R and §, then R' = (R B S) [A—B] is the “equ1—301n" Epaﬁ] of relatlons
‘R and S. Despite the severe 11m1tat10ns seen. in the last section on updates'
to products, updates to restrlctlons of producLs are allowable in many 31tua-

tions of practical importance.

In the case of a natural 301n, the restrlctlon ellmlnates from
the product all blocks except those formed from correspondlng palrs of blocks %
from the relations contributing to the product, Thus, by succe351vely con~ g
sidering the interaction of each pair of corresponding blocks, we cons1der all

the interactions between the contributing relations.

The condltlon for updates to a natural join (formed as the restr1c~f
tion of a product) to be allowable is that each pair of correspOnd1ng blocks
satisfy the cross~tefm condition of section 3, with respect to the tuples
enterlng or leaving the block due to’ the update. The cross term condltlon 13 f

guaranteed to hold if either

(i) the relationship from A to B is surjective and all other

attributes of R are functionally dependent of A,)

or -
(ii) the relationship from A to B is total and all other attributggg

of S are functionally dependent on B.

(This is equivalent to the fact a "loss—less Joln is guaranteed 1f the JOln
attribute(s) is (are) a key of at least one of the relations Eﬂﬂ) For exampleg
consider the relation BOSS(EMP*NAME DEPT ,HEAD-NAME) which is the join on DEPT :
of EMPLOYEE (EMP-NAME,DEPT) and DEPT*HEAD(DEPT,HEAD~NAME). (We omit the redunﬁ‘f{
dant occurrence of the DEPT attribute in the BOSS relation). The iosertion‘of;fo
the tuple (ARNOLD ACCOUNTING,BLAKE) into the BOSS relatlon could have any oneli{
of several effects. If some tuple of BOSS already indicates" that BLAKE is" head

of the accounting department then the 1nsert1on is transformed 1nto just :
INSERT (ARNOLD,ACCOUNTING) INTO EMPLOYEE If no tuple of BOSS refers to the _‘”
accounting department, then two insertions are needed‘ INSERE(ACCOUNTING BLAKE)‘
INTO DEPT~HEAD and INSERT (ARNOLD, ACCOUNTING) INTO. EMPLOYEE.)

1f either Blake or Arnold is associated with some depaxtmont besides accountlng;
then the insertion is intercepted because it would lead to a v1olat1on of the. -

functional dependency of either HEAD—NAME on DEPT or DEPT on EMP-NAME.

Uuugv
S 5E ~7

UNiVERSIDADE

4

’allowable under the same COﬂdlthHS as 1s an 1nsert10n.

‘gf a deletlon ty
being joined. A
;déieted if all tu
%éing deleted from the join.

N employees to departments and departments to floots.

‘ ‘allowed by Stonebraker to move also’ all

25._'

Delétion from a view formed by the restriction of a product = is
The transfdrmatioh

pically results in a deletlon in only one of the relatlons

tuple in either of the relatlons belng joined can only be

ples to which it contributes in the join are among those ;

Modifications to a Joln'may have undesirabie side effects. Stone-
braker [Std] gives an example 1nvolv1ng the join of relatlons relatlng
The attempt to move Just

ne f£loor to another by mbdlfyxng one tuple of the 301n is

one . employee from o
other employees in the same depart~
ment. We would 1ntercept such an update as an attempt to violate a functmnnal
ssumlng that all members of one department work on the same E

dependency (a
floor) In order to move an entlre department from one floor to another, the
‘ modlflcatlon to the join would have to 1nclude all employees in the depart*ni
. ment explicitly.
F. ?rojeétion of a Restriction of a Product
Join operations (restrictions of products) are often followed by
Fof 7

. proje

‘flexample,

ctions which eliminate either one or both of the join attrlbutes.

the join of TEAM»ASMT(EMP-NAME TEAM) and TM-PROJ(TEAM,PROJECT)
PROJEGT) or even EMPwPROJ(EMP*NAME'”

bute. An

Tmlght ‘be viewed as PROJ—ASMT(EMPHNAME TEAM,
PROJECT) by progecting out one or both occurrences of the. TEAM attri

insertion of (CLARK,ALPHA, NOVA) into PROJ~ASM$ can clearly 1ead to t
riction 311—-»ﬂ

he dup11~‘

cation of ALPHA before insertion to the product, since the rest
However, the 1n~'

mxnates any tuples. of the product w1th dlffermng team names.
no way of determi- '

sertion of (CLARK NOVA) must be disallowed since there is
"undefined" value in this situation is undesirable

ere is no way to 1nd1cate

lace). The attempt to
here is no way of knowing'

ning the team. (Use of the
since it would appear in two different places, and th

that the same unspecified value must appear in each p

delete (WILSON, VELHA) must also be disallowed since t
progect Velha, or to de-

whether to remove Wilson from teams associated with
reasonable to require that -

assign ail Wilson's teams from projeét Velha. It 1is

accomplished by updates from users with the views TEAM—-ASMT,

such a deletion be

oxr TM-PROJ.

26,
. Union of a Join and a Remainder

In the last example of the previous section, the fact that PROJ=
ASMT was the JOln of two relations caused TEAM to be multi~valued dependent
on EMP-~NAME in PROJ-ASMT. IE, however, the assignment of a.team to a project
does not necessarily include all members of the team, then the multi-valued
dependency would no longer hold, and PROJ~ASMT would no longer be decomposa-~
ble into two component relatioms. In this situation, a different form of de-
composition, £irst suggested by Furtado and Kerschberg [FK] , might be useful.
Just as we may express an integer, i, which is not divisible by j, in the
form

f=j*qe+rx

where q and r are respectively the quotient and remainder of dividing 1 by i,
we may also decompose relations that do not involve multi—valued dependencies)
into the join of two relations plus some additional tuples. While natural mo=
tivations for such a representation are difficilt to identify, the represen—
tation may be of importance as an artificial means of easing the limitations
on insertions into joins. Updatea not allowed on a join may be allowable on the
union of a join and a remainder relation whose attributes are the same as thcaa
of the join (after the duplicate copy of the join attribute is projected out).

Yor example, assume that projects include tasks and each task_requirea
a set of skills, If each task requires the same set of gkills in every project
where it occurs, then skills are multi-valued dependent on tasks, and the re=
lation P18 (PROJEGT,TASK,SKILL) can be decomposed into PT(PROJECT,TASK) and
TS (TASK, SKILL) . The relation PTS can be recovered as the natural join of PT ‘
and TS on TASK. 4

1f, however, some tasks occasionally require.additional skills in
certain projects, then PTS can no longer be represented as simply the join of
PT and TS. Instead, it is necessary to form another relation specifically to
indicate the occasional additional skills needed for certain tasks 6n certain
projects. Then PTS is decomposable into PT,TS and OTHER-PTS, and is reeovefed
as the union of OTHER-PTS with the join of PT and TS. Figure 3 shows how
updates on such a representation work. Starting with the design task requxr;ng
the same skills in each project, we wish to ;ndxcate that, on project Nova only,

the design task now also requires the radiatiom=control skill. If PTS were

simply a join, this update could not be achieved, but with the remainder re-

gﬁ??

presentatlon, the new tuple is. sxmply ‘placed in OTHER“PTS (1nsertinn #51)

‘If a new projett, Beta, 1nvolv1ng des1gn with its usual skllls, is’ deflned,
then an insertion into PT sufflces (1nsertxon ﬁEZ) CIf it is determlned that;
design always requires someé prevlously omitted Sklll’ then an 1nsert10n 1nxa
TS is needed (msertmn #3). '.l.‘he last case of flgure 3 (msert:.on #4) IS
more complex. It could be achleved by sidply plac1ng the 1nd1cated tuples:

1nto OTHER—PTS. It is de31rab1e, however, to malntaln a "reduced form 1n
whlch 01HER—PTS ‘contains as few tuples ag p0531b1e. Algorlthmlcally ma1ntaln1ng

' uch a reduced form through updates appears to be difficult.

Thé similar 1dea of a "deduction relatlon ,. which contalns tuples

that- do net appear in the view but are generated by the join, facxlltateaf"

representatlon of situations whetre the ‘exceptional cases are m1331ng cuplevl
tather than extra ones. Remaxnder relations and deduccmon relatmons can be :
»used simultaneously, but the problem of mamntalning reduced form. is made more‘f'
dlif;eult. ' S

28,

Providing the view

PTS(PROJECI,TASK,SKILL)

from the relations
PT (PROJECT,TASK), TS(TASK,SKILL), and
OTHER-PTS (PROJECT , TASK, SKILL)

as .
PTS = (PT ® TS) [TASK=TASK] ® OTHER-PTS.

(The relations PTS,PT,TS, and OTHER-PTS are all partitioned on TASK, and we
show only the block for TASK = DESIGN below). '

Initial PTS: Initial PT:
PROJECT TASK SKILL _ PROJECT TASK_

. NOVA DESIGN STRESS—ANALYSIS NOVA DESIGN
NOVA DESIGN HUMAN-FACTORS VELHA DESIGN
VELHA DESIGN STRESS—ANALYSIS
VELHA DESIGN HUMAN~FACTORS Initial TS:

TASK SKILL

DESIGN STRESS—-ANALYSIS
DESIGN HUMAN~FACTORS

-

(Initial OTHER-PTS is enpty)

1. INSERTv(NOVA,DESIGN,RADIATION*CONTROL) INTO PTS
‘ ' => Apply the insertion to OTHER-PTS

2. INSERT {(BETA,DESIGN,STRESS-ANALYSIS)
(BETA,DESIGN, HUMAN-FACTORS)} INTO PTS

=> INSERT (BETA,DESIGN) INTO PT

3. INSERT {(NOVA,DESIGN,FORECASTING)
(VELHA,DESIGN,FORECASTING)
(BETA,DESIGN,FORECASTING)} , INTO PTS

=> INSERT (DESIGN,FORECASTING) INTO TS

4. INSERT {(VELHA,DESIGN,RADIATION-CONTROL),
(BETA,DESIGN, RADIATION-CONTROL) }

=> INSERT (DESIGN,RADIATION¥CONTROL) INTO TS
DELETE (NOVA,DESIGN,RADIATION~CONTROL) FROM OTHER-PTS

Figure 3. Some operations on a view composed of the union of a
join and a remainder.

29,

5. ENFORCING AND CHECKING CONSTRAINTS BY VIEWS

In the last two sections, we have presented transformations of
updates on views into updates on the relations from which the view is derived.
In some cases, the relationships between attributes were requlred to have ”-x
certain properties for the updates to be allowed. In this section, ve demong—
trate through a sequence of examples how such propertles, as well as other

constraints, can be either automatlcally enforced of at least checked us:ug

‘carefully designed user’ views.

Enforcxng constralnts, involves using views as Sscreéns, to'limit
the changes that each user can make in the data base. The data base is Lnxtld”'
lized to a state that satisfies all constraints, then updates are permltted '
only through user views that are guaranteed to intercept any update that could

possibly cause the data base to enter a state that violates some constraint.

heck1ng constralnts, on the other hand, involves constructing new’ ‘
views tO serve as wmndows. In order to check some constraint through a v1ew,:
we derive a second view from the given one, removing by the derlvatlon any
violations of the constraint in the first view. If the newly. derived v1ew is
not identical to the initial view, then the initial view did not satisfy the
constraint. In some situations, an!' aitemptéd update must be provisionally
executed, and then un~done if checking reveals that some constraint has been . -

violated.

EnforCan is an aggressive approach to presexvmng constraints,
whereas checking i4 a defensive approach. Since checking is difficult to carry
out. efficiently, it is preferable to enforce constraints whenever possible.
The allowabx]xty of some updates can be determined in terms of the update, the
view ‘on whlch the update is expressed, and the view to which the transformed
update is to apply. For other updates the current contents of the data base ;‘
must be examined in order to determine whether or not the update is alLowable.
The former type of updates can be handled by enforcement of constralnts alone,

while the latter require that constraints be checked,

Most authorization constralnts can be enforced by appropriately

des1gned user vxews. For example, the relation LMPLOYFE(EMP~NAML,JOB TITLF

30.

'SALARY) might be seen through a view in which the salary is projected out, or
in which a restriction eliminates all tuples with, for example, the job title
"industrial spy". In this way, not only is the sensitive information itself
cbncealed, but even its existence can not be detected by users of the view.
.Also, users are unable to modlfy or delete the sensitive 1nformat10n sxnca o

the vatlable names are undeflned with réespect to their view.

| Moré cofiplex authorization constraints can also be handled. If a
user is allowed to see all %aiariéé,'Buf'héy not increase any salaries beyo@@*‘
$ 50 OOO then he can be given a direct view of EMPLOYEE through which no ‘
-upddtes are allowad plus a viéw that allows updates but restricts salarles to
be $ 50, 000 or less. Considér, however, an authorlzatlon constraint which alluwa

raises to be glven to only thosa employees who currently earn less than the :
average salary in their department. Since the permissibility of a raise tohan i
. individual can only by judged by examining the current data base contents, ng -

view is able to enforce the constraint; it can only be checked.

Consistercy constraints, by their nature, 1nvn1va at 1east two

pieces of informatibn. For this reason they cammot be enforced or even checked

by views alone. Remcmber,'also, that consistency constraints are not guarantaa'f

to hold after every update, but only at, the end of each transaction. Thusg,
_updates that intréduce temporary inconsistencies during the execution of a
transaction must be permitted. For example, the consistency constraint that

the enterprise budget equal the sum of the departmental budgets is ;gmpqrg‘éifa

rily violated during each transaction that changes any departmental budget ;n _

because either the change to the departmental budget or the change to the eﬁ%gf

terprise budget is done before the other. :
4

Some policy constraints can be enforced by views. If policy dictdcesf

that all salaries must satisfy the minimum wage, then every viéw through'whiChﬁi
‘salaries are established or changed should include the restrlctlon, SALARY. >
MIN-WAGE. Similarly, if every employee must be associated with some department

as a matter of policy (the relationship from employee to department is total},

then insertion of tuples representlng employees should be permLtted only througj_
views that include the restriction [bEPT # "*ﬂ], which permits the 1nserblon_9§;

employees only if their department is specified.

31. .

Because such properties of relationship as completeness, functional
dependence, and multi-valued dependence are based on values in tuples ‘other -
than those directly affected by an update, the current data bage contents ,-isgf

necessarlly 1nvolved in checking that such constraints are preserved through

an update. For example, the constraint that no one can be assoc1ated thh‘mor f

than one project at a time requires that the relatlonshlp from employee name
to pro;ect be a functional dependency. If the agsociation of employees to prawz
jécts is a contained felationship in a relation that 1nc1udes name, project 7

and task for each task of the empldyee, then the funct10na1 dependency from ;

employee name to project can be checked by the derivation express10n

EMPUW = (((BPf 3@ FUP {m})[NMI'ENMZ]’)[PJfPJé]) M, .23, , 7K,

In this expresSibh, two instances of EMP relation with different’ﬁértitioningé{
are Joined on name. The origihhi partitionings guarantee that one project
attribute of the join can have only a 31ngle value in each block of the Joxn,
but that the other project attribute will have more than one value if and only
if tuples indicate that the employee is associated with mote than ong pra;ectaQ

Thus, the reatriction that the sets of values for the two project attributes f

be 1dentxca1 deletes the blocks corresponding to employees asgociated with
more than one project. The final projection simply causes EMP-VW to have th@ i
game attribute structure as EMP. An attempt to enter into EMP-VW a tuple Lhatt,

aésodiates ah emplcyee with a department different than the one w1th whlch;h

is already associated would fustead cause removdl of the employee from EMP~-VW

Because this behavior of the view is not cons1stent with the intention of tha

update, the update is unacceptable, and EMP is restored to its state betare‘ti ;

¢

attempted update.

The derivation expression for PROJ-VW is complex and dées not
neceésarily represent the procedural method of checking the functional depenF ;
dency. It does, however, provide the formal basis for assuring the correctnes
of the interactions between the process of supporting updates through uger :
views and the process of checking constraints, whether by actually deriving

views or by more direct methods:

‘ Because the acceptability of some updates is guaranteed by the pre-
senice of certain properties (as seen in sections 3 and 4), the effort in o

asse°s1ng the pcrmxsslblllty of some updates can be’ reduced by notlng the pre—

32.
sence of constraints that preserve the properties.
Constraints that require the preservation of multi—valued depen~
dencies can be checked in a manner similar to that used for functional depen-

dence. Assume that the relatlonshlp of team to employee name is a mu1t1*va1ued,ﬁ

dependency, and that employeeés can belong to more than one team..Then the vxew‘k

PROJ (MM, TM, PJ)

must contain tuples for the same set of employees for each project to whlch
that team is assigneéd. This requirement can be checked by doing all ;nsertlona;f

deletions and modifications through the Viéw
PROJ-VW = (((PROJ{TM’P 518 PROJ {m})fTMfTMe]) [N, =,]) [Ron, T, LB]
' This derivation has the effect of eliminating all tuples associating a team ma

a project unless there is one tuple for every employee that is ass1gned to any

project in connection with that team.

1f a policy constraint requires that employees only be a331gned tq

proJects with leaders, where the view for inserting emplayees includes the«‘Vﬂ
_relatxons EMPE (NM,PJ) and PROJ (BT, D), then the constralnt can be checked by
“doing updates to EMP on EMP-VW instead where

EMP-VW = (((ﬁm{m}@ PROJ,14) [PJ1=PJ.2])[LD # ") [t 3] .

Since the -derivation eliminates any employee assigned to a project;
that is either not in PROJ or has an undefined leader in PROJ, inserticns of

employees associated wjth leader-less projects are impossible.

As:umleon constraints can be preserved in at 1east two dlfferent :
ways. The most stalghtforward is to lncorporate checks of the constralnts
into the derivation of the view. In this case, the view must be re~der1ved
whenever any user attempts an update that might jepordize the constraint.

The necessity for re-deriving the views of several users each time any user

makes an update is clearly undesirable.

33.

» A second approach to maintaining assumption constraints is to de-

" termine corresponding constraints on the stored relations such that the pre—
servation of these constraints guarantees the preservation of the assumptlon
constraints. The new constraints on the. stored relations can then be |

treated in exactly the same fashion as policy or consistency constralnts. That
is, for some constraints, appropriately constructed views for all updatas can
enforce the coﬁstraint, while for others, the constraint must be checked by

re-derivation of the view after each update.

The amount of checking reduired to pfeséfvé constraints increases .
with the numbér of different users allowed to change the information involved.
in the constraint. For this reason, there is ‘a temptation to limit the (
| humber-of users permitted to update 1nformat10n. Unfortunately, such an attempt
to decrease the expentse of checking constraints will increase the amount of . '
¢oordination required to otcur among the users. For example, if only the .
Personnel department is authorized to update information about employees,‘thén‘
all other users who initiate changes affecting employees must do so by reques—
ting that the change be made by the Personnel department. while such centralie:
zed control has been desirable in the past, it is no longer necessary if ’
appropriate conttols on access to and modification of information are provxded"

by the provision of user views for updates.

Elsewhere [Bﬁ], we give an extended example of how several users
cooperate in a simplified enterprise model, and how the careful design of v1ews

" for updates can guarantee the preservation of constralnts.

34.

6. DISCUSSION AND CONCLUSIONS

We have treated each derlved view as consisting of relatioms derived
by a few operatlons from other relations, which may be stored relatioms, or may
" themselves be derived relations. Thus, it is p0551b1e to express one view 1n
terms of others, as has been claimed desirable by some [TKH Our approach also
provides views with a greater degree of independence from the conceptual schema.
than do previous approaches. While the conceptual schema should not change O”ten,

uSers:should be insulated as much as possible from even occasional changes_fbaé],

As an example of the independence of views from the conceptual schema,
con51der the attributes employee name, skills, and project, where each employee
is associated with only one project (i.e. the relationship from name to project

is a functional dependency). The conceptual schema might 1nc1ude either the re-.
lation

ESP (NAME,SKILL,PROJECT)
or the two relations

ES (NAME,SKILL) and EP (NAME , PROJECT) .

These relationsare related as follows:

i

ES = ESP [NAME,SKILL]
EP = ESP [NAME,PROJECT]
'ESP = ((ES ® EP) E\IAME =NAME,]) D\IAMI'I,SKILL PROJECT

1

Because ESP can be expressed in terms of ES and EP a chénge from the choice:
of ES and EP for the conceptual schema to the choice of ESP may affect the 1
user views only in that each occurrence of ES or EP in a derivation expression
is replaced by the equlvalent expression involving ESP. The change from ESP to

" ES and EP can be handled similarly.

No matter what choice of conceptual schema is made, any constraints
‘(like the functional dependency from name to project) must be preserved. |
Because the constraints are preserved in both choices of conceptual schema,
the effect of any update as observed through a view is also independent of the

choice of conceptual schema.

35,

The pféservation of constraints using specially-designed user views,
as we have discussed, contributes to the semantic characterizatibn of felatio—
nal data bases, and relates to several other recently developed concepts. Roles
Dﬂﬂ allow a s1ng1e entity to be represented in several ways in the data base
31mu1taneously. For example,. the same person may be both an employee and a share-
holder of a company. Since the identifiers of employees (employee numbers) and
‘shareholders (shareholder numbers) are typically not related, it is difficult

to assemble all the information about an individual. We would handle the con~
cept of roles in our approaéh by using entlty relatmons as well as cmnstraxnt%.

“Entlty relations prov1de a cross-reference table for each type ent1ty to show

 the correspondence among the different identifiers that refer to the same
entity. Constraints aB&ure, where necessary, that update transactions account
for the fact that an Update of information about an entity in one of its roles
may necessitate a correspondLng update to information about the entlty in other

roles.

"Generallzatlons" [SS] accommodate sets of entities in which all
enticxes have certain attrlbutes, but various 1denL1f1able subsets of entities
d1ffer in the add1t10na1 aLtrxbuLes they possaﬁs. For example, a company has
employees with many different an tltles. While certain aktributes apply to
all employees (namé. salary, years with compaﬂy. etec.), others are specific to
each job title (salea guota for salesmén, typing apeed For secretaries, etu.). -
Because the relational model requires that all tuples in one relation ‘have the
game attributes, the relation descrxbing employees would have to have many
attributes, of whmch most are irrelevant with raspect to each spmciflc emp]ayaa.
The few attributes with meaningful values for an employee would depend orn the
employce's job title. A more sophlstlcated golution would consist of one rela~
tion containing the attributes relevant to all employees plus one relatlﬁh for
éach job title, containing the attrlbutes televant to the job tlee. In this
case, assembling all the information about each employee would involve a “join'
(on employee number and job title) of the relation containing the commor |
attributes with the (heterogeneous) set of relations for the job titles,

yielding another heterogenous set of relations: Such a heterogenous set of
relations may bé thouglit of as & single partitioned rglétion of generalized
form in that different Blooske may have difforent sttribute structures,

In this paper, we have demonstrated that a broad range of updates
can be safely expressed through views. We have indicated the kinds of trans-

formation techniques required to determine the operations on the stored rela-

36.

tions that are appropriate to affect an update expressed through a view. Tbe¢
key concept in devising the transformations was that certaln properties of
relatlonshlps, whlch can be indicated as constraints, are present 1n every

correct view.

With carefully des1gned der1vat1on express1ons for v1ews, it. 1is
possxble to guarantee the preservatlon of certaln declared constraxnts. Whlle
the derivation expressions become unw1eldy and dlfflcult to understand va=
rious optimizations can make their use more efficieént than 15 apparent. Bqt
even if the use of such derivation expressions is expenslve, we feel that it
is preferable to the alternatrve. to allow updates to be expressed only through
views whose structures happen to coincide w1th some portion of the stored re~

lations.

ABC
BD

Bro

GGT

- Codl

Cod2

“EC

FK

CLP

cs

37,

 REFERENCES

Astrahan, M.M. et al, System R: A Relational approach to data base '
management, TODS 132 (June 1976), 97-137. ‘

| Bachman, C.W. and M. Daya, The Role concept in data odels, Pree;‘ef_

Very Laige Data Bases Conferenée (1977).

Brodie, M.L., A Fotmal approach to the specification and verlflcatlon

of semantlc 1ntegr1ty in data bases, Ph. D. Thesis, Unlver31ty of To =

" ronto, in preparation.

Chamberlxn, D.D., J.N. Gray, and D.D. Traiger, Views, authorlzathn
and locking in a relakmonal database system; Proc. AFIPS NCC, vol.44

(1975).

Codd, E. F., Récent investigation into relatlonal data base systems,
Proc. IFIP Congress, North-Holland Publ. Co., Amsterdam (1974)

Codd, E. F., Relational completeness of data base sublanguages, in Da~f

ta Base Systems, red, R. Rustin, Prentlce-Hall Toronto (1972)

Date, C.J., An Introductlon to Database Systems, an edltlon, Addlson*

- Wesley, London (1977).

Eswaran, K. P. and D.D. Chamberlin, Functional spec1f1cat10ns of a su°*5
system for data base integrity, Proc. of Very Large Data Bases Confe *)
rence (1975&

. Furtado, A.L. and L. Kerschberg, An Algebraof quotient relstions,

Proc. SIGMOD Conference (1977).

e

Gray, J.N., R.A. Lorie, and G.R. Putzolu, Granularity of locks in.a

large shared data base, Proc. of Very Large Data Bases Conference
(1975). R : |

GUIDE/SHARE Data Base Task Force, Data base management system require~
ments (1971), '

" PP

SC

Sch

SF

Ss

Sto

IR

Tom

Web

YC

38."

Hammer, M.M. and D.J. McLeod, Semantic integrity in a relational daté

base system, Proc. of Very Large Data Bases anference,(1975)f

Paolini, P. and G. Pelagatti, Formal definition of mappings in a data

base, Proc. SIGMOD Conference (1977).

Rissanen, Jf and C. Delobel, Decomposition of files, a basis for data’

storage and retrieval, IBM Research Repoft RJ 1220 (1973).

Smith, J.M, and P.Y: T. Chang, 0pt1m1z1ng the performance of a relat10~
nal database interface, CACM 18,10 (1975) '

Schaefer, M., On certain securlty 1ssues relatlng to the management of
data, in The ANSI/SPARC DBMS Model ed. D.A, Jardlne, North~Holland
Publ. Co., Ansterdan (1977).

Sevcik, K. C. and A.L. Furtado, Complete and compatlble sets of update,

operations, Technical Report, Pontificia Unlver31dade Catollca (1977),

Smith, J.M. and D.C.P. Smith, Database abstractions: aggregapion apﬂﬁ
generalization, TODS 2,2 (1977). '

Stonebraker, M., Implementatlon of 1ntegr1ty constralnts and views by

query modification, Proc. SIGMOD Conference (1975)

Tsichritzis, D. and A.Klug, The ANSI/XB/SPARC DBMS framework, Techn1~'
cal Note 12, Computer Systems Research Group, University of Toronto
(1977).

Tompa, F.W., A Practical example of the specification of abstract da-

ta types, Technical Report, Pontificia Universidadé Catolica (to appear)

Weber, H., A Semantlc Model of integrity constraints on a relaLlonal dam'
ta base, in Modelling in Data Base Management Systems, ed G.M. Nlesen,:
North Holland Publ. Co., Amsterdam (1976).

Yourdon, E. and L.L. Constantine, Structured Design, Yourdon Inc.(1975).

39,

ACKNOWLEDGMENTS -

We are grateful to F.W. Tompa for many helpful comments, crltlcisms

and suggestlons, and to J.M, Smith for the notion of sets of heterogeneous Te~

lations.

40.

APPENDIX: CROSS TERM CONDITION

Let R be a relatlon with attribute set X
and S be a relatlon with attrlbute set Y

and T be a relation with attrlbute set Z = XvY.

 We wish to determine the conditions under which updates involving théf
tuples in T on the view R @ S can be achieved by appropriate actions w1th '

tuples = T[kﬂ and relation R, and tuples' T[ﬂ]and relat1on S.

INSERTION:

If a tuple with value x for attributes X and value y for attrlbutes Y
is to appear in R ® § after insertion, them x must be in R and y must be 1n
S after the insertion (whether or not they were there before). Thus, in order

to insert T into R ® S, it may be necessary to insert A into R and B 1ntov§,g

The diagram below indicates the effect of these insertions on: the pfo%

duct R 2 S,
5-B snB B-S' -’
[P 1 |
(T
R-A {
s
. {

41.

If T satisfies T = A8 B, then the above insertion av01ds 1ntroduc1ng,
spurious tuples only if (A—R) B (5- B) and (R-A) ® (B-S) are simultaneously

empty. ‘The four ways in which this can happen are

(A-R) = (R-2) = ¢ => R
(s-B) = (8-8) =9 = S=B |
(s-B) = (R-A) =0 = (R8BS ET
@R = (@5 =0 = TCR®ES)

i

e

Insertlon of a set of tuples already conta:ned 1n the product has no effect
 (and is harmless). Insertion of a set of tuples that contalns the product 155
an initialization of the producc. Thus whenever some tuple of R8 S is nqt

1n T and some tuple of T is not 1n R 8 8, che 1nsert10n is allowable if

(R=A or 5B) and (T=A 8 B).
1f T % A 8 B, then the insertion is allowable only if T happens to f&

include all the tuples in [a-r) ® s]U[(a-R) © (B-sYJU[R 8 (®-8)] The in '
tricate dependence of this condition on both R and 5 allows us to prohxblt 1n~ﬁ

gertions in such sxtuaﬁmons without any detrlmental affect 1n practlce. Thus,nu
insertion of T ﬁéR;ﬁ S into R® § is allowable if and only if '

(r=A®@B) and (R=A or S=B or TD R 85).
DELETION:

A tuple w1pg value x for attributes X and value y for attrlbutes Y can

be removed from R 8 S by removing either x from R or y from S.

Let 6 be the subset of A deleted from R and 6 the subset of B de—

leted from S. The dlagram below indicates the effect of these deletlons on the f];fﬂi

‘product R 8 S,

42.

R-A

. L - /////////////

Intending to delete

re o n = (s o aetp] 0 [asspesle [ae-] o5, 0 6]
we actually delete

[s, ® (s-3,)] ® [(R—-GA): 8 8] @[sAgﬁB]

= [5, @ (s-»)] o5 a-5p)]0 [(R-masy] ;?C%"-‘?A)?%]"?[‘SA@%]-

Thus, we see from the diagram above that the deletion is él1bWéh1é.if'and only: .’
if : | ,

‘(A-5A) f (B—GB) = 6A 8 (S-B) = (R-A) ® GB =0

. . . .
There are eight ways in which this can happen:

(4-8,) =8, =R-A =9 => T =@

(a-6,) = §, =8, = ¢ = T=g

(A=6,) = (5-B) = (R-A) = § => RESCT

(A-6,) = (5-B) = 6, =9 = SAéA & S=B & GB='95V
(B=65) =5, = (R-A) = § => GB=B & R=A & §,=0
(B-8y) =8, =8,=9 = = T=9

43.

it
~
7
b
~
=

(s-B) = RRSET

L]

(B-6)

(5-B)

(B-GB) s, =190 = T =,
Thus,if T neither contains R 8 S nor is null, then the conditiop for

the deletion to be allowable is again
(T = (A8B)) and (R=A or B=S) -

If T # (A @ B), then deletion of T is acéeptable only if, for some choice pf

GA and GB,
= (A8 GB) “’,“A R B).

Disqualifying such coincidences once again, we arrive at a sufficient

condition for the deletion to be allowed:
(T = (A 8 B)) and (R=A or B=8 or T 2 R@S),
which is the same as for insertions.

MODIFICATIONS: ‘ir

The same argument as for deletions holds for modifications with only
minor changes. Interﬁret GA as those R tuples that are changed and 6B as tbe‘ﬁ
S tuples that are changed. Then intending to change tuples in AR B, we |
actually changé tuples in (A QIGB)'Q (SA 8 B). Thus, the sufficient‘condiiioq'”
is identical to that for deletion. However, as well as coincidentally wanting'
to modify precxsely the tuples (A 88) ® (6 x B),’ there is another way in

which the modification can be valid without the SufflClent condltlon holdlng*‘

b,

ifuninéentionalchanges to tuples in GA 8 (S-B) and (R-A) B GB ‘wind up
having no effect on the set of tuples; that is for every tuple changed, some
other tuple is changed to precisely what the other one used to be. Thus, in

practice, the conmstraint is again

= (A @ B) and (R=A or B=S or T2R 8 S)

Since any change to a tuple in R affects as many tuples of R 8 § as there are
tuples in B, all the tuples in R 2 S w1th the same x values must require “the
same modification to those x values. S$imilarly, for changes to tuples of 8

that 301n with sets: of tuples in R to form tuples ¢ of R.® S,

