Series: Monografias em Cifncia da Computagdo

NQ 17/78

JACKDAW II - Preliminary Specification

Part 2
Structural Discription

by

Michael F. Challis

Departamento de Informatica

_Pontificia Universidade Catélica do Rio de Janeiro
Rua Marqués de Sdo Vicente, 225 — CEP-22453
Rio de Janeiro — Brasil

Series: Monografias em Cifncia da Computagdo No. 17/78

Series Editor: Michael F, Challis October, 1978

Jackdaw II -~ Preliminary Specifiéation* :
Part 2

Structural Description
by

Michael F. Challis

*This research has been sponsored by FINEP and CNPq.

Abstract

This monograph forms parf of the preliminary definition
of the Jackdaw 1I data base package (see the Preface),

It describes the facilities provided for the
representation of data and data relationships in a data base,
and the 'access paths' which may be followed to retrieve items
stored within it. '

Keywdrds: data base, data structures

Regsumo
AT TSR

Esta monografia faz parte da definicéo preliminar do
sistema de banco de dados Jackdaw II (veja o Prefacio).

SEo descritas as facilidades disponiveis para a
representacgio de dados, e de reldgGes entre dados, dentro de
um banco de dados, e o¢s 'caminhos de acesso' que podem ser
seguidos para recuperar 0s jtens armazenados.

§

Palavras chave: banco de dados, estruturas de dados

CONTENTS

Pref&ﬁe s & © & e ® ® e & e © & e @& & oo o_'
‘2.1 Entries and classes . « o« s o o o o o
‘2,2 Primitive fields .+ 4 ¢ o % o o o o «

2.3 Group_fieldb e 8 8 & e ® @ c ¢ 9 o @

(9]

! 2. 4 Link fields s e o ’ ° ’. e ¢ o » t :I‘; """"" o - L

2.401 Marks l.k‘ * [2 . L 3 L > L4 L] e ° ®
2.4,2 Link. element parameters

2.5 Keya *® e L] L] ® 'e," [} L] 1 4 °* L L] . . -
2‘6 Indicea @ L] 3 ® e -] e [] . . . [] [e’ @
2.7 Comparison functions . o « + & o « o
2.8 Classes with variants . . . e s o s e
2.9 Fﬂrmat Of NAMEE 4 ¢ o ¢ ¢ o e e 8 e o
2.10 The class definitions . « « v o o o
. 2.10.1 User type informatiomn /s . » o
2.10,2 Ugser occurrence information ,
2.10.3 User description information
2.10,4 User miscellaneous information
2.10.5 Implementation information . .
2.11 Physical representation information

2.12 Suﬁpary diagramg .« o ¢ o o o W e e e

2,13 Class definitions for the examples .

e ® 6 o @ ® -
2 e o o e @
® * @ © 2 .®
E] L . * ° e -
e o ® © ® ©°
® » 92 e e B
s B2 & & 2 @®

Preface

This monograph forms part of the preliminary definition
of the Jackdaw II data base package. The complete definition
will include the following sectioms:

1. Introduction

This section gives an overview of the package and
introdyces its major components.

2. Structural Description

This describes the facilities provided for the
representation of data and data relationships in a data
base, and the 'access paths' which may be followed to
retrieve items stored within it.

3., ‘The Definition Language

This contains a description of the language used to
define the structure of a data base (often called the
'DDL'), The language also includes facilities for

- modifying the structure of an existing data base,

4, ‘The Procedural Interface

The 'nucleus’ of the package will consist of a library
of ‘procedurés which may be called to create, modify or
delete items within a data base. This section describes
these "interface procedures’, The package will be written
in BCPL, and the library of interface procedures will also
initially be ‘available only to BCPL. application programs.

5, Concurrent Access

The options available for data base access in both
single-user. and multi-user environments are described,
including the facilities provided to help maintain datsa
base consistency and integrity.

6. The SLIDE sistem

This section describes the language intended for the
‘end~user'. SLIDE includes facilities for 'loading! (the
addition of relatively large volumes of data) and report
generation as well as facilities for casual interrogation -
and updating. The language has two levels - a 'low level',

with

commands which correspond approximately to the

interface procedures of the nucleus, and a "high level'®

with

more powerful primitives. . :

The high level language may be easily exﬁended to
generate languages 'tailored’ to particular applicationms,

Jackdaw II is a development of the Jackdaw data base

package,

which was originally developed by the author at the

University of Cambridge, England {(where it has been in

producti

on use since 1%973), and which is now also available on

the IBM 370/165 at PUC-RJ.

es

Referenc

£1]1 - Ri

2] - ¢ch

[3] - Ch

chards, M., 1974, %The BCPL Programming Manual®,
Computer Laboratory, Univérsity of Cawbridge,
Cambridge, England. :

allis, M.F., 1974. "The JACKDAW Data Base Package®™,
Proc. SEAS Spring Technical Meeting, St. Andrews,
Scotland, April 1974, (Also available as "Technical
Report No. 1" from the Computer Laboratory, Umiversity
of Cambridg., Cambridge, “ngland).
allis, M.F,, 1978, "Técnicas de Integridade no
Sistema de Jackdaw de Bancos de Dados™, to appear in
the proceedings of "V Semindrio Integrado de Software
e Hardware Nacionais®, Rio de Janeiro, Brasil. (Also
available in English as "Integrity Techniques in the
Jackdaw Database Package', Monografia em Ciéncia da

Computagdo no, 9/77, Dept. de Informatica, Pontificia

[4] - Ch

Universidade Catdlica, Rio de Janeiro, Brasil).

allis, M.F,, 1978, "Database Consistency and Integrity
in a Multi-user Enviromment", to appear in Proc.
International Conference on Data Bases: Improving
Usability and Responsiveness, Israel, 1878 - Academic

. Press, New York., (An earlier version of this paper

with the same title is available as Monografia em
Ciéncia da Computagio no. 6/78, Dept. de Informatica,
Pontificia Universidade Catdlica, Rio de Janeiro,
Brasil). }

2.1 Entries and Classes

. Information is stored in a data base inm Yentries", each
of which must belong to some "class™. (It may initially be
helpful to think of an entry as a record, and a class &s a set
of records all of the same type, although the analogy is not a
good one.)

Information within an entry is held in named "primitive
fields", "group fields"™ and "link fields". Primitive fields
contain (atomic) values, and group fields contain possibly
multiple occurrences of groups of primitive fields., Link
fields determine the relationships which exist between
different entries in a data base,

The number, nature and names of the fields of an entry
are determined by the class to which the entry belongs.

Examgle:

IDNUM, NAME and SALARY are primitive fields of the
class EMPLOYEE. '

CURRPROJS is a link field, which contains references to
entries of another class (say |PROJECT) which describe the
tasks to which the employee is currently gssigned,

SALARY_HISTORY is a group field composed of two
primitive fields DATE and SALARY. An occurrence of this
pair of fields is added to an EMPLOYEE entry whenever his
salary is changed.

A particular EMPLOYEE entry might contain the following
information: , ‘
. 5
EMPLOYEE:
IDNUM = 176 |
NAME = BURTHORPE, J.K.
CSALARY = 4200 _
CURRPROJS = (P439, P4TG)
SALARY“BISTORY:
SALARY = 3400, DATE = 1/9/76
SALARY = 3500, DATE = 141477
"SALARY = 3900, DATE = 1/1/78

A class is either "keyed" or "keyless"; in the former
case, one or more primitive fields of the class are designated
[} 2 " L4] 11] & :
as "key fields", whose contents determine a unlque key" for

each entry which distinguishes it from all the other entries
of that class. (See section 2.5 for more details of keys.)

-l

New entries may be added to a class and existing entries
deleted. If the class is keyed, a suitable key value must dbe
supplied at the time of creation; this value may not be
subsequently altered.

" An entry in a keyed class may be accessed directly by
quoting the name of the class and the key of the entry.

The entries of a class may be accessed sequentially, and,
if the class is keyed, the entries will be supplied in
ascending order of key value, ' :

' Examgie:

The IDNUM field is the key for the class EMPLOYEE, Each
EMPLOYEE must have a different IDNUM, and a particular '
EMPLOYEE entry may be accessed directly by quoting this
value: :

e.g. 'EMPLOYEE 176"

Each class may have one or more named "indices"
associated with it. An index, like a key, is defined by a
sequence of one or more primitive fields of the class. Unlike
key values, the index.values of two different entries may be
the same, and an index value may be altered at any time. (See

section 2.6 for more details of indices.)

_ The entries of a class may be accessed sequentially with
respect to an index, in which case the entries are supplied in
ascending order of index value,. ' ‘

Examgle:. | o C

An‘index BYNAME is defined by the NAME field of the
class EMPLOYEE, Sequential jaccess to EMPLOYEE entries with

respect to this index will supply the entries in
alphabetical order of surname.

2.2 Primitive Fields

The definition of a primitive field includes a
specification of the "hasic type"™ of the field. The basic
types available are:.

BOOL - a l-bit field

WORD © - a 32-bit field

BYTE-n - a fixed~length n~byte field (1<¢=n{=256)

STRING - a variable-length field which may hold up to
255 bytes'

-5

Values of the appropriate size may be stored in and
retrieved from primitive fields, although there are certain
restrictions concerning the updating of key fields =~ see
se(‘.tion 2.59 ’

Whenever a value is stored, the field is said to be
"set"; it is possible to determine whether a particular field
is set or not, and also to "umnset" it.

Examgle:

HOLIDAYS is a primitive field of EMPLOYEE. If it is
set, it contains the outstanding holiday entitlement due
to the employee for the current year (which may be smero).
I1f it is unset, it means that the employee is not entitled
to holiday leave (perhaps he has vecently joined the
company, or is a consultant).

2.3 CGroup fields

A group field is defimed as & named set of primitive
and/or group fields., Each cccurrence of a group field within
an entry consists of one or more "group elements", or is
“empty" (i.e. unset). Each group element contains one
occurrence (possibly unset) of each of the primitive and group
fields of the group. ‘

Examglé:

The class EMPLOYEE includes a group field CHILDREN
composed of primitive fields NAME and AGE and a further
group field VACCINATION HISTORY; this 'subgroup' field
contains two primitive Tields VACCIN and DATE, We can
represent the structure of the group field CHILDREN as:

& ' . '
CHILDREN
NAME
- AGE A
VACCINATION_HISTORY
VACCIN
DATE

A particular EMPLOYEE entry might -include the following
occurrence of the group field CHILDREN: ”

CHILDREN:
. NAME = DAVID, AGE = 5, VACCINATION HISTORY:
VACCIN = FOLISL, DATE = 3/3/74
, VACCIN = POLIO2, DATE = 8/9/74
NAME = JOEN, AGE = 0, VACCINATION HISTORY: (empty)
NAME = SUSAN, AGE = 4, VACCINATION HISTORY: .
~ L VACCIN = POLIOl, DATE = 4/4/75

-

mﬁm

 This occurrence of CHILDREN contains three group elements.
The first of these contains a twewelement occurrence of
VACCINATION HISTORY, and the second containg an empty
occurrence of this field.

Note that there is a difference between & group field
oceurrence which is unset, and an occurrence in which all
the fields of each element are unset.

In,many-ways, the elements of a group field are analogous
to the entries of a class; a group field may be keyed or
keyless, and may possess one or more indices {see sections 2.5
and 2,6).

New elements of a group field may be greated, and
.existing ones deleted; and facilities analogous to those
provided for the entries of a class are available for direct
and sequential access to the elements of a group field,

Examgle:

The key for the CHILDREN group is NAME, and an index
BYAGE is defined by the primitive field AGE. As a
consequence, each child is identified by its neme, which
must be supplied when the corresponding group element is
created; the NAME field may not be subsequently altered,

VACCINATION HISTORY is a keyless group with an index
BYDATE composed of the primitive field DATE. Access to
VACCINATION HISTORY elements with respect to the index
BYDATE provides vaccination information in historical
ordex; & vaccination date may be corrected without
deleting and recreating the element. ‘

2.4 Link Fields

Each link field of an entry consists of a numberx
(possibly none) of "link elements", each of which refers to an
entry of some class; this class is known as the "partner
class™ of the link field. If a particular occurrence of a link
€ield contains no link elements, it is said to be "empty", or
"unset”,

Example:

The link field CURRFROJS of the EMPLOYEE entry 176 in
section 2.1 contains two link elements referring to '
entries of clags PROJECT; PROJECT is the partner class of

- the link field CURRPROJS, ' R

-

A fundamental property of the data base structure is that
links between entries must always be two-way. This means that
if an entry X1 contains a link element LEl referring to an
entry X2, then entry %2 will contain a corresponding link
element LE2 referring to X1, LE2 is the "partner link element™
of LEl, and vice-versa. '

A corollary is .that if a class Cl contains a link fileld.
L1 with partner class C2, then class C2 must contain a
corresponding link field L2 with partaner class Cl. L2 is the
“"partner link field" of L1, and vice-versa.

Examgle:

The class PROJECT is a keyed class whose key is the
primitive f£ield PROJNUM, It includes the link field
MEMBERS with partner class EMPLOYEE, which corresponds to
the link field CURRPROJS in EMPLOYEE, MEMBERS and
CURRPROJS are partner link fields.

EMPLOYEE 176 is attached to PROJECTs P439 and P476;
suppose that EMPLOYEE 249 is also attached to PROJECT
P439: ‘

EMPLOYEE: -
IDNUM = 249

LI N J

CURRPROJS = (P439)

Then the link elements in the MEMBERS fields of the two
PROJECT entries are as follows: :

PROJECT:
PROJNUM = P439
MEMBERS = (176, 249)
PROJECT:
PROJNUM = P476
MEMBERS = (176)

We can illustrate the relstionships between these
EMPLOYEE and PROJECT entries as:

, EMPLOYEE PROJECT

} 176 l.veeo.l P&39 |

Lalad d d PR adeabad o dod

Lt adad N 3 W AP A

i 249 | [P476 |

New elements may be added to a link field, and existing
ones deleted; the data base routines sutomatically create or
destroy the corresponding partmer link elements to ensure that
the two-way nature of linke is maintained.

Examgle:

If we delete the link element in the MEMBERS field of
PROJECT P439 that refers to EMPLOYEE 176, then the asystenm
will automatically remove the link element in the
CURRPROJS fleld of EMPLOYEE 176 that rvefers to PROJECT
P4&39.

A link field may be keyed or keyleps; if it is keyed, the
key is defined in terms of primitive fields of its partner
class, It is often the case that the key for a link field is
the same as the key of its partner class, .

Whenever a new link element referring toc an entry E is
added to a keyed link field, the corresponding key fields in E
are 'frozen': that is, they must not be altered until the link
element is Hestroyed. The keys of .all the link elements within
a particular link field must be distinct,

Named indiges may also be associated with a link field;
each index is défined in terms of primitive fields of the
partner class,

A link element in a keyed link field may be accessed
directly, and sequential access to all the link elements of a
‘link field is always possible. If the link field is keyed, the
elements will be provided in ascending order of key; or,
alternatively, sequential access with respect to an index may
be requested in which case the elements will appear in order
of index value. More details on link field keys and 1nd1ces
appear in sections 2,5 and 2.6,

-G

We ghall see in sections 2.4.1 and 2.4.7 that information
may be associated with a link element in the form of marks and
link element parameters; this information is directly
accessible as soon as the link element has been located., It is
also possible to *follow' the link element to gain access to
the entry to which it vefers.

Examglas:

i) The key for the link field CURRPROJS is the field
PROJNUM of PROJECT; in a similar way, the key for MEMBERS
is the same as the key of its partner class EMPLOYEE, In
this case, the user need take mno” special precautions with
respect to key fields when adding link elements, since the
¥ink field key values are guaranteed distinct because they
are algoc key values for the classes.

An index BYSALARY is defimed for the link field
MEMBERS, and consists of the SALARY field in the class
EMPLOYEE. Sequential access with respect to BYSALARY
supplies the link elements referrlng to those employees
currently attached to the project in ascending order of
salary. Each link element may be 'followed' to access the
EMPLOYEE entries themselves.

i, Two classes BUILDING and ROOM are defimed, BUILDING is
a8 keved class with key BUILDCODE and ROOM is a keyless
class with a primitive Ffield ROOMNUM, We wish to link each
room to the building of which it is a part; we know that
room uymhers are unique within a-building, although two
rooms in different buildings may have the same number.

The twe partner link fields are n#lled ROOMSE {iun
BUILDING) and BUILDING {(in ROOM); the key for ROOMS is
ROOMNUM and for BUILDING is BUILDCODE.

Before requesting the creation of a link between a
BUILDING B and a ROOM R, we must ensure that the ROOMNUM
field in R is set; and the system will reject the request

if the ROOMS link field of B already includes a link
element referring to 2 ROOM with the same room number.

The ROOMNUM field of a ROOM K may only be altered if
its BUILDING field is empty; for if its BUILDING field
contains a link element referring to a BUILDING B, then
B's ROOMS field must contain the partner link element PL
referring to R, and the room number is FL's key.

The relationships between some huxldlngs and their
rooms might be as follows:

-1

BUILDINGs: BLY B2E (BUILLOODE
o v a ° s e ‘ ‘Value)

' (ﬁOOMNUM
ROOMs 101 102 201 10% 102 103 “value)

_ Link fields are of two kindd: ™uni-link fields", which
contain & maximum of one link element, and "mulii~link fields"™
which may contain any number of link elements.

Example:

The ROOMS link field of a BUILDING is defined ag a
‘multi-link field; on the other hand, the BUILDING iink
field of a ROOM is defined as a uni-link field, since each
room can belong to one building omly.

One class may contain two or more link fields with the
same partner class; im other words, it is possible to
represent more than one relastionship between two classes at
che same time, :

bismples

The CURRPROJS, MEMBERS link fields represent the
zuiployees working on a particular project on a day~to=day
#asig, Each project also has an 'auditor whose job it is to
nonitor progress from time to time. The two umi-link .
fields AUDITPROJ;, AUDITOR (in classes EMPLOYEE aund PROJECT
respectively) define this second relationship between
enmployees and projects. '

It is salso possible to defime one or more relationships
. amongst the entries of one class - that is, the partner class
of a link field may be the same as its class,

EXamgle:

Link fields MANAGER and EMPLS are defined for the class
EMPLOYEE; MANAGER is 8 uni~link field and EMPLS is a '
multi=link field. The key for both is the IDNUM field. The
MARAGER link field for each employee (except the chairman
of the company) contains a link element referring to the
employee’s manager., The EMPLS link field is only set for
those employees who are managers, and contains link
elements referring to each of the employees directly

- responsible to that manager,

wa 1=

Neo link field way include two link elements refarring to
the same entry.

2.4.% yarkév.

It is possible to select ome (but not more} of the link
elements within. a link field and “mark™ ity the partner link
element is then said to be “chosen®. A marked link element
‘automatically becomes unmarked when & different link element
in the same field is markeds it is also vossible to “ummark® a
link element explicitly, thus leaving the link field without
any marked element, . :

Marks are named, and several different marks may be
associated with one link field of a class.

Examgle:

The link field MEMBERS of the class PROJECT has mark
. fields LEADER and TEABOY. In any particular PROJECT entry,
‘just one of the link elements in the MEMBERS field may be
‘marked as the LEADER, and just one as TEABOY,

e.g. EMPLOYEE " PROJECT

o~ v w - e e -y

176 Jeeueool P439 |

0 o von we acs N o o e

L] t+
LY
* 9

. .

L L S 55 T o> aun

| 249 | *] P4T6 |

- e e N - e e o

* - indicates a LEADER~marked 1link element
+ = indicates a TEABOY~marked link.alemgnt

In this example, EMPLOYEE 176 is the project leader for
both projects; he alsoc makes the tea for PROJECT P&76,
since there is no-one else to do it., EMPLOYEE 249 is the
tea boy for PROJECT P439, Both link elements in the
CURRPROJS field of EMPLOYEE 176 are chosen with regpeact to
the LEADER mark, but only the second is chosen with
respect to the TEABOY mark.

] G

Given a particulsy link elemsnt, it is possible to
determine whether it is marked with vrespect to a particular
mark of the link field, or whether it is chosen with regpect
to a particular mark of the partner link field.

A marked link element within & link field may be accessed

directly, and the chosen elements may be accuessed
sequentially. '

Examgle:

The link element referring to the leader of a project
may be accessed directly from the MEMBERS link field.

The link elements referring to those projects for which

a given employee makes the tea may be accessed
‘gequentially from his CURRPROJS field.

2,4.2 Link element parameters

The definition of a link field may include the definition
of one or more primitive and/or group fields which are to form
part of every link element in that field. These prxmzrxve and
group fields are called "link element parameters"™

Once a 11nk element has been locatad, its parameter
fields may be accessed in just the same way as the primitive
and group fields of an entry may be: raccessed.,

ank element parameters may be used to store information
which is a function of the relationship between two entries,
rather than a function of one entry or the other.

Examgle.

The flald CURRPROJS of the class EMPLOYEE has as link
‘element parameter a primitive field HOURS., The HOURS field
af a link element in an EMPLOYEE E referring to a PROJECT
P contains the number of hours per week which E devotes to
the project P, '

]G

e.z. EMPLOYEE " PROJECT
e HOURS®3Q S ——
'l 176 i--uncu-:ie.'o\n! P&BQ I

<HOURS=1(.

L2 B I BN Y *
v o
. %

« HOURSe 40 .

v & 0 e o v

| 249 | - | P476 |

S QU WO L G e Y N e

: Here EMPLOYEE 176 devotes 30 hours a week to PROJECT
'P439 and 10 hours a week to PROJECT P4v6,

Note that the hours worked cannot be stored either as a
primitive ficld of the EMPLOYEE entry or of the PROJECT
entry - they are genuinely a functiom of the combination
of the two,

2.5 Keys

We have seen above that a class (er group or limk field)
may be keyed in order to provide diract accesgs to the entries
(or group or link elements) within ft¢.

In all three cases, a key is defined as a sequence of one
or more primitive fields pl, P2, ... pn, These are known as
"key fields"; pl is the "primary key field™ and p2, ... pn . are
the “secondary key fields™, : :

5
The key ‘of an entry (or group or link element) ig defined
a8 the sequence of valueg of those of its key fields that ave
set, The primary key field must always be set, but gecondary
key fields may remain unset subject to the condition that if
pi is unset, then so are p{i+l), p(i+2), ... pn.

The key fields in a eclass key must be primitive fields of
the class at the 'outer level! - that is, they must not be
- link element parameters, or part of a group field of that
clase. The key of an entry must be supplied when the entry is
created, and may not be subsequently updated. All the entries
in one class must have different keys, ' ' ' :

The key fields in a group field key must be primitive
fields belonging to that group, but not. to any other group .
field contained within it. The key of a group element must be

-, o

supplied when the elam@nL ie created and way not be
subsequently aitered"alﬂ the group elemantﬁ in & particulav
sceurrence of a group field must have different keys.

The key fialds in a link field key must be ‘outer-level’
primitive fields of the partner class of the liak field, Whan
a new link element referring to an entry E is created, the
values of the corresponding key fields in E must d?flﬂﬂ a key
different from that of any other liuk element belonging to the
same link field; and these link key fields im ¥ may not be
updated as long as the link element continues to exist,

Sequential access wmay be requested to all entries (or
group or link elements) of a class {or group or link field)
whose key is greater than some given valuei in this case the
items are 8upplied in aacenaxng srder - of key.

Lﬂmpav1sun of two keys V'm vi, VE ene Vp and W e wl, wid,
oo Wq (where p,q¢=n, the mumber uf kﬁv fieldr) is defined as
followss

i) V= W iff p=q and viwwi for all Id=idl=p
ii) ¢ (W ifg)
Cowlwgl, v2=w2, .., v(kwl)ww{kwi} and v
For some kd{sminlp,q),
or vi=wi for all 1d{=il=p anﬁ plg -

(In other words, keys are compared from the left to the right,
and any umset fields at the end are considered tc be less than
the value of any set field.)

The ordering of field valuves may be defined by the user
(see sectiomn 2,7); if not, the following defaults are uﬁﬁd
‘according to the basic type of the field:

BOOL: FALSE < TRUE

WORDs The 32-bit value iz interpreted as a signed,
2's complement integer.

"BYTE~n: Logical comparison -~ the 8n-bit value isg
' interpreted as a positive integer,

STRINC: Lexicographic comparisen - if § and T are two
‘strings coumposed of bytes asl, 82, ... sn and
tl, £2, .. tm respectively, then § { T if:
gluel, g2=t2, ,,. 8(i=1)=t{i~1} and sidlti
for some l<{wi<de=min{n,m),
or u<m and si=ti for all Il<{=ji<{=n

B

Exsmplat

A class PERSON is defined with primitive fields SURNAME
and CHRISTIAN NAMES of type STRING, and DEISCRIMINATOR of
type BYTE=~1l. The key for the clase is defined to be
SURNAME, CHRISTIAN NAMES, DISCRIMINATOR. The field
DISCRIMINATOR fig only set if there are two or more people
with identical surnames and christian names. '

2.6 Indices

One or more named indices may be associated with 8 class
(or group er limk field), irrespective of whether it is keyed
oy not. ' ‘

An index is defined as a sequence of one or more
primivive fields pl, p2 ... pn called “index fields"., The
index walue of an entyy {ov group or link element) is defined
a8 the sequence of values of its index fialds, where the
symbol '*f iy used to irdicate the 'value' of any unset field.
(Note that unlike keys, any or all of the index fields wmay be
uneet.) oo :

The rules governing the choice of index fields for a
class (or group or link field) index are the same as those
given in section 2.5 governing the cheice of key fields.
However, index values need not be provided when an entry (ov
group or linmk element}) is created, they do not need to be
unique, and may be changed at any time,

Segquential sccess with respect to an index may be
requested to all entries (or group or lisk elements) of a
class {or group or link field) whose index value is grester
than some given value; in this case, the items are supplied in
&saen&imgqordem of index value.

Comparison of two index ¥alues ¥V = vi, v2, ... vu and
Wo=wl, w2, ... wn {(where n is the number of index fields) is
defined as follows:

1) Vo= W Oiff viwwi for all L<=iden
iiy v < W iff
vl=wl, vam»w2, ... v{k=1}mw(k-i} and wklwk

for some k{én

where "#" {the unset value) is alwavs loss than any
possible real value. -

-l

The ordering of field values may b defined by the vser
{see section 2.7); if not, the defaults described in section
2.5 are used. ’

Exqggle:

A class WORKMAR is defined with‘STRING.primitive fields
SURNAME and CHRISYTIAN NAMES and WORD primitive field AGE,

An index BYWAME is defined ss SURNAME, CHRYISTIAN NAMES.
It does not matter if two workmen happen to heve the sanme
names , '

Another index BYAGE is defined as AGE, SURNAME,
Sequential access via BYAGE will %upriy wokaen in
cascending corder of age; workmen of the same age will be in
alphabetical order of surname. Those workmen who refuse to
reveal their age (i.e. whose AGE field is unaet) will
appear first. .

2.7 Comparison functions

A user~déefined "comparison function®™ mayv be associated
with any key (or index) field which forms part of the key (or
index) of a class, group or link field., Each comparison
function is identified by its (unique) name.

The nuecleus will make calls 'R = CMP (Y, W)' of a
comparison function CMP 2s necessary; the result R is
interprfeted as follows: '

E» 0 wmeans V = W
R <0 means V <w
5 B > 0 means W

Note that a comparison functionm is not associated with a
primitive field, but with a primitive field in its capacity as
a component of a particular key or index.

gxamgﬁﬁz

- Two separate indices are defined for the clase
EMPLOYEE; UPSALARY and DOWNSALARY. Both are defined by the
index field SALARY., In the DOWNSALARY index only, a
comparison function ¥ ig associated thh the index field
SALARY, where: :

F(V, Wy = 0 if V = W
m w3l if W (¥
= 43 1f W > V¥

NYEIE

2.8 iasa 8 wmth variants

it iﬂ-aften desirable te consider a set of entries of
similar (but not identical) structure as all belonging to a
single class. This may be done by defining a class with
"variants™, The fields common to all the entries are defined
as part of the class proper, and the fields which beloug only
to some subset of the entries are defined ag part of one of
the variants.

Each variant may itself have further variants; if it does
not, it is called a "basic variant™, The varviants out of which
a class (or variant) is immediately composed (i.e. which
belong to that class (or variant) but not te any variant
contained within it) are called the "direct wvariants®™ of that
class (or variant).

_ Exsmple:

DEPT MEMBER is a class wheose entries represent the
nembers of a university department, and the class has
three direct variants STUDENT, SECRETARY and PROFESSOR
corresponding to the three different categories of people
in the department. ~

The variant PROFESSOR itself containsg two further
direct variants PART TIME PROF and FULL _TIME PROF,
Primitive fields are associated with the class and esch of
its variants as shown in the following disgram:

s ' DE?T _MEMBER
NaME
AGE
‘, ° L] L
{STUDENT) {SECRETARY) (PROFESSOR)
CREDITE WAGES SALARY

TYPING_SPEED SUBJECT

(PART T IME PROF} (FULL TIME _PROY)
HRSPERWE EX

-] 8

The variants STUDERT, SECREK&PY PART VIME PROF mnd
FULL, TIME PROY are thm basic mawzamw of the ¢lasas

DEPT MFMhFR'

-Each entry of a class with varisnpts nmust have & structurs
corrvesponding to one of the basic varisnts, and, given a
particular entry, it is possible to determxne to which
variant(s) it belongs.

Examg££:

The structure of an entry of the classg DEPT MEMBER mugt
correspond to that of a STUDENT, SECRETARY, PART _TIME PROF
or FULL _TIME PROF, Here are some examples 0f DEPT MEMBER
entriest

DEPT MEMBER (STUDENT):
NaME = JOBN
AGE = 19
CREDITS = 20

DEPT MEMBFR (SECRETARY) :
NANE = SUSAN
AGE = 24&
WAGES = &0
TYPING QPBEH w 190

DEPT MEMBER (?ART TIME PROF)
NAME = SEAN
AGE = 30
SALARY = 5000
» . SUBJECT = DATABASE
HRSPERWEEK = 20

Given the last of these DEPT _MEMBER entries (s EAN), we
may determine {irst that it belongs to the direct variant
PROFESSOR of DEPT _MEMBER and then that it belongs te the
{basic) varlan* PART TIME PROF of PROFESSOR.

Suppose an entry E of class € belongs fo a basic variant
Vn where V(i+l} is a direct variant of Vi for 0<=i{=n and VU
is the class C., Then while we know only that ¥ belongs toc the
variant Vk, we may only access those fizlds defined in
variants Vi for ({w=i<mk, These are called the fields "vigible"
in E with respect ta the variant Vk, {(If k=0, they are called
the fields “vigible" with respect to the class C.)

—-]1Qw

Example:

Suppose we are accessing DEPT MEMBER entries
sequentially, and arrive at the entry E for SEAN. At this
stage we do not knéw to which variant E belongs, and so
only the fields NAME and AGE are visible. After
discovering that E belongs to the direct variant
PROFESSOR, we may access the fields SALARY and SUBJECT;
and when we finally ascertain the basic variant
PART_TIME PROF to which E belongs, we gain access to the
HRSPERWEEK field, and so all the fields of E are visible.

The examples so far have shown only primitive fields
associated with variants; but group fields and link fields may
also be restricted to particular variants of a class; in other
words, the partner class of a link field may be a variant,

Ex&mglesr

i) A relationshmp between ROOM entries and DEPT MEMBER
entries shows in which room a particular person is
located, The uni~link field ROOM belongs to the class
DEPT_MEMBER as a whole.

ii) A class COURSE contains entries describing the courses
given by the professors in the department. The multi=~link
field COURSES_GIVEN belonging te the variant PROFESSOR
indicates the courses offered by the professor, and the
multi-link field COURSES TAKEN belenging to the basic
variant STUDENT indicates the courses which the student is
attending. '

iii) Only full-time professors may act as supervisors for
doctoral theses, and a relationship between the basic
variants STUDENT and FULL _TIME_PROF shows whlch students
aregsuperv1sed by whom,

The following diagram illustrates these relationships
and includes the names of all the link fields:

. PEOPLE | ROOM
ROOM===)=mm e e e (==~ DEPT_MEMBER

COURSES GIVEN -~ PROFESSOR
PROFES SOR===) mmmmS e e e cm e e e e (e COUR S E

STUDENRTS . COURSES _TAKEN

DOCTORAL_STUDS SUPERVISOR
FULL_TIME_PROF===)=~=—-T-m o o e ¢~~~STUDENT

-20-

The dlagram showing which fields belong to which
variants of the class DEPT MEMBER is now:

‘DEPT MEMBER

NAME

AGE

ROOM
(STUDENT) (SECRETARY) (PROFESSOR)
- CREDITS WAGES SALARY -
COURSES_TAKEN TYPING_SPEED SUBJECT
SUPERVISOR COURSES_GIVEN

(PART_TIME PROF) (FULL TIME PROF)
HRSPERWEEKI DOCTORAL STUDS

Given a particular COURSE entry, we may sequentially
access each of the STUDENTS link elements. If we follow
one of these, we arrive at a DEPT_MEMBER entry which is
already known to belong to the STUDENT variant, and so we
immediately have access to all its fields including the
SUPERVISOR uni-link field. Following the single link
element in this field gives us access to another
DEPT_MEMBER entry, known to belong to the basic variant
FULL TIME _PROF.

~

, Therey fields that define the key for a class with
variants must be chosen from the primitive fields visible with
respect to the class,

The key fields that define the key field for a link field
whose partner class is a variant (or a class with variants)
must be chosen from the primitive fields visible with respect
to that variant (or class).

Similar remarks apply to index fields.

Examzles:

i) Only the NAME and AGE fields may ‘take part in the
definition of the key for the class DEPT _MEMBER or the key
for the link field PEOPLE in the class ROOM.

-2l

ii) Any of the fields NAME, AGE and CREDITS may take part
in indices defined for the link field DOCTORAL_STUDS,

2.9 Format of names

The names of classes, fields, indices etc. may contain
letters, digits, periods (.) and underlines (), but must
start with a letter. '

Names must be chosen in such a way that each item is
‘uniquely specified by its "fully qualified name", which is
defined as a sequence of names as follows:

Let ¢ be a clgss with name C and fully qualified name C',
(v,V,v'), (p,P,P'), (1L,L,L"'}, (8,6,6'), (m,M,M') and
(i,I,I') have similar meanings for variants, primitive
fields, link fields, group fields, mark fields and indices
respectively., Then:

) c' = C

(XN

V' = C*, V
L' = ¢*, L where c is the clagss in WhICh the variant v
or lxnk field 1 is defined

s
i
S

iii) I' = C', I for an index i of class ¢

iv) pPp' = cc', P . o
G' = C', G for fields p and g which belong to class c

d but are not embedded in any group or link field of ¢
v) . M' = C', L', M for a mark field m in link field 1 of
class ¢
vi) I' = ¢', L', I for an index i of link field 1 of class
c .

vii) P' = C', L', P
G' = ¢', L', G for fields p and g which belong to link

field 1 of class ¢ but are not embedded in any group

field of 1

viii) I' = G', I for an index i of group g -

ix) P* = HY P '
G' = H', G for fields p and g which belong to group.
field h, but are not embedded in any group field of
h

-2

Examzle:

. Suppose a class ¢ has two variants v and w, Primitive
field p, link field 1 and group field g are common to both
variants, and pv, pw are primitive fields local to
variants v, w respectively., pl is a parameter of 1, and pg
is a primitive field in the group g.

The corresponding fully qualified names are:

c' = ¢ ,
V! = ¢, Vs W' =C, W
P'=C, P; G'=¢(C, G
PL' = C, L, PL
PG' = ¢, G, PG

: L' =¢C, L
; PV' =, PV; PW' = C, PW

As a consequence, we see that:
i) v, w, L, P, G, PV and PW must all be different.

ii) ¢, L, PL and PG may all be the same.

2.10 The class definitions

The description of the structure of the entries in a data
base is composed of a sequence of "class definitions™. Each
class definition describes the structure of a particular
class, and includes "variant definitions", "primitive field
definitions", "group field definitions™ and "link field
definitions" as required. In a similar way, each link field
definition includes primitive field definitions to describe
its parameters, and "mark field definitions" to deéscribe its
mark fields; and each group field definition contains
primitive and group field definitions describing the fields
contained within it, "key definitions"™ and "“index definitions'
may occur inside class, group field or link field definitioms,
and describe the keys and indices defined for these items,

~ The class definitions themselves form part of the data
base, and may be interrogated.

Examples:
A program may determines
- the basic type of a particular primitive field,

- the names of all the classes in a data base,

~23

~ the names of the primitive fields within a particular
group fleld.

=~ the name of the partner field of a particular link
field,

= the name of the class to which a particular link
field belongs,

- whether a particular primitive field is a key or
index field, and, if so, to which class, group or
link field the key belongs.

By use of these interrogation facilities, it is possible
to develop general purpose programs which are able to interact
with any data base; the SLIDE system is an example of such a
program,

‘ To assist the development of higher-level systems based
on Jackdaw, certain fields are provided in the class
definitions in which "user information"™ pertinent to such
systems may be stored, The nucleus enables a user to
interrogate the user information fields, but does not itself
take any notice of their contents, For convenience, the user’
information fields are classified as type, occurrence,
description and miscellaneous fields,

"Implementation information", which, for example, may
determxue the storage technique used for a particular field,
is also included in the class deflnltxons, and may be accessed
by appLacatxons programs,

2.10.1 User type information

The "user type field, assocxated with each primitive
field definition, is, essentially, a refinement of the basic
type of the field, A higher-level system (such as SLIDE) may
access both the user type and the basic type of a primitive
field and thus provide suitable checks and format conversions
between the external and internal representations of values.

The user types available will depend on the system
installation, but will always include the ones in the left
hand column below; the right hand column lists examples of
basic types compatible with the given user type:

-2l

User type Basic types

BOOL . BOOL

STRING (variable STRING, WORD, BYTE~n
length) -

INT . WORD, BYTE~n (n<=4)

REAL ‘ BYTE~-8 -

DATE BYTE=-2

CHAR-n (fixed length) BYTE-n, WORD (if n=4), STRING

The conventional external and corresponding internal
representations are defined in the SLIDE manual; for example,
the internal representation of a DATE is:

\ . .
e T D T T D) R e e O DT G T T WD TR S GO0 RN AW S e,

! yoar-1900 | month | day |

15 2 8 5 & o
Example:

The DATE primitive £ield in the SALARY HISTORY group
field of the class EMPLOYER is defined as user type DATE,
_basic type BYTE-2,

Access to this field uging SLIDN ensures that its
content always represents a wvalid datn, but access by
means of the interface procedures uLA%BYTES and SETBYTES
of the nucleus will permit the vetrieval or storage of any
16~bit value,

»

$2.10.2 User occurrence information

"Occdurrence information" may be associated with a
primitive, group, 'ink or mark field to say whether the field
is "optional® or ‘mandatory™. f.e intended meaning is as
follows: ‘

i) Each mandatory primitive field in an entry should be
set; optional ovnes may be unset,

ii) FEach mandatory link or group field within an entry
gshould contain at least one element; optional ones
may be eapty. :

"i) Suppose 1 is a link field which includes a mandatory .

mark field m. Then every non—empty link field 1 of an
antrr E must include an element marked m,

.25

Example:
The primitive fields SALARY and DATE of the group field

SALARY HISTORY of EMPLOYEE are mandatory, but the group
field itself is not,

2,10.3 VUser description information

Comments may be included within the class definitions in
"user description™ fields, which may be associated with class,
variant, primitive fleld group field, link field or mark
field definitions. A user description field m2y hold a string
up te 255 chavacters long. .

Example:
The user description field associated with the

primitive field definition for the field NAME of the class
EMPLOYEE contains the comment: 'Surname first®,

2.10.4 User miscellaneonus information

Finally, there is a "user miscellaneous” field associated
with each class, variant, primitive field, group field, link
field and mark field definition in which the user may place
arbitrary data. The data is stored as a variable~length vector
of 32-bit values, and no conventional interpretation is
suggested, ’

Examgle:

A partlcular higiher~level application might choose to
store the codes and scrambled passwords of those users
allowed access to restricted fields in the user
miscellaneous fields of the relevant definitions.

2.10.5 Implementation information

Associated with each primitive, link and group field
definition is an "implementation information™ field in which
‘the user may store an indication of the probable frequency of
occurrence of the field. Two options are available: "rare" and
"common".,

-26-

Most cccurrences of a rare primitive fleld are expected
to be unset, and most occurrences of & rare group or link
faeld»are expected to contain no elements, the converse is
‘true for common fields.

; The storage allocation strategy adopted by the package
for rare fields attempts to minimise wasted space at the
expense of a slight increase in access time for rare fields.

Example:

Most employees stay with the company for a short time
~only, and so have no salary history; so the group field
SALARY_HISTORY is designated as rare, But all employees
have a name, and so the NAME primitive field is designated
common ,

2,11 Physical representation information

The techniques used for representing the information of a
data base in a physical file are such that certain items of
information are likely to be "close" together (i.e. probably
in the same physical block of the disc), whereas others are
likely to be "distant" (probably.in different blocks).

Two entries of a class (or two elemeénts of a group) with
adjacent keys are likely to be close, and so sequential access
by key is likely to be physically as well as logically
efficient; on the other hand, entries or elements adjacent
with respect to an index may be physically distant.

‘The primitive, group and link fields of an entry are
close to ,the entry, and group (or link) elements are close to
the group (or link} field. Link element parameters and marks
and chosen information are close to the link element,

The key for a particular link element is held in
primitive fields of the partner entry, and so is likely to be
distant; so secquential access to the keys of the link elements
within a link field may be a physically expensive process. (If
this proves to be a common requirement, the key can be
duplicated in link element parameters.)

The storage allocation strategy adeopted by the package is
designed to be efficient when a data base is in a 'steady
state'! - that is, when additions and deletions are random and
roughly equivalent, so that the rate of change of overall size
is small and evenly distributed over the data base. In such a
situation, the allocation, release, and subsequent 'garbage
collection' of unused space in the data file takes place
automatically without the need for user intervention.

. =27~

However, if large quantities of new data are to be added
('loading'), or a substantial number of deletions are to be
made, special modes of operation are available where the
internal automatic algorithms may be suspended.

2.12 Summary diagrams

The following diagrams may be helpful as references; the
first illustrates the relationships between the components of
a data base definition, and the second illustrates the
relationships between the components of the data itself.

C
..l.QOl“..........‘l'...l.."..
° . L] .9 » L] * * @
I X P . L A
L LN N) .C
. -] s . [[b e e . L) »
I KP L] L] » * * * * LN 3 L J L]
I KPMG,, e sG” P L
I KP I KP * e ° -0 * 0
I KRKPMG,,.
IKP
where C =~ 1is a class definition
K = is a key definition
I - dis an index definition
P -~ is a primitive field definition
G =~ is a group field definition
L. - is a link field definition
M = is a mark field definition
¥V = 1is a variant definition

Data base definition relationships

-2 8-

CLASS

* & & 9

ENTRIES

L @ a @

LINKE PRIMITIVE GROUP
FIELDS FIELDS FIELDS..

[L4

L3 °

L °

e o @ ®

2 ® e]

"o e a & L

« GROUP PRIMITIVE MARK PRIMITIVE
+ FIELDE FIELDS FIELDS FIELDS
PRIMITIVE

FIELDS

Data base component relationships

<

2.13 Ciass definitions for the examples

The follbwing program in the data base definition
language (defined in chapter 3) defines the classes used
the examples of this chapter. : ‘

NEW MODULE CMPFS (REVINT)

' NEW CLASS EMPLOYEE
BEGIN

DESCRIPTION IS

"Each entry corresponds to a full=-time employee"

//primitive fields
INT IDNUM (MAND),
SALARY (MAND),
HOLIDAYS o
STRING NAME (MAND; DESCRIPTION IS "Surname first")

=29

//group fields

GROUP SALARY RISTORY

BEGIN -
RARE
INT SALARY (MAND)
DATE DATE (MAND)
NOKEY

END

GROUP CHILDREN
BEGIN
STRING NAME (MAND)
INT (BYTE-1) AGE
GROUP VACCINATION HISTORY
BEGIN
STRING VACCIN
DATE DATE
INDEX BYDATE IS DATE
END
KEY IS NAME
INDEX BYAGE IS AGE
END

//key and index information ,
KEY IS IDNUM
INDICES UPSALARY IS SALARY,
DOWNSALARY IS SALARY (REVINT)

END

NEW CLASS PROJECT

BEGIN
STRING (BYTE*&) PROJNUM
KEY IS5 PROJNUM

END

5 .
NEW LINK .(AUDITPROJ (SINGLE, RARE),
AUJITOR (SINGLE, MAND))
BETWEEN EMPLOYEE AND PROJECT

. NEW LINK (MANAGER (SINGLE),
EMPLS (RARE))
BETWEEN EMPLOYEE AND EMPLOYEE

NEW LINK (CURRPROJS (INT (BYTE-1) EROURS),
" MEMBERS (MARKS LEADER (MAND), TEABOY
INDEX BYSALARY IS SALARY))

BETWEEN EMPLOYEE AND PROJECT

NEW CLASS BUILDING

BEGIN '

STRING (BYTE=-6) BUILDCODE (MAND)
KEY IS BUILDCODE

END

NEW CLASS ROOM INT (BYTE-2) KOOMNUM (MAND)

NEW LINK (ROOMS (KEY IS ROOMNUM),
BUILDING (SINGLE, MAND; KEY IS BUILDCODE))
BETWEEN BUILDING ARD ROOM

NEW CLASS PERSON
BEGIN '
- STRING SURNAr: (MAND), CHRISTIAN NAMES
CHAR-1 DISCRIMINATOR
KEY IS (SURNAME, CHRISTIAN_NAMES, DISCRIMINATOR)
END

NEW CLASS WORKMAN
BEGIN
STRING SURNAME, CHRISTIAN NAMES
INT (BYTE-1) AGE
INDICES BYNAME IS (SURNAME, CHRISTIAN NAMES),
BYAGE IS (AGE, SURNAME) -
END

NEW CLASS COURSE
BEGIN

INT COURSENUM (MAND)

STRING TITLE

KEY IS COURSENUM
END :

-31-

NEW CLASS DEPT_MEMBER
BEGIN

STRING NAME (MAND)
INT (BYTE~-1) AGE

VARIANTS STUDENT (INT (BYTE-1) CREDITS),

SECRETARY (INT (BYTE~2) WAGES,
(BYTE-1) TYPING_SPEED),

PROFESSOR
BEGIN

INT SALARY

STRING SUBJECT

VARIANTS PART_TIME_PROF

(INT (BYTE~1) HRSPERWEEK),
FULL_TIME_PROF

END -

END

NEW LINK (PEOPLE,
ROOM (SINGLE))
BETWEEN ROOM AND DEPT_ MEMBER

NEW. LINK (COURSES GIVEN, .
PROFESSOR (SINGLE)) :
RETWEEN PROFESSOR OF DEPT MEMBER
AND COURSE -

NEW LINK (COURSES_TAKEN,
STUDENTS)
BETWEEN STUDENT OF DEPT MEM%RF AND COURSE

NEW LINK (DOCTORAL STUDS,
' SUPERVISOR (SINGLE))
3ETWEEN STUDENT OF DEPT_MEMBER
AND FULL_TIME PROF OF
PROFESSOR OF DEPT_MEMBER

