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Este trabalho ag W nova m

chamado o método dos transformadores de dados.
presenta-ss a especializaca
seguenciais. Fag-~

aplicacoes referentes a
{11 apresentando

se uma comparacac dive
se solugoes uniformes para problemas que nao podem ser regolvidos

pelo m@&todo bisico de Jackson.

0 novo método consiste na aplicacgdo de transformagoes
de dados a fcrmulagém abstrata do problema, de acordo com as ﬂegées
de reducac e decomposicao de problemas. As transformacbes de dados

sac expressas em termos de programa através de um conjunto b&sico
de construtores. O método reduz o problema original a um conjunto
de subproblemas que pode ser resolvido através da aplicagao direta

s
do métode de Jackson. Produz-se uma solugdo correta por construgaoc.

Palavras chaves: engenharia de software, método de Jackson, fluxo

de dados, teoria da programacgdo, teoria de pro-
blemas.



This paper presents a new programming method, called
the data transform programuing method. In particular, we present
a specialization of data transform prograwming te deal with f£ile
processing applications. Direct comparison is made with Jackson's
apprdach 1 by the presentation of uniform sclutions to wroblems

that cannot be solved through his basic method.

The new nethod neists of the application of data
transformations to the abstract problem statement, following the
formal notlons of problem reduction and problem decomposition. Da-
ta transformations are expressed in programming terms through a
basic set of data type constructors. The method reduces the o~
riginal problem to a set of sub-problems that can be solved through
the direct application of Jackson's method. It produces a solution
which is correct by construction.

Key-woxrds: software engineering, Jackson'®s method, data-flow design,
theory of programming, theory of problems.
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VWhat is the unknown?

What is the condition?®
. Polva

1. Imtroduction

It has been obsger af the changes in

typical data provessing applicaticns, © called file proces-
sing programs, ave caused by the changes in the structure of the
data to be processed or to be output as the result of processing
and by the accompanying actions which must occour te reflect these
changes in the structure of the inpuﬁ/mntpmt data. Hence, if a

program or system of programs can be designed to reflect the

structure of the data that is being processed, then modifications
to the data might more easily be reflected in the modifications

of the program necessitated by these changes.

The above ideas were captured by experienced prac-
titioners who have formulated programming methodologies that have
considerably influenced today's programming practices in industry.
The work of Jackson {17, Warnier [2] and Yourdon and Constantine
[31, are often guoted as some of the most important in this area.

As in many engineesring areas, also in the area of
software engineering, most of the research work in thecry {(in
particular in programming theory) takeg a long time to influence
industry. In fact, most of the work in formal program derivation
has little ox no impact in routine data prodessing applications
programming. On the other hand, since file processing programs
have not been sufficiently studisd from the formal point of view,
experienced practitioners lack the tools to express thelr ideas
about programming methodology in a rigorous way.

Byren the very successful propositions by Jackson,
Warnier, and Yourdon and Constantine could only be made pxeéise
through exhaustive exemplification. Very often, subtle aspects of
these methodclogies have not bheen expressed at the precision level
that is achieved, for instance, in most of the literature about

2

program synthesis.

Data transform programming deals with the class of
problems that can be solved by the basic Jackson method. It can
alsc solve, through a uniform approach, problems that Jackson can



only handle through major ¢ From
The formalization of data transfcrm programning was

sion of dats abs~

made possible through the as

O
traction to file pro .Jﬁﬁiﬁg programming raugh the utilization

of formal definitions

such as program Secomposition

and program reductlon borrowsed from the areas of logic

solving.

In oxder to put the original Jackson basic method on
a more formal basis, Hughes [5] establishes a correspondence bet-
ween the class of programs available to treatment by his method
and the formal language concept of generalized sequential machine.
It turns out that Jackson's basic wmethod gives rise to trans-
formations which are gsm computable (in the sense that the re-
quired transformation can be performed by a generalized seguential
machineg} .

That, of course, explains why Jackson's basic method
cannot solve backtracking problems (multiple passes over the in-~
put) and problems that he calls structure clashes problems. Jackson
solves the latter problems by using ad hoc solutions and the tech-
nique of program inversion (preparation of a program to be used,
for the same function, as a subroutine to another program).

Cowan and Lucena [61, by introducing a new factor
(abstxact levels of specification for data and program and the -
subsequent implementation thereof in terms of more concrete levels
of abstraction} into Jackson’s method have solved the sorting
problem to illustrate how the exercise of thinking abstractly about
a problem can lead to novel solutions or golutiems'which were
thought to be unavailable due to shortcomings of a given method.

We were left with the problem of showing that the
many aspects of the structure clash problem, namely conflict of
order, multithreading and boundary conflict problems [1] could be
solved uniformily through the same or a similar approach. The idea
was to consider that since these problems form an important clas
of typical data processing problems they should be solved though
a set of prescribed rules which are common to the whole class data
precessing of problems and not through exceptions to the rules of
a basic method. We have also investigated the problem of whether

or not the original approach by Cowan and Lucena [671 could be



generalized and | swal notion of da-

ta~flow d shbher with the

esign by

formal nobtion of

trumental £

Some ot oach whare

@

the transition between successive ver

ions of a program is done ac-

cording to formal rules callad program transformations (see, for

grams are considered as formal objects

transformation rules.

The data transform me

=

hod involves the application of
data transformations to the abstract problem statement, following
the formal notions of problem reduction. and problem decomposition.
Data transformations are expressed in programming terms by using
the basic set of data type constructors proposed by Hoare (see sec-~
tion 2 and [8]). The method reduces the original problem to a set
of sub-problems that can be solved through the direct application
of Jackson's method. It produces a golution which is correct by
construction.

Since the present paper aims at bridging some of the

gap between theory and practice in programming, we have tried not
to write it as a mathematical paper. In Section 3 where we des-
cribe the method in a somewhat formal way, may be skiped in a first
reading. Further formalizationsg and proofs are to be found in ac~-
companying papers.

The present paper formulates the data programming
method and applies it to the sorting problem (unsolvable by the
basic Jackson method) and to other examples proposed by Jackson to
illustrate the shortcomings of his method. These other examples are
particular cases of the structure clash problem. The telegram pro-
blem illustrates a boundary clash situation, the system log problem
is an example of a multithreading problem and the matrix trans-
position problem illustrates an ordering clash.

We try to make this work self-contained by reviewing
Jackson's method and Yourdon and Constantine's data flow design
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2, The Jackson Method

Following the fo:
[5] in terms of gensralized seguent: w3 {gsm's), we oube

by

line a correspondence betwesn the :
using the basic Jackson method and gsm computable functions bet-
ween regular languages. |

dJackscn pointed out that input (and output), may often’
be regarded as possibly infinite languages (over some primitive set
of data values). A Jackson tree provides a finite representation of
such a language and can be used to represent only a regular lan-
guage. One can show therefore, that Jackson treeg are an alternative
notation for regular expressions as are data type definitions using
the types sequence, cartesian product and discriminated union [81.
In fact, all the notations above are capable of representing only
restricted forms of regular expressions if we assume the usual con-
ventions mmhaﬁxninq the priority of the regulay expression
operations "*", "U" and "." (if we do not make this asaumptimn and
proceed strictly according to the formal definition of these

operations, there is an exact one to one correspondence).

We proceed to oukline the four notations below by
defining how a given regular expression is represented in the other
two notations.

i) A single terminal symbol a is represented as follows:

a (&)

Jackson-tree Hoare-Wirth notation

Pigure 1
ii) A& regular expression {mjgmw“ﬁmm) which is a concatenation of

regular expressions is represented as follows:



Jackson tree

expressiong is

An ewpression (a}uagwaaoumn} which is the union of regular

as follows:

e o 7 . B B T TS B e S S R ()(,n

41

(&1y““.Fu }

Jackson tree
Figure 3

iv}) An expression oF which is the

is represented as follows:

Jackson tree

Figure 4

H@ax@wWirth notation

iteration of a regular expression

seg of o

Hoare-Wirth notation



The reader should note that bracketing of regular ex~
pressions with respect to the same operation has been abandoned in
the above notations to create more compact notations. This reduces
the size of our various notatlions without loss of correctness.
Note also that this corresponds to generalizing the usual binary
operation "." and "U" to a family of operations to any finite num-
ber of arguments.

Now the method requires that correspoendences are i-
dentified between the specifications of the input and that of the
cutput in terms of correspondences between substructures in the two
specifications. This is done in a bottom-up fashion so that the
translation of a node in the tree (or graph) depends only on its
descendents (i.e., the sub-expression or subtree defined by the
node) .

The correspondence effectively defines a desired
translation between the nodes of the input specification tree and
those of the output specification tree.

As it was proven in [5], for a given characterization
of gms's it can be shown that Jackson's basic method gives rise e~
xactly to transformations which are gsm computable.



3. Data Plow Design

bata flow design has been proposed by Yourdon and

Constantine [3] as a program or programming system design method-

ology. As we did with the Jackson method we will now outline the
central concepts

The purpose of the methodology is to identify the
primary processing functions of the system, the high-~level inputs

CXeaues

to those Ffunctions, and

O perform LMwh of these

3

high-level modules within the hierarchy

o

tasks: cyeation of high-~level i @ymf s, transformation of inputs
into high-level cutputs and the processing of those cutputs. Clearly,
data flow design is an 3n€mxmutse . flow model rather than a DYoo=

cedural model,

Like other information flow nodels, tranafmrm analysis
makes use of a graph model of computation. It is cailwd a data flow
graph. The nodes of the graph are called transforms. Each node re-
presents a dats transformation (to be acc Gmpll shed later by a module
or a program} from-a data representation to ancther. The data el-
elemts are represented by labelled arrows connecting the nodes
Figure 5 shows a transform with a single input stream and a'ﬁingié

output stream.

RS A R A

A ' fftlun&term%% B

w.;.«mmmm:« OGRS R mm"

e

,
Figurea 5

A transform may require (or accept) elements of mor
than one input data streams in order to produce its outputs. An
asterisk "*" or a disjunction symbol "+%" indicate simultaneous
regquirements of data elements or a mutually exclusive situation,

regpectively.

Yourdon and Constantine [3] have proposed a data flow
design methodology composed essentially of the fellowing four steps.
In what follows we have tried to capture the central agpects of
each step.
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Step 1: CTonsists of the statement of the problem as a data flow
graph; the auvthors recommend that the designer should be
concerned first with the "main®™ data paths dealing with
primary inputs.

Step 2: Identification of the initial and final data élements.
Initial and final data elements are those high~level el-
ements of data which arve furthest removed from physical
input and cutput, respectively. ”

This step is further subdivided into four parts. Having
identified the initial and the final data elements of the
system:

22}

[s3

(13}
i

i) specify a "main" module which, when activated, will perform
the entire task of the system by calling upon subordinates.

ii) for each initial data element feeding a central transform an
initial module is specified as an immediate subordinate to
the main module.

iii) for each final data element emerging from any c¢entral trans-—
form a subordinate final module is defined which will accept
the final data element.

iv) for each central transform ox functionally cohesivel - com-
position of central transforms, we specify a subordinate trang=-
form module which will accept from the main module the appro- |
priate input data and transform it into the appropriate out -
put data.

Yourdon and C. note at this point that there is a sinple
{usually one-to-one) correspondence between the iniltial data flow
graph and the module diagram that can be associated to it.

Step 4: This step consists of the factoring of the initial, final
and transform modules until the ultimate physical input
and output are reached as well as the detailed transform
modules detected during the analysis of the problem {those
for which it is not possible to state a transform with any

TP s o K it S DO W AR S P W i o b e . s

! Because of the goal of the present work, we have omitted many
aspects of the method being described, such as cochesiveness,
coupling, functional strength etc., which are not directly re-
lated to the subject of this papar.
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4, The Data Tranﬁfaxmvmﬁthmd

The Genaral Méﬁhmd

Programs solve problems. According to Velosc [71 a problem is a

structure P = <D,0,q» with two sorts, where

the elements of D are the problem data,
the elements of O are the soluticns (outputs)
and ¢ is a binary relation between D and O.

A program P solves a problem if P defines a total
function between D and O such that

{(¥d:D) q(p(d),qa) (1}

holds. To derive a program through the data methcd consists of,
given an input specification for deD and an output specification
for 0e0 to construct a program P such that equation (1) holds.

Certain data~directed design approaches, such as
Jackson's; proceed as above by trying to find at the beginning
of the derivation process a direct mapping between the input datsa
structures and the output data structures (a mapping from a re-
presentation of deD to a representation of 0e¢0). As it was polnted
out in section 2, for some situations it is not possible to soclve
some problems through Jackson's bagic method (problems which are
not gsm computabTG) The data transform méthad proposes a canonical
form for the e&preasxon of programs that include trividlly problems
which are solvable through the Jackson basic method and that is
amenable to simple transformations which lead to solutions to
problems which are not Jackson solvable. ’

The data transform method starts by expressing the
abstract notions of deD and 0¢0O, instead of trying to look for
data representations for these two entities. This approach, of
course, became a standard procedure in many programming methodol~
ogies but is not very common in the context of data-directed pro-
gramming. The otrategy for proqram derivation through the data
transform method consists of applyxng the concept of problem re-
duction and decomposition while using Hoare's general data type
construction mechanisms (section 2 and [8]).



Problem reduction and deconposition is applied in a way which will
In the

leave us with a problems in hand.

process of decompos
with Yourdon and Constant

We say a pro of

=<0, 0,q> and write

an unary function inse

an unary function retrieve, retr: O >0

Fined by E(ﬁ} = wﬁtw(Pl{ins{d)) (2)
solves P when P, solves Fy. : ' '
In Figure 7 below we illustrate this situation. Note that

g is a subset of DxO

such that the program de

94 igs a subset of QTXQ]
P is a solution te P  (a tobal function betwean D and 0)
Py is a solution to Pl (a total function betwsen D1 and Gl}

and that the functionz ins and reltr need to be defined in such a
way that the composition expressed in (2} is satisfied.

()
o f

. <. P
q i P 94 - Py i

o o,

of defining Dy and Oy

that ﬁnﬁ(d)ﬁ(ﬂ,mgjfmr BOME mﬂeOgr@tr such that r@tv(d,wn)mﬁnxn othey

ag the cartesian product of D and ©; ins such

words, the reduction through ins and retr makes use of the data
type constructor cartesian product (record) which is one of the
three basic constructors proposed by Hoare [8]. Intuitively it
avoids the problem of structure clashes between the ilnput and out-
put spaces which sometimes occur when the basic Jackson method is
directly applied. The input and auﬁput data of Py have now, tri-
wially, the same structure (independently of any chosen re-
presentations for d and o). Figuve § below further clarifies the

previocus considerations.
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Figure 8

- This first step is clearly an lntermediate step in
the reduction process and is basically motivated by the existence
of the structure clash type of problems in a data-directed pro-
gramming type of solution. A trivial case, in practice, would be
the one for which it is possible to define compatible data struc-
tures for d and ©o. That is, a situation in which P is gsm solvable.

The method requires a second step whenever Py is not
a simple problem, but requires fFfor instance, modularization oxr the
treatment of backtracking or recursive situations..

The second step of the data transform method congists of de-
fining a new reduction P ~<D2, 21457 of Plu In this step we will
make use of the $aquen¢e {(file) data type constructor. We will de-
fine D, as Dl*; 0, as O, and the function ins from D; to D and
retr from O1 to 0 as baing, respectively, the Ffunctions make and
last which have the normal meaning of these operators when applied
to seqguences, that is,

make: builds an unitary seguence from a given argument
last: returns the last element of the sequence

Figure 7 would now be replaced by the situvatlon pic-
tured in Figure 9.

Flgur@ 9; R 5 P

1%



The diagram in Figure 8 can now be expanded in the

following way

@ & ““y U3 Vo B 5 A (o W 1407 e S 05 s o S S L S I
ﬁf""ﬂ ;,3
S 4§ ins retr
s‘"f | o
fad R '
(&,0,) %0 ot s e
0 y
&
/ make st
2 ‘é - P ,
< {dyoﬁ) e {DXO} T e s v e e s o a2 v s 0 A s s s i i v v o ? } %

Figure 10

The outcome of this step is a program P, which we

2
want to decompose into simpler programs. Let us be more precise

about what we mean by decomposition [7]1. If we take the problem

P2m<D2¢62fq25 - n“axy'ﬁ@aamp@sitigm A of sz 32%&3 consists of
i) n furictions desmpi: DE 5 DZ* i=l,...,n3

ii) a (n+l) ary function merge: D, x O?‘ + 045

iil} & unary function iwmmd: D, + O,

iv}) a unary relation easy ¢ D
We call items (i) to (iv) a good n-ary decomposition of Pzﬁiff'

, immd{d?) i1f aagyiﬁzi -
= “
Pz(dz)— | ) ‘ o (3.
cmﬂmne{dz,s@lgdecmgﬁdz)jy«a¢
wa,gsoggdecmgf&z}j) otherwise

where sol stands for the part of thé solution of P, contributed
by each decomposition. Intuitively, if the problem is ginple
(easy), that is, g@m-dam@uﬁabl@y decompoesition is nat,mecéssary
and we have a divect (immd) solution. Otherwise the solution for
P, is obtained through the combination (combine) of the solutions

(sel's) to the prcgramg.Pg-, Py ysee,P, which correspond to the
1“2 n :
-solutionsg. The decomposition process is guided by a data flow

[

%

design type of analysis whiles we try to identify as many gsm
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solvable problems as possible. If ong or more of the identified
programs are not gsm computable, steps 1 and 2 and decomposltion
are applied to all programs at hand and applications of steps 1
and 2. '



- Data Transform Method for

We arve mainly interested he in an lapor % special~

- " g R
SHBOC LT LD

programning . These problems ave

¥

data transform method as proble for which thes inputs

roblams for

{ny

always entities of the

which the constitutive programs of {chtalned by decomposition!

are always similar, in the sense that a while statement can drive
a copy of thewm by changing the necessary inputs through its para-

meter.

The program schema below defines the family of pro-
[

grams {in the sense of L[91) that can be obtained by the data trans-
form method as specialized for file processing programming, when
we have one application of the first step of the method followed

by one application of the second step. jf

(B)—n2 (pxg) ake |
z”f#ffwrf (N?j ;T E  | S @ﬁmwm

,/ ; a

| '. |
| \&%
' u.m.mjﬁijw iﬁ ﬁgmi’?}i&.

FPigure ll.a - Diagram for file processing problems solution by

Finished

transform

the Data Transform Method

The notation used in Figure 11.b below is Pascal-
like. The programs that constitute Schema are presented in the

order of their derivation, thersfore violating a Pascal syntax rulse.
From now on, any standard function not defined in the
text is explained in the glossary of functions in Appendix I.
In the program Schema the selectors 1 and r simulate
the function ins and retr and the symbol A stands for the null se-

quence. The program schema only creates an instance of the input



Program schema;
type D
type O = Objectszg
type DxO = record i:D;

r:Q
end;

i

seq of abjectsT;

type (DxC}* = seq of DxO;
var x,d:D;
var v,o0:0;

begin
X « copyl(d};
2 ;
o <+ copyly)
end {schemal.
Procedurs P,
var xl,yl:DxO;
begin
xloi T X Hq.X o€ A
Pl;
Y '{”'ylﬂr
end {»};
Procedure Pl;
var xz,yZ:(DxO)*;
begin
Xy * make(xl};
Pz;
Yy« 1ast(y2)
end'{Pl}g
Procedure ¥y;
var x3:(DxD}*;
begin
x3 - XZ;
while not finished (xB) do
X4 + update (xq3)7
Yy © ¥
end {Pz};

Figure 1l.b - Program Schema for File Processing Programming through

the Data Transform Method



data to allow

update (

whare transform
the solution of

The function append

operator with the same name, normally assoclated to the type se-~

append: (DxOY* X{DxO) =-> {(DxO}¥
and append ({p},wu,gpn}yp) = (pi,mb,;r fp)

A Correctness Criterion for the Method

»

We define initially the termination condition for
the program schema displayed in Figure 1l.b. We have:

i} update(xg) = appenﬁ\xq, transform{tast{x,})))

i) Wk, ¢ (DxO)*, smllr(transform(xy).i, x4.1)

iii) smlilr is a well founded Lmla*lop in DxD such any deD is in
a finite smiir chain starting at A |
Sm1i?u%p&l) gmiiv{&lﬁﬁz}*fs sm??w(dnyé) (that is usual for
file processing program)

iv} last{x. ) i= A <=> fin *a?c&(xE} = brue

Transform and finished must be acified s0 as to

satisfy the above conditions. We can now state the partial correct-

ness condition for the class of programs.

vl Wiy e (DxO)*, finished(xy) => q,(xg, make{ﬂwi,ﬁk}
vi) Wx3 e {(DnO)* q?{xgp make(d.1, A)) => g{ias (x?)gxiﬁ)

4

Intuitively, the velation smilr gu&rant@es‘tﬁat in
each step the transfeorm function contributes some morve for the
‘solution of the problem. The smlir relation, which is a well
founded relation, characterizes the empty element asg a distin-
guished element that will necessarily be reached to accomplish
the termination of the program.



e ] e

Condition (v) guarantees that when the program stops

¥4 1s the sclution of the problem for which the input iz obtained
féom d by the application of ins and make and conditiocn (vi) ensures
that the reduction from the original problem P to Py is good, i.e.,
that the element from ¥, obtained by the applicatlion of retr and

last is the solution to the original problem with input d.



6. The

aexample for a
well known and
in the problem

selutions to

tuation of backtracking {(or at least
trates a case where Jacksontsa
applied [1]1. We will also
sorting problem statement
the data transform method
in Section 4. It would be
a more complex definition

gections).,

et & be a totally ordered set, dm<d§,aq5‘?~gaﬂ> €

a finite seguence of elements from A and Qw<b1;b25muu,nj}e:a a8

finite sequence of elements from A. To sort means to solve a probiem
SORT=<[},0,q> such that g{o,d) is defined by

i) {alg.ogyan} {Ll;(gafbn1
ii)  (WLwW, lsi<isn) => b, <b

03 .

For simplification purposes we assume that a,# aj for all i # j
wSa
and 4 # A.

As in Figure 1l.b we will define & Program Sort that
will create an instance of the data that will be used for the 3
plication of the data method? Program sort can be defined as follows:

Progran sort;
type D
‘ o}

it

seq of Aobj&mts§
= seqg of Acbiects;
{Dxﬁ) = recovrd i:bh;:
v
end ;
(Dx0}* = seq of (Dx0)*;

O R Bt e Vo 10 B 00 0 e N K Y K SIS (Y Ko A4Sy RS M R (0

? That is, we will apply stepes 1 and 2, therefore yl&aimg Lhe
problem in cur cancnical form, and then i
at hand to see if further reductions Qr
Necessary.
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var K,dallg
Y, 0:0;
begin
x + copy(d);
P '
o + copy (y}
end {sort}.

Of course, identifiers such as (Dx0) and (DxO)* are
not available in standard Pascal sgyntax. They are used here for
compatibility with the mathematical notation. The notation
seq of Aobjects stands for a sequence of cbjects,

Graphically, what we have done s¢ far, leaves us
with the situation shown in Figure 12.

sort ¢

- Flgure l2:50rt

We are now raady to apply the first step of the
method. It is graphically represented in Figure 13. We want now
to model the situation expressed in Figure 13, through a program P.

ins

Figure 13: SORT & SORT,

P can then ke expressed as:

Procedure P; .
var xl,yl:DKO;
begin
xl.i + K
Xy * i



T omyass e %y oy
RS €T S THE TRV

notion introduced in g,

Figure l4: SORT > SORT

Procedure »_;
var xziy?giﬂxﬁ}*;
begin

X, v make {x 1)
Pay
¥y < Tast (y,}

Functicns make and last need to be expressed in

on, following their usual definitions for files.

far we have only organized the solution of the problem
80 as bto put it In our canonical form. Later we will indi cate how
the above structure for the problem solution will actua ally’ %ﬂly

establishing the correction of the program {in particular terminat-

dacomposition of P.,. REepewmber

we are only intaxested in this pape

golve problems that ocan



e fied as file &) vhlong.,
the foll m\i‘g decomposition ocan posaed. The ncetation we use
applied in the literature sbout abstract data types [107.

a natural Simil&xity with Yourdon and Constantine's data
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decomposing we are the trang

ermations to be &pp?ﬁwﬁ on the data. For didactic purposes we

shall add the first decomposition to the diagram

in Figure 14, It
should be noted that Figure 15 contains a diagram which is typical
of file processing programs.
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Figure 15 - SORT & SORT, 5 SORT, +(last,transform,append)*

We are now ready to eNpress programs Py and update
as follows:

Procedure Py
var x: {(DRO)*
begin
XS 4 ng
while not fiﬂished€x3) do

A

3 % wpdate{xg};
Yp © ¥3i
end {Py};
Procedure update(xﬁ_(h> ¥) \DxO)*»

var xgwnxo,
"u E I
f}?sa (DX(}} F
begin
y3 e XB.;
X, Tast(x.}:
c . iy
Xy © tr&ngfﬁrm(x@);
update <« append(ys,xﬁ)
end {updatel;
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idea can be expressed graphically through the following diagram

{(figuyre 16},
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Figure 16

This decompositlion st

i can be thought of as being
coupled to the diagram: - Pigure 15 (note the dots to the left of
the diagram in Figure 16). The function p?mjeat stands for the
first and second projection of the cartesian product {simxlated
by the selectors i and r in the following transform program). The
function recombine constructs an ordered palr from two given el-
ements. It should be clear that project, recowmbine and append are
gsm solvable. We need now to define process in such a way that in
each pass of its execution process reduces the input and expands
the output while contribiting to the solution of the problem. Hope
fully we will be able to define process so as to be gsm solvable
(otherwise we would need to further decompose process). Since the
sorting problem is very well known it is simple to identify the
central operation of process so as to make it gsm solvable. This
operation consists of selecting the minimal element of the input
sequence and append it to the end of the cutput sequence. The
operation then determines a sequence of one pass scannings over
the input, leading therefore to a gsm solvable program.

We can at this point present the code for transform
and process. - ‘



PPDCEdUPe'tfﬁnSfKHWﬂ{KQ:EMmﬂ};mxﬁn
var xB,KS;D;
YSrY6ﬁOF
mindimam: Aohjects;
begin
KS e
Ve © ¥y X
Process ;
Yg + appeﬂd{yEpmianum}:
transform « recombine (x..vg)
end {transform}
Procedure Process:
begin
minimum <« Firstixg):
- tai1(x5};

%5
X =~ Ay

while not (kg = i) do
P minimuam < firSt(xs) then
begin
Xp * append {x, , First(xg));
Xy * ta%itxg)

end
eglse
begin
Xg append {x;,minimumn) ;
minimum < first(xg):
Xg * tai?(xg) v
end

end {Process?

The functions first and tail have their usual wmean-

ing when applied to sequences (see glossary in Appendix I).

We need now to speaify the predicate finished so as
to satisfy the correctness conditlons defined in 4.3. For ih&ﬁ we
note that process reduces in each pass the length of the first com-
ponent of the ordered pair which is being "transformed”. It na-

turally suggests that this process terminates whenever the length
gg £ ke
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4.3 we ne

the following:

Ko Informal Wi L AT & S ae
Given the

(transformix 3. < T&n&th{xg >4} end that proves

-.e

of 4.3. We also have that smlly has been define

& well founded xelati@ng which proves condition

finition of Tinished matches condition {iv} and finally the con-

dition (v) for partial correctness can be shown by induction on
t

{in each step we in-

the way the output sequence is k)
troduce the next possible smallest @l&Mﬁnt)@
The reader must have noticed that in the problem
solution the first reduction which seemed artificial, since the
sorting problem cannot be characterized as a structure clash
problem, has in fact been instrumental For proving the termination
of the program. In fact, recall that finished and smllr have been
defined on the first component of an input-output ordered pailr.
The reader will find in the Appendix II a complete version of the

program derived for the sorting problem.
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7. The Telegram Analysis Problem

The classical telegrams analyvsis problem, often used
as an example of structure clash, boundary clash in Jackson's [1]

terminology, has been defined in his book {page 1355} as follows.

"An input file on paper tape containg the texts of a number
of telegramg. The tape is accessed by a "read bklock™ ins-
truction,. which reads into main storage a variable~length

character string delimited by a terminal BOB character: the

size of a block cannot exceed 100 characters, excluding the
EOB. Each block contains a number of words, separated by
space characters; there may be one or mors spaces between
adjacent words, and at the beginning and end of a block
there may (but need not) be one or more additional spaces.
Bach telegram consists of a number of words followed by the
special word “ZZZZ"; the file is carminated by a special
end~-file block, whose fivst character is HOF. In addition,
there is always a null telegram at the end of the file, in
the block preceeding the special end-file blotks thig null
telegram consists only of the word “ZZZi". Except for the
fact that the null telegram always appears at the end of
the file, there is no particular relationship between blocks
and telegrams: a telegram may begin and end anywhere within
a block, and may span several blocks; several telegrams may
share a block.

The processing reguired 18 an analysis of the te~
legrams. A report is to be produced showing for each tele-
gram the number of words it contains and the number of those
words which are oversize (more than 12 characters). For pur-
poses of the report, "Z2EZ" does not count as a word, nor
does the null telegram count as a telegram.”

As before, we will define a program TELEGRAM that
will create an instance of the data that wlll be used for the
application of the reductions and decompositions that will take
us to our canonical form. '



Program Telegranm

type D o= seq of

vecord ioby

(D) * =
var x,d:Dy
v, 05

begin

The solution of the problem follows exactly the sams
steps used in the sorting example up to the point where we need to
define the programs Transform and PFrocess

ke

The change in the Transform function is minor and
the program can be expressed as follows:
!%mcedureTransform(xézmxo}:axﬁg

var xg,Xg:Dj
sty6:0?
reportstelegram~analysisy
begin
Reg * x4@i:
Vg © Yg-¥i
Process;
Vg append(yg,rap@rt);
Transform « r&combine(xégyé}
end {Transform}: '

We are now going to derive Process. According to the
data transform method we need Process to be gsm solvable or decom-
posable in gsm solvable programs. Recall that the method makes use
of the notion of data abstraction. In particular, Process will deal
with seq of telegrams. It means, in practice, that wa are focusing
in the concept of a Telegram instead of reasaoning at the block
"level” as Jackson does.



e D G

The cors of the program Process, which is dealing

with the cartesiay

product of the seguence of telegrams with se-
quence of telegram analysis can be represented graphically by the

ure L7).,

fellowing picture {(Fig
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Filgure 17

To implement Process, it is necessary to scan the
tape block by block. Within each block Process must analyse word
by word and compute each cne for report purposes. Whin finding
the end of a telegram before the end of a block, Process places
the rest of the block as the first block in the output tape. The



herefore

2
o
=

the following:
Procedure Process;
begin
we o A
"6
get{first block in Rl
if firest word in block is
then report + A
else
begin

&

initialize report;
while telegram not empty do
begin
while telegram not empty and
block not empty do
analysis of a word in report;
while (block not empty) do
construct the first block
in Xes
get (another block in xy)
end;
while % not empty do
begin
append (x..block from Xg) s
get (block in xg)
end
end
end {Process}:

Ag in the sorting problem we need now te characterize
the predicate finished. It so happens that it takes the same form
as in the sorting example, that is:

VXRE(EXO}*#fﬁniSh&§(X3)<”> ?emgth(?asﬁ{xgpui)x 0
That, of course, is so because we ave dealing with a standard file
processing problem, as defined by the data transform method. We

reach this standard form for the termination procedure because the
first problem reduction {(cartesian product) leaves us with the in-~



3.

ed as the first component of the product.

put data to be proo

The input data is always reduced (each execution of

Ty

Process has at least an operation get) and saved and therefore the

 program terminates when the input part of product is empty.

For the proof of correctness of the program we pro-
ceed as in the sorting example after verifying the inner simple
details of the operations "initialize report” and "analysis of

words" in the Process program.

Although the previous level of decompogition may be
considered satisfactory, a reader could possibly feel more con-
fortable with a further decomposed solution. We will illustrate
this possibility by decomposing Process one more time. Process can
be decomposed into three sub-problems. The first, get-telegram,
reads the input tape block by block (KB} and within each block it
locks for the word "2%%2%2". Once "Z2%2" is found, the rest of the

block which is being processed is appended to the output tape (x.}.

The second sub-problem, get-tape, reads the rest of
the input tape (x5) and transfers its contents to the output tape
(xg) .

The Ehixd sub-~problem, analysis, makes the analysis
of one telegram. The input of this sub-problem is a telegram which
consists of a sequence of words, and the output is a report about
the analysis of one telegram, which can be in turn recognized as
a file prbcessing problem (and therefore further reduced).

The new version of Process becomes:

Procedure Process;
type T: seq of words;
© var tye T
rlztelegramwanalysis;
begin
Get~telegram;
Get-tape;
Anzlysisg
end {Process}:



Procedure Get-telegram;

begin

K, v Ay

6 :

et iFiret bhloeh Va0, b
get (First blo S

it first word is

“then £y ¢ A
else
begin
tl ~ flrst word;
while telegram not Ffinished do
Legin
while(block and telegram not empty)do
if word is - "2ERERY
then ty * append {tlfword}
else telegram finished;
while{block not empty)do
Xg € rest of block;
get{another block)
end
and
end { Get~telegram};
Procedure Get-tape;
begin
whiie{xs not emptv)do
begin
Xg % appwnd(xﬁrblmck in x5);
get (block in xﬁ)
end
end { Get-tapel;
Procedure Analysis;
type T: seq of words;
R: telegram~-analysis:
{(TxR):record i:7;
reQ
end
(TuR}*:s5eq of (TxR)*;
var x',tqy:Ty
v i, riR;
:ﬁl‘yyl”:TxD;
xzsfyz‘;xg':(TKQ)*;



A

Procedure p_*;
begin

-

=

e
X 5 X

whﬁiﬁéiaaﬁ{xgﬁ}ii # 0y do

%

Ky * mpdat@Tﬂxgﬁiﬁ

©
i

B2

xg' * x3“
end {P,'};
Procedure Pl’;
begin
Ko ' make(xl‘):
Pz”; |
vy '+ last{y,)
end {p '};
Procedure P';
begin

begin
x'+~copy{tl);
P;
r « copy(y")
end {analysis};

Note that for the sake of clarity we have redefined
the types T and RﬁUpdateT could be defined in such a way that each
of its executions would perform the required analysis of one word
of a telegram.



8. The System Log

Proklem is a ih problan

which Jackson classifies as a multi-th: problem. The problem

il

"A time~-sharing system collects information about systam
usage. This informetion consists of records, one for each
lwgwomy log-off, program~load and program-unload. When a
user of the system logs on, he ig allocated a unigque job-
number for thet session: one user would receive two i~
ferent job-numbers if he logged on two different occcasions.
The system ensures that no user can log on unless the ter-
minal is free (that terminal), and that he cannot log off
unless he has previocusly logged on. Further, he is allowed
only one active program at any one time: he must unload
that program befove he can load another or load the same
proegram again.

The collected information is written to magnetic
tape. The records contain the following information:
log-on record: code °N";job-pumber;time of logging on;

log~off record;code "F“;jwbmnumber;time of logging off;

program-load record: code"L";job-number;program—-id;time of
loading;

program-unload: code "UY jjob-number; program~-id;time of un-
loading.

The records are written in strict chronological
sequence” .

The instance of the data that will be used for the
transform application of the reductions and decompositions used
by the data method will be generated by the following SYSTEMLOG
program,



Program Systemlog;
type D = seq of Jjob records:
0 = seq of job reports;
{Dx0} = record i:D;
ral
end;
{(Dx0)* = seq of (DxO);
var x,d:D;
v,0:0;
begin
x 4+ copy{d);
P
y « copy(y)
end {Systemlogl.

As in the previous section we will skip the steps of
the method that takes us from the first step to the decomposition
when Transform need to be defined. We need now to specify the pro-
grams Transform and Process. As before, the change needed by the
Transform function is trivial.

Procedure Transform (x,:Dx0):Dx0;
var XS,X6:D;
YSrYG=OF
report: job report;
- begin

x5 < x4.i;
Yo © X415
Process;
Ye append(yS, report)
Transform + recombine(x,,vg)

end {Transforml;

We shall look now for a Process program which is gsm
solvable at this level of decomposition. We use the abstraction
that the input tape is a éequemce of job records (seq of job re-
cords). We are therefore, overlooking details such as the fact
that there are various types of records associated to the sane
job (log-on records N, log—-off records F, program~load records L,
and program-unload records U) and that the records refering to the
same job are not contigqueous in the tape. ALl the same, we will deal
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Figure 18

The core of the Process program scans the tape col-
lecting and processing information about one job, while construct-
ing an output tape with the information about this job supressed.
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One possible schematlco version for process could be
the following:

Procedur@ Process:
begin
Re * A
get (first register in MB};
get {another register Ffrom Hed
while {xy not empty) do
begin
if job-number of reg.=job-number of first reg.
then
analysis of job-rveport
else |
Xe € appamd(xﬁpxegigter);
get (another register from xs)
end
end {Process}:

Termination and correctness are as simply dealt with
as before as soon as finished is defined as in the previous cases.



2. The Matrix Transpos

This last

clashes problems presented in Jackson.

problem is called an

We
way. One tspe contains an mxn matrix rﬁﬁﬁxdai by
P A &

line. The transpose problem will display the elements of the same
matrix by column. In other words, we will find the tran spoge A

of a matrix A.

As before, we will define a program TRANSPOSE that
will create an instance of the data that will be used for the ap-

plication of the reductions and decompositions that will take us

to ouyry canonical form.

Program Transpose;

type D = seq of Aobijects;
O = seq of Aobjects;

{(Dx0}= vrecord 1i:D;

end;
(DxO)Y#*= seq of {(Dx0)};
var x,d:D; '

Vv,0:0;
begin

o< copy(dy;

P

y « copy(y)
end {Transposel.

The nucleus of the Process problem looks very much
like the system log basic problem with the difference that when
scanning the input tape for a column we can determine exactly
where each element of the ceolumn is located. Figure 19 illustrates
the approach taken in this case.
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One possible schematic vexsion for Process is pre-
sented as follows:

Procedure Process;

begin
get (first element in XS);cmlumn + first element of X
Xg < A
get (xg);
whiTe(xS not empty) do
begin
if (element X is in the same column as the first)
then
column <« append{column, element)
else
Xg * appeﬂd(x6?@1ement);
get {one element of x5)
end

end {Process};



neform

We have presented in this

£
programming method and a it to the sclution of sowe clas-

sical programming problems. The choice of the examples was meant

to compare clearly ocur approach with Jackson's method, since his

~

method cannot solve directly the problems we have dealt with.

When choosing this critericen for exemplification we

althrough the examples used are not solvable through Jackson's
basic method they are trivial applications of file processing
programming, which often deals with far more complicated situa~
tions. Thiz could have probably given the impression to the reader
that we are using a thecry that is too general to deal with the
present. problems. Note that the full power of the method can better
be felt through its applications. When we deal with large problems
such as making verification accessible to practitioners, providing
programming standards for large programming teams and enhancing
documentation and maintenance can be assessed. We plan to design
other publications meant to evaluate data transform programming

as applied to real problems.

On the other hand, we are confident that starting with
situations even simpler than the ones that appear in sections 5 to
8 we are able to illustrate the potential of data programming for
teaching purposes.

The present work is a major extension of the work pu-
blished in [6]. still, many interesting developments of the present
work are in sight. Partly automating the method is one possible re-
search direction. The work by Coleman, Hughes and Powell [11] and
Logrippo and Skuce [12] follow this general direction although they
are restricted to Jackson's basic method.

We believe, as [14]1, that for a large, longlived soft~
ware project, the existence of an accuraté,re&dable model or speci-
fication, such as the one produced by the data transform method,can
be as important as the existence of an efflcient implementation of
it. We are presently working on a refinement procedure that will
allow us to arrive to an efficient version for the solution at hand
through a set of well defined program transformations.

Some interesting theoretical results are currently



being pursued. They are related

the class of proble which ave soclvable through the general vep-

(when, for instance, the recur-
gion problem can be o

plated) and of the class of problems de
fined by the specialization of the data transform method to file

<

processing programming, which we have examined in this paper. °
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Bppendix IT

Frogram Sort;
type D = seq of Aobjects;

G = zeg of Acbject

{DxC)= record i:

end
{(Dx0O)}*= seq of (DxO);
var xpﬁ,xg,xszﬂ;
YrDrYEvY530?
xlgylyxé tDxO;
yEfXB,xZEyX:(DxG}@r
minimum : Acblects:
Procedure Process;
begin
minimom + first(x

5};
g « taf%{xs};

X * &3

while not (xg =A) do
if mindimum < fiwst€x5}
then
begin
xg * appeﬁdixﬁffirﬁﬁ{xs));
Xg = tail(xg)
end

else
tegin
Xe append{xﬁgminimum};
minimum <« first(xs);
}55 + tail (x5)
end

i
3

end {Processt,



P . ; R S
P ¥»ﬂ€'tiaaz e Transform:Dzd:

bagin

**&fuvm “ w@cammxn@
end {Transforml};
“Procedure Update: (Dxoy*,
hegin

Yo & Xas

~

x, © Tast(x)

é

Ky € ftuﬁ&“f?* f‘
updats + apawaﬁ{yq,&ﬁ}
end {update}; B
Procedure Py
begin
Xy & Kaj
whiie length{Tast(x Xy )
Ky * upda he(ng

Y2 %3
end {P2};
Procedure Py
begin

9 make{ak,ﬁ

™ M
3
,:..

end {Pl};
Procedure p;
begin

Hoad o+ R

1

Y ¢ ¥,.¥
end {P};
begin

X« copy{d):

Ps

o + copyly)
end {sort}.

.,x)i’f Q ‘“{{;
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