Series: Monografias em Ci8ncia da Computagao
N¢ 18/78

JACKDAW II - Preliminary Specification

Part 3

" The Definition Language

by
Michael ¥, Challis

Departamentoc de Informdtica

Pontificia Universidade Catélica do Rio de Janeiro
Rua Marqués de Sdo Vicente, 225 — CEP-22453
Rio de Janeiro — Brasil

Series: Monografias em Cifncia da Computag2o No. 18/78

Series Editor: .Michael F. Challis October, 1978

Jackdaw II - Preliminary Specification®
Part 3

The Definition Language

by.

Michael F. Challis

*This research has been sponsored by FINEP and CNPq.

Abstract

This monograph forms part of the preliminary definition
of the Jackdaw II data base package (see the Preface).

" It contains & formal description of the language used to
define the structure of a data base (often called the 'pDpL').
This language also includes facilities for modifying the
structure of an existing data base.

Keywords: data base, DDL

‘Resumo

Esta monografia faz parte da defirigdo preliminar do
gistema de banco de dados Jackdaw II (veja o Prefacio),

Ela contém uma descrig@do formal da linguagem utilizada
para definir a estrutura de um banco de dados (a chamada
'DDL')., Esta linguagem inclui também facilidades para
atualizar a estrutura de um banco de dados que jda existe,

Palavras chave: banco de dados, DDL

CONTENTS
Pteface . * . . ° . 3 f . » . [. LIS °
3.1 Introduction . . e e e e e e e

3.2 The meta-language . + +

- 3.11 Key and index commands s e e
3,11.1 Key and index field commands

3,12 Primitive and group field commands

3.12.1 Qualifiers for primitive or group fi

3,13 Variant comménds e e s e s s s e e

3.14 Link field commands . . « .
' 3.14.1 Quallflers for link fxelds .

3.15 Mark field commands . . . ‘ .
3.15.1 Qualifiers for matk flelds .

3 16 Syntax SUMMATY & o+ o o o o e .

‘3-17 Example e o o o o s nlc “ o s s .

3.2.1 Syntactic CORNSEIUCES o « o « o o e o s o o
3‘2.2 Tatminal Symbols s e & o o ¢ & e s w w e » s
3.2.3 Production rules « o« ¢« + ¢ s s s e s s e o
' 302.4 Bracketiﬂg l‘ ® L d . L] L] * - . - L] L] L] L] - * .
‘3¢2.5 Repetition “ o & » e o ® &« ® 8 s s 6 » & » e
3.2.6 Subscripted consStructs . o« o ¢ o ¥ o o 0 . e
3-2.1 PrimitiVé constructs e o & ® & & 8 o # e »
‘3,3 Basic constructions, comments and keywords i . b &
3.3.1 Names and types e« b s 2 s s s % & & & e & @®
'3.3.2 Constants ¢ 8 & & o o 8 o s o+ e o « v e « e
3.3.3 Brackets i < « s o '« o o o & 4 o s o v o s o
3.3.4 Layout . I‘ i ‘ L] L . L L] L] L] . ° » * - ‘0 L] L]
3'3.5 Keywords i o & & » & v & 8 e e 0o e & & & o &

3.4 Rewriting rules -, S
3.4,1 Repeatable commands (R) e o s+ h a e e & o &
3.4.2 "Complex commands - (C) . « « « ¢ + o o ¢ & o+ o
3.5 Contexts and commands . . O A
3 .5 .1 contexts L] L] L] L] ° . lO L] .l . o L] b‘ L] » L] » L]
3.5.2 Generic descrlptxonsf. s e s e aie s s s w e
3-5'3 Fotmat Of sectlons 3 6 tO 3.15 e & ‘& n 8 5 s
3.5.,4 Choice of construct names . o« o o s o ¢ o o
‘3.6 The program ‘. ¢« & ® 8 w s 2 e o e = . « » & 2
3,7 Class commands « « ¢ o o ¢ ¢ s 3¢ o s o s o o s o
3.8 ”iink comm&ndﬂ .-.o e & & & 8 W w e » e s & 8 s s =
3.9 Mﬂdule Commands : « » s s s & o‘o e * 8 8 & & “a »
3.10 User description‘and'misceilaneous field commands

s e ® o »

s o ® 5 e o s &

» o o e 8 9o

& 0o~ [(E RV V.05 B w [ad

e
- Q00

12
13
15
18
19
20
20
21
23
25

26
28

29
33

33

35
35

36
37

37
43 .

Preface

This monograph forms part of the preliminary definition
of the Jackdaw II data baseé package. The complete definition
will include the following sections: :

1. Introduction

"Ihis'section gives an overview of the package ‘and
introduces its major components,

2, Structural Description

Thie describes the facilities provided for the
representation of data and data relationships in a data
base, and the 'access paths' which may be followed to
retrieve items stored within it. -

3. The Definition Language

This contains a description of the langusage used to
define the structure of a data base (often called the
'DDL'), The language also includes facilities for
modifying the structure of an existing data base.

4, The Procedural Interface

The 'nucleus' of the package will consist of a library
of’ procedures which may be called to create, modify or
delete items within a data base. This section describes
these 'interface procedures', The package will be written
in BCPL, and the library of interface procedures will also
initially be available only to BCPL application programs.

5; Concurrent Access

The options available for data base access in both
single~user and multi-user environments are described,
including the facilities provided to help maintain data
base consistency and integrity.

6. The SLIDE system

This section describes the language intended for the
'end-user'. SLIDE includes facilities for 1o0ading' (the
addition of relatively large volumes of data) and report
generation as well as facilities for casual interrogation
~and updating, The language has two levels - a ‘low level',
with commands. which correspond approximately to the
interface procedures of the nucleus, and a 'high level!
with more powerful primitives. ‘

The high level language may be easily extended to
generate languages 'tailored' to particular applications.

Jackdaw II is a development of the Jackdaw data base
package, which was originally developed by the author at the
University of Cambridge, England (where it has been in
production use since 1973), and which is now alsoc available onm
‘the IBM 370/165 at PUC-RJ, ‘

References

[1]'* Richards, M., 1974. "The :BCPL Programming Manual®,
Computer Laboratory, University of Cambridge,
Cambridge, England. :

[2] -~ Challis, M.F., 1974, "The JACKDAW Data Base Package",
Proc. SEAS Spring Technical Meeting, St. Andrews,
Scotland, April 1974. (Also available as "rechnical
Report No, 1" from the Computer Laboratory, University
‘of Cambridge, Cambridge, England). '

[3] - Challis, M.,F., 1978. "Técnicas de Integridade no _
Sistema de Jackdaw de Bancos de Dados", to appear in
the proceedings of "V Semindrio Integrado de Software
e Hardware Nacionais", Rio de Janeiro, Brasil. (Also
available in English as "Integrity Techniques in the
Jackdaw Database Package", Monografia em Ciéncia da

Computaglo no. 9/77, Dept. de Informatica, Pontificia
Universidade CatGlica, Rio de Janeiro, Brasil),

[4] - Challis, M,F,, 1978, "Database Consistency and Integrity
: in a Multi-user Environment", to appear in Proc.

International Conference on Data Bases: Improving
Usability and Responsiveness, Israel, 1978 - Academic
Press, New York. (An earlier version of this paper
with the same title is available as Monografia em
Ciéncia da Computagdo no. 6/78, Dept. de Informatica;
Pontiffcia Universidade Cat8lica, Rio de Janeiro,
Brasil).

‘4.1 Introduction

The data base definition language described in this
chapter may be used both for the definition of a new ddta base
and for modifying the structure of an existing data base.

Instructions for the creation or modification of the data
base structure are presented as a sequence of commands, some
of which require sub-commands to specify in more detail the
actions required. : ’ ‘

Examgles:
i) DELETE CLASS WORKMAN

T=- to rémove the class WORKMAN from the data base

ii) AMEND CLASS EMPLOYEE
BEGIN
ADD INT INSURANCE_NUM
DELETE INT AGE
END

~ this example of the AMEND CLASS command includes -
two sub-commands; the first defines a new primitive
field, and the second removes an existing primitive
field, ‘ :

Execution of the commands may result not only in changes
to the class defi:itions of the data base, but also in
modifications to the entries themselves. For example when a
class definition C is deleted, all entries in that class must
be deleted; and the removal of C also implies that any link
field definition whose partner class is C must also be
removed, which may affect further entries in other classes.
Particularly expensive alterations are those affecting keys
and indices: the alteration of a class key means that all the
‘entries of that class must be physically re-ordered,

Sections 3.3 to 3.15 define the data base definition
‘language. The syntax of the commands is given using a variant
of BNF (described in section 3,2), together with some '
"rewriting rules™ which show how certain command sequences may
be written in an abbreviated form. A summary of the syntax
‘appears in section 3.16,

3.2 The meta~language

The meta-language used to define the syntax of the
commands is a more concise variant of BNF (Backus Naur Form),
This is informally described below.

3.2.1 Syntactic constructs

The names of syntactic constructs (i.e. of the objects.
being defined) are composed of lower-~case letters and hyphens
'('"-'), and are not enclosed in angle brackets.

Examgles:

classid
gdd-class~comm

3.2.2 Terminal symbols

Terminal symbols (i,e. the basic symbols of the 1anguage
being defined) appear as upper-case words or as the symbols’
themselves. . :

Examgles:

ADD
CLASS

a
» 1

3.,2,3 Production rules
3

In a productlon rule, the symbol '->' is used to separate
the name of the construct from its definition, and vertical
bars ('|') are used to separate alternatlve definitions.

Examgle.

domestic-animal -> cat | dog | canary

3.2,4 " Bracketing

Angle brackets ('<¢' and '>') are used.as meta*parentheses
so. that definitions may be factored; and square brackets (' [t
and ']') are used to enclose parts of a definition which may
be omitted,

Example:
cat -> head body [< short-tail | lﬁng-tail > 1
is equi&alent to: _
cat -> head body. |

head body short-tail |
head body léng—~tail

"3.,2.5 chetition

* The form 'x S ...' is used to indicate a sequence of onme
or more 'x's separated by 'S's; that is, 'x § ...' stands for
'x |xSx |x6xSx| ...". 'x' and 'S' may be the name of a syntactic
construct, a terminal symbol, or a bracketted sequence,

‘Examgles;
gtt=list =) stt ; ...

- a 'stt-list' is a sequence of one or more 'str's
separated by semi~colons.

stt-list => < [label] Stt > 3 .:.

- in this case, each statement in the list may
optionzally be preceded by a label,

»

3.2.6 Subscripted constructs

The name of a syntactic comstruct appearing within a
definitién is sometimes followed by a digit; .this is simply a
subscript to aid identification of that particular occurrence
and does not form part of the construct name.

Examzle:
' rename=stt => RENAME idl as id2

-vbpth.'idl"and 'id2' are described by the
production rule for the comstruct 'id',

3.2,7 Primitive constructs

The definit/on of certain basic constructs is enclosed in
double asterisks: this is a nacural language defipition,

‘Examgle:

integer =>
*% a sequence of becween 1 and 8 dacxmal digits %%

3.3 Basic constructions, comments and keywords

‘We first define some of the basic eléments of the
language.

3.3.1 Names and types

classid => name
primid -> name
groupid => name
- variantid => name
linkid => name
markid => name
1ndex1d -> name

name -> *% a gsequence of 1etters, digits, periods ('. ')

and underlines C' "), starting with a'letter
kk .

Examgles:

PROFESSOR
HRS_PER_WEEK
PAY.,?2

modname =) #** implementation dependent; up to 8 national
characters for the 370 1mp1ementat1on *k

'Examzles:

.COMPFNCS
. $CF7

funcname => %% implementation dependent; a sequence of up
to 7 letters or digits, starting with a
letter, for the 370 implementation **

user-type ~> BOOL | STRING | INT | REAL | DATE |
‘ char | special L

char F) *% "CHAR~n' where 1 (m n (= 256 **

sPeQ{al -2 %% implementati@n dependent %%

-7

basic-type => BOOL | WORD | STRING | byte
byte => %% 'BYTE-n' where 1 <= n <= 256 **

Examgleae

BOOL
"CHAR~5
BYTE~12
STRIKNG -

3.3.2 Constants

string =) %% a sequence of up to 255 characters enclosed
in single (') or double (") quotes *¥

value => int-value | hex-value

int~value => %* a possibly signed sequence of decimal
o digits **

* hex-value =) *% up to 8 hexadecimal digits preceded by

gt % . 4
~Notes:
i) The asterisk ('%*') is used as an escape character

‘within strings:

]
"

#' gtands for
*#" gtands for
*% gtands for %

*N stands for "newline'
%5 stands for 'space'

and the sequence '#<newline>{spaces>*' is ignored, so

that a string may be split over several lines., Other
escape combinations are undefined.

Examgies:
WABCX"ASD" represents the same string as 'ABC" D'
"AB*ND" is a string containing the newline character.
“"ABC*

Rk , .
*EF" represents the same string as "ABCDEF",

.

ii) A hex-value is right-justified.

Examgle:

15 and XF represent the same value.

3.3.3 Brackets

The constructs °'bra' and 'ket' are always paired within
a definition, They may be replaced by '(' and ')' or by
'BEGIN' apd 'END'
Examgle:
The rule:
amend-prim—cémm ->
AMEND PRIM primid dra amend-prim-subcomm ; ... ket

stands for the two alternatives:

‘amend~-prim-comm -> ' ‘ :
>

AMEND PRIM primid (amend‘prlm-subcomm 3 eee
AMEND PRIM primid BEGIN amend-~prim-subcomm ; «s+ END

3.3.4 Layout

Layout is free format, and extra spaces may be inserted
between items to improve leglblllty, on the other hand, spaces
are not required between items which are already correctly

delimited by some other symbol,

Examples?
i) ADD CLASS PERSON BEGIN STRING NAME, ADDRESS END

ii) ADD CLASS PERSON(STRING NAME , ADDRESS)
iii) but not:
~ ADDCLASS PERSON ...

A comment may appear wherever a Space may appear, and 1is
introduced by '//' and termznated by 'newline' (i.e. the rest

of the line is ignored).

Examgle:
ADD CLASS PERSON /! used to be called PEOPLE

BEGIN
STRING NAME, // used to be called SURNAME
ADDRESS ¢ '
END .

The semicolon. gseparating ..e commands within a sequence,
may be omitted if eacl, command is written on a separate line.

Example:
A5D CLASS € (INT X, Y; STRING Z)
may be written asz
ADD CLASS C (

" INT X, Y
STRING Z)

The exact rule is that any newline is treated as a
senicolon if: ‘
i) a semicolon is syntactically correct at this point,
and

s not immediately followed by 'BEGIN', '(', ‘'END',
s '," . another mnew ine.

ii) it

o e

®
»
Any other newline is treated as a space.

&

2,3.5 XKeywvords

The following table lists synonyms for various keywords
that appear in the language. None of the keywords are reserved
words, and so there are no restrictions on the choice of names
for classes and fields. '

-10~-

Kexword Synonyms

ADD NEW
MODULE MODULES
CLASS CLASSES
LINK LINKS
PRIM PRIMS
GROUP GRGUPS
MARK MARKS
INDEX " INDICES, INDEXES
COMPFUNC COMPFUNCS
VARIANT VARIANTS, UNION, ONEOF
AS =
IS ‘ =
ON -~ 1S, =, BY
_ DESCRIPTION COMMENT
OF , IN

3.4 Rewri;ing rules

Certain sequences or forms of commands may be rewritten
in abbreviated formats, and this!section describes the .
possible transformations. The rewriting rules (if any) whiclt
may be applied to a particular command are indicated by a
character in brackets to the left of the production rule for
that command. '

Eiamzle:
. (R) delete-mod=~comm => DELETE MODULE modname

, *(R)' indicates that the rewriting rule for repetition
may be applied to conmsecutive occurrences of this command.

3

3.4.1 Repeatable commands (R)

The general form of the definition of a "repeatable
command" is:

(R) conmstruct => keywords argument
where 'construct' is the name of the construct, 'keywords' is

a sequence of one or more terminal symbols, and ‘argument' is
the rest of the definition.

-11-
A consecutive sequenée of occurrences of the construct of
the form:
keywords argumentl;
keywords argument2;
keywor&;';;éumentn.
ma&lbe rewritten as:
keywords argumentl, arguméntz, essess argumentn
‘Example: | |
{R) aeletefmod-comm -> DELETE MODULE modname

The séquence:

DELETE MODULE M1; DELETE MODULE M2;
DELETE MODULE M3

may .be rewritten as:

DELETE MODULE M1, M2, M3

3;4.2‘ Complex commands (C)

The general form of the definition of a “complex command"
iss
(C) construct => keﬁwords argument [bra subcomm ; ... ket]
where 'construct'! is the name of the comstruct and 'keywords'
is a sequence of one or more terminal symbols. 'subcomm' and
'argument' are, respectively, the parts of the definition
which describe the possible subcommands, and the item to which
they apply. '

- One (but not both) of the following rewriting rules may
be applied:

i) An occurrence of the construct of the form:
keywords argument bra subcomm ket
may be rewritten as:

keywords argument subcomm

-12-
ii) A consecutive sequence of occurrences of the construct
of the form:

keywords argumentl [bra subcomm eee ket 1;

H
keywords argument2 [bra subcomm ; ... ket 1;
keywords argumentn [bra subcomm ; ... ket]
may be rewritten ast
keywords argumentl [bra subcomm ; ... ket 1,
argument2 [bra subcomm § ... ket 1,
'argumentn [bra subcomm ; .

.. ket]

Examgles:
(C) amend-class-comm =>
AMEND CLASS classid
bra amend~class-subcomm ; ... ket

i) The command:

AMEND CLASS Cl1 (DELETE PRIM AGE)

may be rewritten as:
AMEND CLASS C1 DELETE PRIM AGE

ii) The sequence:

AMEND CLASS Cl1 (DELETE PRIM P1l, P2);
AMEND CLASS C2 (ADD PRIM Pl; DELETE PRIM P2)

may be rewritten as:

AMEND CLASS C1 (DELETE PRIM P1l, P2),
" €2 (ADD PRIM Pl; DELETE PRIM P2)

but not as:

AMEND CLASS €1 DELETE PRIM P1, P2,
C2 (ADD PRIM Pl:; DELETE PRIM P2)

3.5 Contexts and commands

This section includes information about the overall
structure of the commands, and introduces various conventions
that are used in later sections. '

=13

"3.5.1 Contexts

The commands of the data base definition Ianguage are of
~two kinds: "basic"™ commands, which perform some action within
the current context, and "compound”" commands which may first
‘perform some action within the current context and then derive

a new context in which further commands (known as
"subcommands"™ of the compound command) are executed,

Each "context" is composed of a number of "components" as
follows: ’ :

i) The components of the "initial™ context are:

- class definitions ,
- comparison function module specifications

for the data base,

o
[
~

"The components of a “class"™ context are:
= variant, primitive field, group field, link field,
key and index definitions
- user description and miscellaneous informatzon
fields
for a particular class.

The components of a "variant" context are:

ol
e
[
A d

- varirat, primitive f1e1d group field and link
fi.id definitions
: - user descr1ptxon and mlscellaneous 1nformatlon
flelds

for a particular variant,
iv) The components of a "primitive" context are:
- user description and miscellaneous information
fields
- user occurrence and implementation information
~ user type and basic type
for a particular primitive field.
v) The components of a "link" context are:
- primitive field, group Lleld ‘mark field, key and
' index deflnltzons

= user description and mlscellaneous information
fields

vi) The

vii) The

viii) The
The

s ix)

x) The

Most commands also speclfy a
component of the context in which the command is executed,

command may

user occurrence and implementation information
its kind (uni=-link or multi-link)

for a particular link field,

components of a "group" context are:

primitive field, group field
definitions .

user description and miscellaneous information
fields

s key and index

user occurrence and implementation information

for a particular group field.

components of a "mark"™ context are:

user descr1pt10n and mlscellaneous information
fields
user occurrence information
for a particular mark field.

components of a "key" context are:

key field definitions (including any comparison
functions).

for the key.
components of an "index"™ context are:

index field definitions (1nc1ud1ng any comparls
functlons) :

for a particular index.
components of a "module"™ context are:

the names of the comparison functions

within a particular module,

"subject" which is a

create, modify or delete its subJect.

on

The

-15-

Examples:
i) . DELETE CLASS C-

This is a basic command which may only appear in the
initial context, Its subject is the class definition for C
which is removed from the context,

ii) ‘AMEND.CLASS C (DELETE PRIM X)

The ‘AMEND CLASS' command is a compound command which
may only appear in the initial context. Its subject is the
class definition for C from which a corresponding class
context is created, The subcommands of "AMEND CLASS' are
.then executed within the new context, : :

In this example, the subcommand is the basic command
'DELETE PRIM X' which, when executed within a class
context, locates its subject, the primitive field
definition for X, and removes it from the context.

.'Thus the complete effect of this command is to remove
the primitive field definition for X from the class C,

3.5.2 .Generic descriptions

Many of the commands available fall into one of four
categories of "cre tion”, "amen 1ent", "deletion" and
"renamipng®., The semantics of all the commands in one category
are similar, the detalls depending on ‘the particular subject
and the context of execution. To avoid needless repetition in
later sections, the semantics of each category are defined -
here. ' ’

5

In the generic desceriptions below, occurrences of
{SUBJECT>, <{subjectid> and <{subject> must be consistently
replaced by one of the following seven possibilities:

{SUBJECT> {subjectid> {subject>
CLASS classid class
VARIANT - variantid variant
PRIM primid prim
LIKRK linkid . link
GROUP groupid . group
MARK markid . mark
INDEX indexid ‘index

MIDULE modname mod .~

-16-

a) Commands for creation

*(C) ADD <SUBJECT> (subjectid}
‘ [bra add-<subject>-subcomm ; ves ket]

or _
*#(C) <SUBJECT> <subjectid}
[bra add—(subject)esubcomm i ose ket]

The subject of ‘the command ‘ig the {subject)> definition.
{subjectid> which is created and added as =a new component to
‘the current context. Am error occurs if the subJect is already
present in the current context, or if the naming rules
(section 2.9) would be broken by its addition. The subject is
then used to define a new <{subject) context in which each

'add-<subject>-subcomm' is executed in turn.

The second form of the command (1n which the keyword ADD
is absent) is used when the command is itself a subcommand of
‘another enclosing creation command,

Exaﬁgie:_
*(C) ADD CLASS classid
- [bra add-class-subcomm ; ... ket]

) The current context (which mus t be the initial context)
is extended by the addxtlon of a'new definition for the
class 'classid ; each 'add~class-subcomm' is then executed
within a new class context derived from this definition.

b) Commands for amendment

%*(C) AMEND <SUBJECT)> <{subjectid)
bra amend-<{subject>-subcomm ; ... ket

The subJect of the command is the {subject> definition
(subject1d> in the current context. A new {subject)> context is
derived from this component of the current context, and each
'amend-<subjectd>~subcomm' is executed within it in turn.

An error is indicated if the subject is not present in
the current context,

-17-

Examgle:

 %(C) AMEND GROUP groupid-
bra amend-group-subcomm ; ... ket

The subject is the group definition for the group
‘groupid'. (The current context might be a class, group,
* ‘wvariant or link context.) Each 'amend-group~-subcomm' is
executed in the group context provided by the subject,

¢) Commands for deletion

*(R) - DELETE <{SUBJECT)> <subjectid>

The subject of the command is the <{(subject) definition
{subjectid>. This definition is removed from the current
context,

An error occurs if the subject is not present in the
current context,

Exaﬁgie:
%*(R) DELETE VARIANT variantid
The subject is the variant definition for the variant

'variantid'. (The current context might be a class or
variant context.,) The variant definition ig deleted.

. d) Commands for renaming

*(R) RENAME <SUBJECT> <sub3ect1d>1 AS (sub3ect1d>2

‘The subject of the command is the <sub3ect> definition
{subjectid>1l. The def;nltlpn is renamed <{subjectid)2,

An error is given if the subject is not found in the
current context, or if renaming would break the naming rules
“of section 2.,9.

Examgle:
*(R) RENAME PRIM primidl AS primid2

The subject is the definition for the primitive field
'primidl'. (The current context might be a class, variant,
group or link context.) The primitive f1e1d is renamed as
'primid2!'

-]18~

3,5.3 Format of sections 5.6 to 3.15

Not all of the commands that may be derived from the
above generic descriptions actually exist (for example, there
is no 'DELETE LINK linkid' command), and the contexts in which
any particular command may appear are restricted (for example,
'DELETE PRIM primid" may not appear in the initial context).

Sections 3.6 to 3.15 define the syntax and semantics of
the data base definition language, and the possible commands
and their permitted contexts may be deduced from the
production rules., Note that a production rule for a command
whose semantics are correctly described by the corresponding
‘generic description above is preceded by an asterisk.

Each section groups together the commands associated with
one or two particular components of the class definitions
(e.g. section 3.12 describes commands for the creation,
amendment, deletion and remaming of primitive and group
fields), and normally includes the following subsections:

a) [Pérmitted contexts
‘= a list of the contexts in which the command may
appear. This list may be deduced from the :
production rules, but' is included at the head of
each section for reference. :
b) ‘Syntax
- one or more production rules, possibly separated by
short cemantic descriptions enclosed between the
’ delimiters '|*' and '*|'.. '
¢) Notes
5 = extra remarks about the syntax.
'd) Semantics
- explanation of the effect of the command(s)
described in an immediately preceding 'Syntax'
subsection,
e) Examples
- examples of constructs defined in preceding syntax
- . gsubsections. Note that the rewriting rules and
synonyms described in section 3.3 are used in the

" examples,

Subsections (b) to (e) may appear several times within one
gection, -

-1e-

3.5.4 Choice of conStruét names:

To increase 1nte111g1h111ty, the -names of the syntactic
categories deflnlng the various constructs of the language
have been chosen according to the” follow1ng scheme.

i) A name endxng in *~subcomm® descrlbes ‘the set of
commands whichk may appear as subcommands of some hlgher

level command

Examgle:
"add—class-subcomm' defines the commands which may
appear as subcommands of the 'add-class—comm'

ii) . Names starting with 'add-', 'amend-', 'delete~' or
'rename~' and finishing with '~comm' represent individual
commands to perform some specific action {creation,
amendment, deletion or remaming respectively). They may be

basic or compound commands.,

'Examples:
'add-class~comm' defines the compound command that
creates a new class.

'rename~group~comn' defines the basic command that
renames some group within a class, varlant, link or
group field.

'~comm' are used to represent

~

iii) Other names ending in
sets of individual commands for convenience,’

Exdmple:
A 'descr-comm' may be an ‘'add-descr-comm' or a
'delete-descr~comm'

Names ending with '~def' are used to designate the
commands which occur as subcommandes of some enclosing
'add- ... ~comm' -~ i.,e., which occur within the context of

a newly-created item, They differ from other commands in
that they do not require a keyword to specify their
action,

“iv)

-20~-

: ;EXamEIes:“
i) 5primrdef’,defines the command that specifies a
primitive field of a newly-created class, variant, link
or ‘group field. ‘ ‘ '

ii) '‘primgroup~def’ is,either a "prim-def' or a
'‘group~def®. -

3.6 The program

syntax:
program => COMM { ...
comm =) class-comm |
link~comm !
module-comm

Semantics:

Each ‘comm' is executed in iturn in the initial context,

3.7 Class commands

Permitted context: initial

Szntaxz

‘class=-comm -> add-class-comm |
A - amend-class~comm |
5 delete~class~comm |
- rename-class—comm

*(C) add~class~comm =>
ADD CLASS classid
f bra add-class-subcomm ; ... ket]

add-class—-subcomm => descrdata~def |
" keyindex~def |
‘primgroup~def |

variant-def

-21-

*(C) amend-class-comm ->
AMEND CLASS classid _
~ bra amend-class-subcomm ; ... ket

amend-class-subcomm => descrdata-comm |
: keyindex-comm |
primgroup-comm !

variant-comm |

linkfield~comm

*(R) delete-class-comm =-> DELETE CLASS classid

*(R) rename-class-comm =->
RENAME CLASS classidl AS clasSLdZ

Examgles:

i) ADD CLASS ROOM
BEGIN
" INT ROOMNUM, AREA
KEY IS ROOMNUM
. END

ii) AMEND CLASS ROOM DELETE PRIM AREA
iii) DELETE CLASSES ROOM, BUILDING

iv) RENAME CLASS CUPBORD AS CUFBOARD

3.8 ’‘Link commands

al -

jobe

Permitted context: init

Szntaxa

link=comm => add-link=comm |
delete~link~comm

(R) add-link-comm =-> -
ADD LINK (linkfield-defl , linkfield-def2)
BETWEEN classotvarl AND classorvar?

classorvar -> classid |
variantid OF classorvar

-20=

linkfield-def -> : _ »
linkid [bra gd@-linkfield-subcomm 3 e+ ket]

add-linkfield-subcomm -)> descrdata-def |

' keyindex—def |
primgroup~-def ‘|
mark-def | '
linkfield-qualifiers

Semantics:

Each 'add-link-comm' defines a new link between the class
“or variant 'classorvarl' and the class or variant.
'classorvar2',. 'linkfield-defl' specifies the creation of the
link' field in 'classorvarl® and 'linkfield-def2' specifies the
~partner link field in 'classorvar2'.

Each 'add-linkfield-subcomm' within a '"linkfield-def' is
applied to the newly created link field in turn; in the
absence of contrary information (specified by '
"linkfield-qualifiers' - see section 3.13,1), the link field
will be’an optional, common multi-link field. '

If no key is specified for the link field (by a
'Key-def') then the key will be the same as that of its
partner class (and the field will be keyless if the partner
class has ne key). = ' ‘ '

SZntak:,
(R) delete-link-comm =>:

’ DELETE LINK (linkidl , 1linkid2)
‘ BETWEEN classorvarl AND classorvar2

Semantics:

%
The link fields 'linkidl' in class or variant
'.lassorvarl' and 'linkid2' in class or variant 'classorvar2'
must be partner link fields. They are both deleted.

‘Notes: .
'FROM', 'TO' may be used in place of 'BETWEEN', 'AND' in
either of these commands.

Examgles:

i) ADD LINK (ROOMS, BUILDINGV)
BETWEEN BUILDING AND ROOM

ii) ADD LINK (CURRPROJS, EMPLS(MARK LEADER))
BETWEEN EMPLOYEE AND PROJECT

-23=

iii) DELETE LINK (MANAGER EMPLS)
'FROM EMPLOYEE TO EMPLOYEE,
(AUDITPROJ, AUDITOR)
BETWEEN EMPLOYEE AND PROJECT

iv) ADD LINK (sruns SUPERVISOR(QINGLE))

BETWEEN STUDENT OF DEPT MEMBER 4
AND FULL_?IME_PROF TN PROFESSOR IN DEPT_MEMBER

3.9 Modﬁle commands

Permitted context: initial

Notes:

Any user-provided: comparlson functions must be.
pre~compiled and stored in mcdules, which are later loaded by
the nucleus when a data base is opened. Each module may
include more than one comparison function, and the purpose of
the modyle commands is to inform the package of the names of
the modules and of the comparlson functions contained within
them.

No two module names or comparlson function names may be
the same, although the name of a comparison function may be
the same as that of a module,

Szntax:
‘ﬁodule-comm -> add-mod-comm |
amend-mod-~comm |
delete~mod~comm |

rename-mod-comm
5 ,

*(C) add-mod~comm =>
ADD MODULE modname
[bra add-mod-subcomm ; ... ket]

add-mod~-subcomm => funcname , ...

|* An 'add-mod-subcomm' specifies the names of the

comparlson functions which belong to the module’
*|

-2b-

*(C) amend-mod-comm =>
AMEND MODULE modname
) bra amend-mod—subcomm 3 ... ket

amend-mod-subcomm -2 add ~func~comm |
delete-func-comm |
rename~func-comm

(R) add-func-comm ~> ADD funcname
(R) delete-func-comm «> DELETE funcname

j* A comparlson function may only be deleted if it
is not in use; that is, provided it does not

take part in any key or index field definition
* | .

(R) rename-func-comm +> RENAME funcnamel AS funcname2
[* These subcommands allow the addition, deletion,
or renaming of functions in the list of contents
% of the module *|
*(R) delete-mod-comm -> DELETE MODULE modname

|* A module may only be ﬂeleted when none of its
comparlson functions are ‘being used *|

*(R) rename-mod~comm -> RENAME MODULE modnamel AS modnameZ
'Examgles:

i). ADD MODULE M1 (F1, F2, F3),
M2 (Gl1, G2)

) qAMEND MODULE Ml DELETE F1, F2

iii) AMEND MODULE M2

BEGIN
ADD F1, F2
RENAME Gl AS F3,
. G2 = F&
END

iv) RENAME MODULE M3 AS M4

-25-

3.10 User description and miscellaneous field commands

Permitted contexts: class, variant, primitive, group, link,

mark
Sxﬁtax:
descrdata-def =) descr-def |
miscdata~def

descrdata~comm ~> descr-comm |
miscdata~-comm

descr-def -> DESCRIPTION IS string

|* sets 'string' in the user description field *|
_ : P

descr-comm -> add-desé¢r-comm |
delete~-degscr~comm

adé-dgscrvcomm -> ADD descr-def

]* replaces any existing user description by the new
one *| ; :
delete~descr-comm => DELETE: DESCRIPTION

|* removes any existing user description *|

Examgles:

>

i) DESCRIPTION IS “one entry for each employee"

ii) ADD COMMENT = 'Surname only'
Szntax:%
miscdata~def =-> . '
MISCDATA IS < value | (value , ...) >

|* sets the specified 'value'(s) as elements of the
user miscellaneous field: * | ,

miscdata-comm - add-miscdata-comm |
delete~-miscdata=—-comm

add-miscdata-comm -> ADD miscdata-def

|* replaces any existing user miscellaneous

information by the 'value'(s) spécified *|

delete-miscdata-comm =-> DELETE MISCDATA

|* removes any existing user miscellaneous information
*| ‘

Examples:
i) DELETE MISCDATA
ii) MISCDATA = 18

iii) ADD MISCDATA = (19, XCO, -3)

3.11 Key and Index commands

Permitted contexts: c¢lass, group, link
Szntdx:

keyindex~def =) key-def |
index~def

'keyindex—comm’-> key-comm |
index~comm

key-def => KEY IS key-spec |
NOKEY

key-sﬁec -> simple-key-spec |
(simple-key-spec , ...)

~simple~key-spec => primid [(‘fdﬁcname Y 1
Semantics:

The key flelds of a key . are deflned in order by a
sequence of 'simple~key-spec's; each 31mple-key-spec names
the. correspondlng key field pr1m1d' and poss1b1y specifies a
comparison function 'funcname', The 'NOKEY' optlon of

'key—def' indicates that the current context is keyless, and
is assumed in the absence of any 'key-def'.

Examgles.
i) KEY IS AGE
ii) KEY IS (SURNAME, CHRISTIAN_NAMES).

tii) KEY IS SALARY(REVINT)

Sgntax:
key=-comn -> .add-key-comm |
amend-key-comm |
delete~key-comm

add-key~comm ~> ADD KEY IS key-spec

| % sﬁecifies a key; may only be used if no key has yet
been defined for the current context ¥|

amend-key-comm => 4
AMEND ‘KEY < bra amend-keyindex-subcomm ; ... ket |
amend~keyindex-subcomm >

|* each 'amend-keyindex-subcomm' is applied};o.the key
in turn " *|

delete~key-comm =-> DELETE KEY |
’ NOKEY

{* "any existing key is removed ¥|

t

?xamgles:
i) ADD KEY = AGE

ii) . AMEND XEY ADD BIRTH_pATE

Syntax:
' (R) index-def =-> INDEX index-spec

index-spec -> indexid ON key-spec

% 'key~spec' defines the index fields of a new index
*indexid' #| ~ ' ‘

Eﬁamgle:

JINDEX BYAGE = ACE,
BYNAME = (SURNAME,
CHRISTIAN NAMES,
IDﬁNUM(IngRT))

Syntax:

index=comm =Y add-index-comm |
amend-index~comm |
delete-index~comnm |
rgnamg-index—comm

-28=

(R) add-index~comm =-> ADD INDEX index-spéc
[* specifies a new index ¥%|
«%(C) amend-index~comm ->

AMEND INDEX indexid . ‘
bra ame~d~kevindex-subcomm ; ... ket

*(R) delete-index-comm => DELETE INDEX indexid
#(R) rename-index-comm =-> RENAME INDEX indexidl AS indexid2
‘Examples: v .

iy ADD INDEX BYAGE = AGE

ii) AMEND INDEX BYNAME DELETE ID_NUM

iii) RENAME INDEX Il AS INDEXL

3.11,1 ‘Key and Index field commands

Permitted contexts: key, index

Syntax:

amend~keyindex-subcomm => add-keyindexfield-comm |
‘elete~keyindexfield~comm |
add~compfunc-comm |
delete~compfunc-comm

»

.add-keyindexfield~comm = ADD-key-spéc

|# the fields and comparison functions specified by
‘key~spec' are appended as additional secondary key
or index fields *| ‘ :

delete~keyindexfield~-comm =->
DELETE ¢ primid | (primid , ...) ?

|* Suppose the current context is composed of the
"sequence of key or index fields pl, p2, ... pnj;
then the sequence '<primid|(primid,...)>' must =
specify some subset of the secondary fields
Pjs ose pn (3>=2), These fields are removed from
the context (so that it is afterwards defined by.
the sequence pl, ... p(i-1)) =i '

-20-

»(R)iadércompfuné~qomm ~> COMPFUNC IS compfunc-spec

compfunc-spec =>

funcname FOR < primid | (primid , ...) >

|* ‘'funcname' is defined as the comparison function
for the key or index field(s) '
'¢privid|(primid,..)>', replacing any previously
defined comparison function(s) ¥|

(R) delete-compfunc-comm -» DELETE COMPFUNC FOR primid
- |* Any comparison function defined for the key or

index field 'primid' is deleted (thus reinstating
.the default ordering for the field) *|

Examgles: '
i) ADD (P&, P5(F1))
ii) DELETE (P33, P4, P5)

1ii) COMPFUNC IS FINT FOR (P7, P8),
' FREAL FOR (P1, P2)

|

3,12 Primitive and group field commands

Permitted contexts. class, vari'at, group, link

Szntax:~

primgroup-def -> prim-def |
. - group~def

. 5
primgroup~commn ~-> prim~comm. |
' group=comnm

prim-def -> ' .
user—-type < [(basic-type)] primid
[bra add-prim-subcomm ; ... ket 7 2> 45 oo

. add-ptiﬁ—subcomm -> descrdata-def |
_primgroup-qualifiers

Semantics:

Each 'prim-def' specifies the creation of omne or more new
‘primitive fields 'primid'; 'user-type' gives the user type of
each field., The basic type for a field 'primid' is given by
the first occurrence of '[(basic-type)]l' to the left of

-30~

pr1m1d' in the ‘prim-def'; if no such occurrence is found, a
default is chosen according to the user type as follows:

User type Default basic type
BOOL BOOL

STRING ~ STRING

INT WORD

REAL BYTE-8

DATE BYTE=2

CHAR-n BYTE-n {(1{=n{=256)

‘add-prim=subcomm's’ are used to speclfy any user or
jmplementation lnformatlon associated with the primitive
field. If no user occurrence information is! spec1f1ed the

field is assumed to be mandatory ('MAND) if it is a primary
key field for a cldss or group, and is assumed to be opt1ona1
('OPT') otherwise. If no 1mplementatlon information is given,
the field is assumed to be common ('COMMON'),

Examples:
i) INT X, Y, Z //all WORD fields
ii) INT (BYTE-1) X, Y, Z //all BYTE-1 fields

iii) INT X, (BYTE-1) Y, 2, (BYTE-2) A
' //X is WORD, Y and Z are BYTE-I, A is BYTE-2

iv) STRING (BYTE-8) ID_NUM (MAND),
(STRING) EX_WIFE (OPT, RARE)

v) JINT (BYTE-~2) SALARY (DESCRIPTION-"Pounds per year

- OPT
COMMON)
Szntax:
prxm—comm - add-prlm-comm -
amend-prim-comm |
delete-prim=comm |

rename~prim=-comm
(R) add-prim;comm -> ADD PRIM prim—def

{* the new primitive fields specified by 'prim~def'
are added to the current context *|

-31=~

*(C) amend-prim-comm =>
AMEND PRIM primid bra amend-prlm—subcomm 3 «.. ket

amend-prim-subcomm -> descrdata-comm |
primgroup-qualifiers |
amend-type~-comm

amend~type—-comm ->
TYPE IS < [user-type 1 (bas1c~type)
user—-type >

|* This command alters the user type and/or the
basic type of the primitive field in whose
context it appears ¥|

*(R) deléte~prih?c0mm ~> DELETE PRIM primid

|* a primitive field may not be deleted if it is a key
or index field *| -

*(R) rename-prim-comm -> RENAME PRIM primidl AS primid2
Examgiés:
i) AMEND PRIM EX_FIFE
BEGIN
COMMON
DESCRIPTION = "Maiden name"”

. TYPE IS (BYTE-ZO)
END

ii) DELETE PRIM Pl, P2, P3
iii) -ADD PRIM STRING S1, 82; DATE DATE, INT X, Y, 2
Syntax: -

*(C) groyp-def -> ' , '
GROUP groupid [bra add-group subcomm $ «.. ket]

add—group-subcomm -> descrdata-def |
keyindex-def |
prlmgfoup-def |
vprlmgroup qualifiers

|* If no user occurrence lnformatlon is spec1f1ed the
" newly created group is assumed to be opt1ona1 and
if no implementation information is given it is
assumed to be common *|

-32-

Examglea:

i) GROUP CHILDREN
. BEGIN
OPT, RARE
STRING NAME
KEY IS NAME :
GROUP TOY¥S STRING DESCRIPTION
END

Szntax:

group-comm -> add-group-comm |
amend-group—comm
delete~-group-comm |
rename=group—comm

*(C)'add-group-comm ->
ADD GROUP groupid
[bra add-group=-subcomm ; ... ket]

*(C) amend-group=-comm =>
AMEND GROUP groupid
bra amend-group-subcomm ; ... ket

amend~group-~subcomm =-> descrdata-comm |
keyindex~comm |
primgroup~comm |
primgroup~-qualifiers

*(R) delete-group-comm ~-> DELETE GROUP groupid

%*(R) rename-group-comm -> RENAME GROUP groupidl AS groupid2
Examgles:
" ¥
i) AMEND GROUP CHILDREN
BEGIN
COMMON o
AMEND GROUP TOYS ADD PRIM INT AGE
END ‘

ii) RENAME GROUPS Gl AS G2,
| | G3 AS G4

-33-

3.12,1 Qualifiers for primitive or group fields

Permitted contexts: primtive, group

Syntax:
prngroub-qualifiers ->» primgroup~qualifier , ...
primgroup-qualifiér -> OPT | MAND | RARE | COMMON
Notes: '

The set of 'primgroup=-qualifier's specified by all
'primgroup~qualifiers' for the current context should include
at most one of 'OPT', 'MAND' and at most one of 'RARE’,
TCOMMON', :

Semantics:

User occurrence information is specified by 'OPT’
(optional field) or 'MAND' (mandatory field).

implementation information is specified by "RARE' (the
field is not usually set) or 'COMMON',

The user occurrence or implementation information for the
primary key field may not be altered.

Examgies:
) oPT

e

ii) MAND, COMMON

. . .
3,13 Variant commands

Permitted contexts: class, variant

Szntax&

*(C) variant-def ->
VARIANT variantid
[bra add-variant-gsubcomm ; ... ket]

add=-variant-gsubcomm =) descrdata-def |
. primgroup=def |
variant-def

Examgle:
VARIANTS STUDENT (INT CREDITS),

SECRETARY (INT WAGES),

PROFESSOR
BEGIN
INT SALARY
VARIANT PART_ TIME_PROF
VARIANT FULL_TIME_PROF
END

Szntax:

variant-comm -> add-variant-comm |
amend-variant-comm |
delete~variant-comm |
rename=variant~-comm

*(C) add-variant-comm =>
" 'ADD VARIANT variantid
. [bra add-variant-subcomm ; ... ket]
*(C) amend~variant—comm =)
AMEND VARIANT varlant1d
bra amend-varxant-subcomm 3 +so ket

amend=variant-subcomn -> descrdata-comm |

: - prlmgroup-comm |
variant-comm |
linkfield~comm

*(R),deléte—variantécomm => DELETE. VARIANT variadtid\

*(R) reqame-varlant—comm -2
RENAME VARIANT variantidl AS variantid2

Eiamgles.

i) -AMEND VARIANT PROFESSOR
AMEND VARIANT PART_TIME_PROF
ADD PRIM INT HRS_PER_WEEK

i) DELETE VARIANT SECRETARY

-35~

3.14 Link field ¢ommands

Permitted contexts: class, variant

Syntax:

llnkfleld-comm -> amend-linkfield-comm |
rename~linkfield-comm

*(C) amend-linkfield-comm =>
AMEND LINK linkid
bra amend-iinkfield-subcomm ; ... ket

amend-linkfield-subcomm =) descrdata-comm |
keyindex-comm |
primgroup~comm |
mark~comm |
linkfield-qualifiers

#(R) rename-linkfield-comm -> RENAME LINK linkidl AS linkid2

Examples:

i) AMEND LINK PROJECTS (
ADD MARK MAJOR
KEY IS PROJNUM)

ii)‘ RENAME LINK PROJECTS AS PROJS

3.14.1 Qualifiers for link fields

Permitted contexts: Ilink

Szntax'
i nkfleld-qua11f1ers —> 11nkf1e1d—qua11f1er s e

linkfield-qualifier -> OPT I MAND |
: RARE | COMMON |
SINGLE | MULTIPLE

. Notes:

The set of ‘11nkf1e1d-qua11fler s specified by a11
.'11nkf1e1d-qua11f1ers' for the current context should include
at most one of 'OPT', 'MAND', at most one of 'RARE’, 'COMMON',
and at most one of 'SINGLE' *MULTIPLE".

-36~-

Semantics:

User occurrence information is specified by 'OPT'
(optional) or 'MAND' (mandatory). . ‘

Implementation information is specified by 'RARE' (the
field is not usually set) or 'COMMON',

The kind of link field is specified by 'SINGLE' (a
uni-link field) or "MULTIPLE' (a multi-link field).

Examgles:
i) OPT, RARE

ii) SINGLE, OPT, COMMON

3.15 Mark field commands

" Permitted context: link

Szntax:

*(C) mark-def =-> ;
MARK markid [bra add-mark-subcomm ; ... ket]

add-mark-subcomm -> descrdata-def |
‘ ‘ mark-qualifier

I* in the absence of any '"mark-qualifier' the created
field is assumed to be optional *|

Examgles:
i) qvMA'RI_(S OWNER, MAJORUSER {OPT)

'ii) MARK LARGEST MAND

Syntax:
mark-comn =-> add-mark-comm |
. amend-mark-comm |
delete-mark-comm |

rename-mark=-comm

*(C) add-mark-comm -> .
ADD MARK markid [bra add-mark-subcomm ; ... ket 1

-37-
*(C) amend-mark-comm ->
AMEND MARK markid bra amend-mark-subcomm ! +ee ket

amend-mark-subcomm => descrdata-comm i
mark-qualifier

*(R) delete-mark-comm => DELETE MARK markid
*(R) rename-mérk-comm-—> RENAME MARK‘markidl AS mArkidZ
Examples:

i) AMEND MARK LARGEST OPT

.-ii) DELETE MARKS Ml, M2

3.15.1 Qualifiers for mark fields

Permitted context: mark

Szntax}.
mark-qualifier -> OPT | MAND

Semantics:

'OPT' indicates that the mark field is optlonal, and
'MAND' that it is mandatory.

3.16 Syntax summary

The production rules for the language'are reproduced here
in abbqfviated form for reference.

A~ stands for add-

C~ stands for amend~-

D= stands for delete-~
. R- stands for rename-

-C stands for ~comm

~-SC stands for ~-subcomnm
=D stands for ~def

-Q stands for =qualifiers

-38=-

program ~> comm 3 s

comm -» class~C | link-C | module~C

class-C -> A-class~C | C-class~C |
D~class~C | R-class=C

(C) A-class=C => ADD CLASS classid [(A-class=SC ; ...)]

we

A=-class—-SC ->-descrdata-D | keyindéx—D]
' " primgroup=-D | variant-D

(C) C=class~C => AMEND CLASS classid (C-class-=5C ; ...)

C-class=~SC -) descrdata-C | keyindex~C
" primgroup~C | variant-C | linkfield=C

(R) D-class-C -> DELETE CLASS classid

{(R) R-class-C ~> RENAME CLASS classidl AS classid2

link=-C => A-link~-C | D—link-C

(R) A-link-C => ADD LINK (llnkfleld -D1 , 11nkf1efd-D2)
BETWEEN classorvarl AND classorvarz

classorvar => classid | variaptid OF classorvar
linkfield=D => linkid [(Arlinkfield-sc $ aes)]

A-linkfield-SC -)> descrdata-D | keyindex-D
primgroup=-D | mark~D | llnkfleld-Q

(R) D-link-C =) DELETE LINK (linkidl , linkid2)
BETWEEN classorvan; AND classorvar2
module~C =) A—mbd-c { C~mod—-C llh;ﬁod—c { R~mod-C
(C) A-ﬁod-C -> AﬁD MODULE modname [{ A-mod=~SC ; ...)]
A-mod-SC => funcname s vvo
(C) C-mod=C -> AMEND MODULE modname { C-mod-SC ; ...)
| C=mod-SC -> A=func=C | D-fune=C | R-func=C
(R) A—func-C‘—> ADD funcname | o
(R) D-func-C =-> DELETE funcname

(R) R-fdnc-C =~ RENAME funcﬁaﬁel AS funcnamel2

-39-

(R) D~mod=-C =-> DELETE MODULE modname

(R) R-mod-C =-> RENAME MODULE modnamel AS modname2

descfdata-D -> descr-D | miscdata-D
- descrdata~C => descr-C | miscdata=C
degcr-D =) DESCRIPTION IS string
descr-C -> A-descr-C | D-descr=C
A-descr=C -> ADD descr-D
D=descr~C => DELETE DESCRIPTICN _
miscdata-D -> MISCDATA IS < v#lue | (value , o4))l
miscdata~C => A-miscdata-C | D-miscdata-C
A*miscdata=~C -> ADD miscdata-D

D-miscdata~C -> DELETE MISCDATA
keyindex=D -> key-D | indexJD
keyindex=C ~> key~C | index-C
key-D ~> KEY IS key~spec | NOKEY
‘key~sped -> simple;key—spec |
' (simple-key-spec , «o.)
Wsimplevkey-sped -> primid {* (funcname)]
key=~C => A-ﬁey-c i C;keyvc | D-key=C |
A-key-C ~> ADD KEY IS key-spec :

C-key~C => AMEND KEY < (C-keyindex-SC ; ...) |
" C-keyindex~SC >

D~key~C ~> DELETE KEY] NOKEY
(R) index-D. => INDEX index-spec
index-spec -> indexid ON key-spec

index=C => A-index~-C | C-index-C |
D-index~C | R~index-~C -

~40~-

(R) A-index-C -> ADD INDEX index-spec
(C) C-index-C ~> AMEND INDEX indexid (C-keyindex-SC ; ...)
(R) D-index-C -> DELETE INDEX indexid
(R) R-index~C -> RENAME INDEX indexidl AS indexid2
C~keyindex~SC =) A-keyindexfield-C |
‘D~keyindexfield-C |
A-compfunc=C | D-compfunc-C
A-keyindexfield-C -> ADD key=-spec

D~keyindexfield~C ~> DELETE I
. ¢ primid | (primid , ...) >

(R) A-compfunc~C =» COMPFUNC IS compfunc-spec

compfunc-spec =-> funcname FOR : C
. < primid | (primid , ...) >

(R) D-compfunc~C -> DELETE COMPFUNC FOR primid

primgroup-D =) prim-D | group=D
primgroup=C =) prim-C | group~C

prim=D -> user~type < [(basic-type) } primid
. : t (A"prim"sc; «e)] > s e oo

A-prim-SC ~> descrdata-D | primgroup=-Q

5 .
prim=C => A-prim-C | C-prim=-C |
D-prim=-C | R-prim=-C

(R) A-prim-C -> ADD PRIM prim=D
(C) C-prim-C -> AMEND PRIM primid (C-prim-SC ; ...)
C-prim-SC -> descrdata-C | primgroup-Q | C-type=C

. C=type=C => TYPE IS < [user-type] (basic-type) |
user-type

(R) D=-prim=C => DELETE PRIM primid

(R) R-prim=C => RENAME PRIM primidl AS primid2

-4l -

(C) group-D => GROUP groupid [(A-group=-SC ; ...)]

A-group-SC =) descrdata=D | keyindex-D |
‘ primgroup-D | primgroup=-Q

group=C ~> A-group~-C | C-group-C |
D-group~C | R=-group-C

(C) A-group-C => ADD GROUP groupid [(A-group-SC

s
.
.
.
A
[

we
>
.
.
-

{(c) C~group~C =~> AMEND GROUP groupid (C-group-SC

C-group-SC => descrdata-C | keyindex-C |
primgroup~C | primgroup-Q

(R) D-group-C ~-> DELETE GROUP groupid

(R) R-group-C -> RENAME GROUP groupidl AS groupid2

primgroup~Q => primgroup~-qualifier , ...
primgropp-Qualifier -> OPT ‘| MAND | RARE | COMMON

i
|

{(C) variant~D =-> VARIANT varianﬂid
[(A-variant=-SC ; ...) 1]

A-variant-SC -> descrdata-D | brimgroup-n | variant-D

vdriant-C =)> A-variant-C | C-variant~C |
' [L-variant-C | R-variant~C

(C) A-variant~C => ADD VARIANT variantid '
. : [(A-variant-$SC ;5 ...) 1

(C) C-variant=-C => AMEND VARIANT variantid
. : (C~variant=SC ;...)

C-variant=-SC -> descrdata-C | primgroup~C |
: variant-=C | linkfield-C

(R) D-variantvc ~> DELETE VARIANT variantid

(R) R~variant=C =-> RENAME VARIANT variantidl AS variantid2

linkfield-C => C-linkfield-C | R-linkfield-C

~ly Qe
(C) C~linkfield-C => AMEND LINK linkid
: (C‘linkfield-SC s e)

C-linkfield-SC => descrdata-C | keyindex-C |
primgroup-C | mark-C | linkfield-Q

(R) R-linkfield-C -> RENAME LINK linkidl AS linkid?2

linkfield~Q ~> iLinkfield-qualifier , ...
linkfield-qualifier => OPT | MAND |
: RARE | COMMON |
SINGLE | MULTIPLE
(C) mark-D -> MARK markid [(A-mark-SC ; ...)]
A-mark-SC ~)> descrdata-D | mark-qualifier
mark=C -> A-mark-C | C-mark-C | D-mark-C | R-mark~C
) A;ﬁark-c -> ADﬁ MARK markid [(A=mark~SC ; ...) 1]
(C) C~mark-C -> AMEND MARK markia (C-mark=-SC ; ...)
C~-mark-SC -> descrdata-C lfmark-qualifief
(R) D-mark-C -> DELETE MARK markid

"(R) R-mark-C -)> RENAME MARK markidl AS markid2

mark-qualfier ~> OPT | MAND

-43-

3.17 Example

//This section consists of a program in the data base
'// definition language which makes some amendments to the
/] structure of the data base defined in section 2,13.

//First we add a new class

ADD CLASS REGION

BEGIN ,
STRING NAME, (BYTE-6) CODE //'CODE' is also a STRING.
KEY IS CODE"

END

//and a new link between REGION and BUILDING

ADD LINK (REGION (MAND, SINGLE), BUILDINGS)
FROM BUILDING TO REGION

// Ve define some more comparison functions
AMEND MODULE CMPFS ADD CFl, CF2, CF3, CF4
//and now make some changes to the class employee

AMEND CLASS EMPLOYEE
BEGIN

.ADD DESCRIPTION IS "One entry per employee"
//this replaces the current description

,ﬁELETE INDICES UPSALARY, DOWNSALARY

ADD PRIM INT (BYTE-1) YEARS_OF SERVICE,
' . STRING PREV_EMPLOYER
AMEND GROUP SALARY HISTORY
BEGIN -

COMMON

ADD KEY IS DATE

RENAME PRIM SALARY AS PREV_SALARY
END .

AMEND GROUP CHILDREN
AMEND GROUP VACCINATION HISTORY
"ADD KEY IS VACCIN(CF1)y

b=

//make changes to 3 link fields
AMEND LINK AUDITPROJ (ADD PRIM DATE AUDIT DATE),

//a new link element parameter
MANAGER (MAND),

CURRPROJS (RENAME PRIM HOURS AS
HRS_PER_WEEK)

END
//some changes to the key for the class PERSON

AMEND CLASS PERSON
AMEND KEY
BEGIN
DELETE (CHRISTIAN NAMES, DISCRIMINATOR)
ADD DISCRIMINATOR TCF2) _ ‘
‘//the key fields are now (SURNAME, DISCRIMINATOR)

COMPFUNC IS CF3 FOR SURNAME
END

//changes to class PROJECT

AMEND CLASS PROJECT
BEGIN

AMEND PRIM PROJNUM TYPE IS (BYTE-6)
//to alter the basic type only

AMEND LINK MEMBERS

BEGIN

, AMEND MARK TEABOY (MAND) ‘
RENAME MAP™. LEADER AS CHIEF
AMEND 'INDEX BYSALARY

COMPFUNC IS REVINT FOR SALARY
" END :
%

END

-l 5w

//now some changes to DEPT_MEMBER and its variants

AMEND CLASS DEPT MEMBER
‘BEGIN .

ADD PRIM INT (BYTE~-1) YEARS_OF_SERVICE

AMEND VARTIANT PROFESSOR
BEGIN
ADD PRIM STRING RESEARCH TOPIC
ADD GROUP PAPERS
BEGIN ‘
STRING TITLE, PERIODICAL (MAND)
DATE DATE_OF_PUBLICATION
KEY IS TITLE
END :

RENAME VARIANTS PART TIME_PROF AS PT_PROF,
FULL_TIME_PROF AS FT_ PROF

AMEND VARIANT FT_PROF
RENAME LINK DOCTORAL_STUDS AS DR_STUDENTS

"END
AMEND VARIANT STUDENT
AMEND LINK COURSES_TAKEN
ADD PRIM CHAR~1 GRADE

END

