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ABSTRAUCT

A finite element method for solving dynamic problems
having piecewise quasilinear basis functions is presented. The
method leads to a consistent diagonalized mass matrix, whereas

the stiffness matrix is essentially the same as in the piecewise
linear case. Convergence of the approximate solution to the exact

one is guaranteed.

KEY-WORDS: Consistent mass matrix, convergence,  .diagonalized
mass matrix, dyramic problems, finite elements, nodal elimina -~

tion, quasilinear basis functions.

RESUMO

Apresenta-se um metodo de elementos f1n1tos para a re -
solugao de problemas dlnamlcos, com fungoes de base qua5111nea -
res por elemento. O método permite a geragao de uma matrlz de
massa cons1stentemente dlagonallzada, ao passo que a matrlz de
r1g1dez € essencialmente a mesma gque no case do metodo llnear por
elemento classxco. 0 método produz sequenc1as de - aprox1magues
convergentes a solugdo do problema contznuo, no sentldo habltu -
al.

»

PALAVRAS.CHAVE: Convexgéncia, elementos finitos, eliminagao no-

dal, fungoes de base quasilineares, matriz de massa consistente,

matriz de massa diagonalizada, problemas din3micos.



1 - INTRODUCTION

We consider the numerical sclution of boundary value
problems by Ritz~Galerkin methods, In this framework, many re-
search works have long been devoted to the problem of finding

admissible finite dimensional subspaces, with simple orthogonal basis
functions with respect to inner products arising from the va-

riational formulation of the differential equation.

As far as the energy inner product is concerned, very
few results seem to have been achieved, except for the case of
some problems in one dimension space or having particular symmetry
or periodicity properties. In the general case however, standard
finite element methods are largely in use, eventhough it is a
well~known fact that handling the resulting band matrices is

often very much time consuming in a computer.

In the case of initial-boundary value problems, the
diagonalization of the so-called mass matrix has been sucessfully
~accomplished with the popular lumped mass scheme (see e.g.[41).
We recall that the basic idea behind it consists of changing the
piecewise linear basis functionsof the finite element method s
into piecewise constant functions having a smaller support, only
for the term associated with the derivative with respect to time.
Although the global rate of convergence of this finite element
approximation is maintained, the above change causes the error

itself to increase.

An attempt to generate diagondlized mass matrices avoi-
ding the inconsistency of the lumped mass technique has recently
been made by Chien [2]. In his method each piecewise linear basis
function is replaced by a quadratic function , and numerical results
for a.given mesh dre shown to:be superior in some sense,to those
obtained with the standard method. Unfortunately his method fails
to generate a convergent sequence of approximations in the ener-

gy norm for the dynamic problem he discusses.

Incidentally these problems can be expressed in terms

of a system of differential equations of the form:



]
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Given a bounded domain & of R. , F=I,2 or 3, with
boundary I', a vector valued function By defined on @, find n
depending on the space wariables ml,xz,.,.mﬁvand on time t such
that: '

-
9 u
s ~Bu-=s in x10,7L
(») $ ulzg,t) = 0 Frex10,7L

e
wherng is an elliptic second order differential operator and T

is a given time.

Without loss of generality for the purpose of our dis -
cussion, we take in this work as a model problem the scalar case
with:

g

N N
Bu- b 2= ik ey B
| i ? i
,;1‘= {aij} beéing a positive definite matrix independent of z and ¢.

We introduce a method giving rise to a consistent dia-

gonalized mass matrix, for which convergence is guaranteed.

Clear enough the main purpose of the diagonalization of
the mass matrix in the case of such problems, is to allow the
straightforward solution of the approximate problem, in case an
explicit difference scheme for time discretization is used. Just
to have a clear look at this question, we take as an exemple the

simplest explicit scheme,

nanely:

Let Vh be the Nk—dimensﬂonai finite element subspace of

Hé(ﬂ) with basis functioms ¥,,2%7,2,...,8;,

Define uz to be the L’- projection of u, over v, and let

0
- .
v be the vector of components of a function vhevh with respect

to ¢£, T.e:



Then compute u;, ui,...,ui € Vh such that for At=7/L
we have:
3n+1~ w N %N
M 22 = ge F 70,1, ..., b1

At

where M is the mass matrix, A is the stiffness matrix associa -
ted with cf; and

A

o= Jn Flnat) 4. dg

, : . +
Clearly at the (n+l)-th time step we must solve for ar 1

the linear system below (we drop the arrows from now on):

n+l n

Mu = M + stcan” + ) (1)

2 - QUASILINEAR APPROXIMATIONS AND NODAL ELIMINATION

We have shown in previous papers (see e.g. [5] and re=~
ferences therein) that finite element subspaces Vh consisting of
quasilinear polynomials defined on. simplices of a partition?ﬁh
of 2, provide a very powerful tool for solving problems related

to incompressible media.

We recall that a quasilinear function defined over an HN=~ simplex
Ke‘él is a function of the form

N+1
p = ) e.A, + ayY ,
=1 F*
7 13
where y is a function of Hz(K) and the Ris are the area coordi-

nates of X

In this work we show that this technique can be ap-
plied to the space discretization of problem (P}, in order to
generate consistent diagonalized mass matrices. This will be

achieved by taking y to be a suitable function of Hé(K),¢ being
a function of Hé(ﬂ) as well, for every XKc@.

Remark 1: A Ffunection wiﬁé{K).willvbe considered in Section 3 .
However it satisfies the same requirements’'as a function of-this

space as far as convergence properties are concerned. [



4.

‘ Here the basis functiens of the space of
test functions will be associated with a neode lying in the inte~
rior of X, say its centroid,IWhereas the reﬁaining bagis functions
will be assoc1ated w1th the vertlces of K. We Wlll then ellmlna—
te the values at the 1nner nodes from system(l), in such a way
that we obtain a diagenal mass matrix of dimension Nh—card(g’J

for the remaining unknowas. We procede as follows:

Let the local numbering of thenodés of X be SJ’SZ""’SNH
for the vertices, and SN+2 for the centroid of X. In this way “the

corresponding basis functions Vh are given.by:

221,25 0 oy W

pN*FZ =y ‘ (2)

where.lla=¢(SN;}), a value assumed to be constant over all sim -
plices ofﬂfh.

Let the global numbering of the nodes be such that the
vertices of 25 are nodes from 1l up to I ‘and centroids are nodes
from I+1 up to I+J. We also number the simplices sz:h from: one
to J in such a way that the (j+I)-th node is the centroid of the
J=th .simplex.

Clearly the only neighbors of a centroid node are = the
vertices of the corresponding 51mp1ex. Thus it will be easy to
compute the value of un *+1 at the J-th 1nner nede, IsjsJ only in

terms of its value at the three vertices of the j-t% simplex and
i+l
I+d .
of system (1) corresponding to the vertices of the j-th element

of fI+ « If we next substltute this value of u in the equations

for every j, we will only need to solve a system of @ ' equations

for the unknowns u: 1, 1<2<7T.

We will show in Section 4 how to perform all these com-
putations in a simple and unexpensive way. Let us now stress )

how the above procedure gives rise to a diagonalized mass matrix

. o wg s . T
"We can split the matrix M into four matrices P,Q,Q . and

D according: to.the pattern. below:
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Similarly we can split matrix 4, u"and fn?in the fol -

lowing way:

T J
r ! ] © n B i
B P T Lo . | T
A= ) U = =
----------- B o v e o e e e f
i ——— .
)
¢ v E J o "
_ f i J -
. § T
Notice that both D and EF are diagonal matrices.
The procedure described above consists then in evaluating:
ntl_ =17, n_ n+l # -1,T n ~1 n -1 n
g S D 7@ (upmu ") o+ ug + AE(D TCTup + D EuJ)+'D fs (5)
and
3ntl_ 5 7 > n 5 N no_ -1 n
Pup "= P u, + At (B up + Couy # fr - ap fj) (4)
where:
B = p-qp~ 1"
B = p-gp 1T
¢ = c-ep7 g

We wish to derive practical sufficient conditions under

which P is a diagonal matrix,.

First,recalling the well-known - concept of elementary ma-
trix, one can easily check that the operatien P—QD’JQT can be. per-

formed at the element level. P is precisely the sum of contribu~

~

tions of elementary matrices PK’ Kez%, where

o~ -1 -
Py = Py —aydy” ay



Pys qy and dK being obtained by the following split-

ting of the elementary mass matrix My

+1 1
- | -
PK : dy N+1
1
MK = :
________ [
!
T ! d 1
. 9z f K i

Therefore if ﬁK is a diagonal (N+1)x(¥+1) matrix, P owill

alse be a diagenal matrix,

We then have:

Proposition 1: if funection Y satisfies

2 \ . g
AA s o~ . Ay = ' S
J )\13&3 J kzﬂl J J\J’(IJ / J P 0 it T#F, (5)

Ni,d, I<i,j<sN+1, #Ks%% then P is a diagonal matrix.

Proof: Recalling the definition (2} of the basis functions we
see that
L.z (X .- 2)108 .- 7+
(PK)zg [K [AZ a@/(ﬁ+l)]ﬁlg ag/(N+1)]
whereas

T

(qu); = JK'txi—aw/fN+113uw

2. 2
d = J oY
X X

{5) follows directly from the condition

(Pp,) ﬁqx)i dK(qK)j = 0 for <#4. q.e.d. [

K'ig
Concrete examples of functions y satisfying (5) will be
given in the next sectien. Incidentally onme can only expect {5)

to hold if ¥ has symmetry propertiés with respect to the vertices,



in the sense that, ifvitfis,expressed'in,area_ccoxdinatea, we
have:

IP(A TS At. “ o s X- . ):‘" lp(k _,A ‘;-o-,‘)\ )
L A A e b+l

~

¥ ¢ =(t1,12,...,¢y+1) such that 1s¢ksm+1 and zk# i, if k£ .
Indeed in this case ]K-xiw is invariant with respect

to 7 , 1<i<N+1 as is ]K'likj with respect to 7,7 if Z#5.
Otherwise stated, it suffices to satisfy (5) for <=1

and j=2 for instance.

Moreover we wfll have for diagonal terms
J kz - ( I Aiw)Z// [ w?: [ A? - I_ Aghy Vi, 1<isN+1
X K 4 X tg A2 :

3 -~ A SIMPLE CHOICE OF v

Clearly the diagonalization process‘described in the
previous section should not ~imply in intricate and lengthy com-
putations. The choice of § described below yields several sim -

plifications.

<
Let ‘X' be the homotetical reduction of Ke‘% with center

nZ/N. Let X'

1,%5,...,k&+1 be the area.coordinates

SN+2 and ratio
of X'

We define:

N N+1 .
z z A N if  gek’
{i=1  G=¢+1 J.

(7)

] if  gzdK!

o~



Notice that ¢y is not a function of Hé(ﬂ), but as far as
problem (P) in stationary form is cencerned, we can prove in the
same way as -in [6] that its solution is approximated up to an
0(h) term in the sense of the discret'HJ(Q)—norm, by using ‘.thé
finite element method equivalent to the one described in the

previous section, with § given by (7).
Condition (5) then becomes:

2
on- - - . - > o .
jx ny j L At jx' % J V=0 if  2#j. . (8)

According to well-known quadrature formulae [7] we have:

» i r !.
J A kl kg ARN"'.Z _ ?(1‘ kZ' o.okw+1, ! - (
] ; — . F . K 9
g 1 g v+1 (K tk + Ak, AN T meas | J
Thus condition (5} will be expressed in terms of a

simple algebraic equation for 4 and we have:

Proposition 2: If ¢ is given by (7} then condition (5) holds if

h o= —g— . if N= 1» or 2
52 . -
h o= 53 if N = &

Proof: It suffices to use formulae (8) and (9)* and the defini-
tion '
n = meas{(K')/meas(K) q.e.d. [

4~ COMPUTATIONAL ASPECTS

The above choice of ¢y is convenient, as it allows a
simple computation of the matriceé appearing in the expressions
: + _nt .
{3) and (4} of u; land ug 1, respectively.Nevertheless for any

¥ we can compute these values with just a little more effort than
it is necessary when using standard piecewise linear functiouns .

More specifically we have:




2.

The computation of u3+1 is straighferward, since D—JQf

is a matrix with constant coefficients Y depending on P and ¥

but not on the elements themselwves., Actually if we let £ be a
reference element such that Kez, is the image of K through an
affine transformatlon:}‘°m -+ Eﬁ and if we define ¢ in the

usual way (see e.g. [3]), namely:

F " Lig)1 = vig) YzeK
we have: -~
1
-~ ¥i.
. JA 72 N+1
K

Notice that the integral in the numerator above is in-
variant with respect to %, according to the symmetry assumptions
for ¥.

On the other hand, both D"JCT and D_ZE can be stored
in a J-th dimensional vector. The term of this vector correspon-
ding to the j-th element Kj depends only on ¥ and on this element,
and are given by =~B/(N+1) and B respectively, where:

B-:J zw,w/J v
K K

J J-

2

This is because J VA

according to the assumption: weﬁé(Kj).

Remark 2: In the case of a function ¥ with wéHé(Kj), such as

the one considered in Section 3, we have:

N+1 . N+1 N+1
j W= oz j Howm,= oz J ¥ f ¥ s T, = 0
K. =1 K., A =1 K. T 1 i=1
J J X,
J
according to the symmetry assumptions for ¢. This the result

above also applies to this case. [J
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Notice that if as usual, one works with the integer
array R{Jx3) which associates with each element ofqgh'thetnmwers

‘of dits three vertices, the operation involving the u}s in (3)
can be. easily performed,

"As for ﬁ?&z ,Ethe“esseptial part of the‘computati@pgl
effort is due to the multiplication of u? by E, which is “the
only band matrix to be stored., Incidentally it has the same

structure as the piecewise linear finite element matrix associated
withqgh. On the other hand, matrix E can be stored in the form
a J-th dimensional vector, whose f-i% component consists of its
équal elementary contributions & te the coefficients correspon -
dings to the WN+I vertices of the element, namely:

1 [

gl g, L

8§ = -‘qz(Y %

Using here again the integer array R, this operation becomes

very simple as pointed out above.
5 = CONVERGENCE . RESULTS

Under suitable assumptions, the convergence of the me -
thod presented in this paper can be proved using quite standard
estimates. For so doing, we define, as usual, v”? to be the func-
tion whose value for every g is u(g,tn) with t=nAt<l<w, Then

7 % . .
convergence of ug, to u° can be established in several senses ,

provided

st<ch® (10),
as we are dealing with an explicit scheme (see e.g. [s1h.

For instance if f is smooth in a neighborhood of %, we

bave:

Theorem l: Consider the scalar case of problem (P) and let (10)
2
hold. Then if feLIEO,t;HI(Q)] and (u,%%, fy (.,t ) elH (9)]3

¥ Tel{t-e,t), €>0, we have:

where € is a bounded constant‘depehding‘on uw, f and 7.
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Proof: According to [1] and [9], the only condition required

in this case is the following approximation property of Vy ¢

#veHz(Q), the Vh~interpolant vy, of v satisfies:

Ho-v, Il , + 2 |v-v, ||, sck? |v]
") Fomvy lzzzm) ga)

where the Hz-norm is taken in the discrete sense if wfﬂé(K),
Ke%}-

Since the space Vh of piecewise quasilinear shape
functions contains the space of continuous piecewise linear
functions over Q, the above estimate holds.

q.e.d. 0

As for the case of more general systems (P), equivalent
estimates can be derived from the results of CROUZEIX [4] for
the analogous explicit scheme. Since we are basically interest
in systems of two equations corresponding to scalar second order

time~dependent problems; i.e., with

[*0 I | 0
u = (us'g‘%*) o& = and f = ' (11)
2, o ;
n 5 N 2
and with j% ;= .E 3%, ;E ij 3%, and  feL“(Q) (12)
=1 T =1 J

we apply ‘his results of ‘Chapter 4.

In order to do so, we need estimates of the error of
the Ritz-projection onto Vh of a function ueﬂz(ﬂ)n Hé {(Q),which
we denote by th.

Clearly, in the conforming case, i.e., when thﬁg(ﬁ) .

we have:

K 2 . B
I| Ppo-v|| iZeq) * R Pyv-v|| gliq) < Ch [vin(m (13)
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However, in thﬁ‘ngncgﬁforming case we have to replace

the second term of the left Hand side of (13) by the error of
th ”in_tﬁg_%ense of the discrete Hiﬁnorm 'rLff%;'déffned-by:
- : 12
o, =€ = [lolf /2
© erf H (K) (14),

with Pﬁ defined By:

where
: N du, dv T
ayp{t,,v,} = £ ¢, ., ~_h (16)
R TR T ¥ g = T4 dx. 3
Keg% i,d=1- “ J' e
and {4 ,v) denotes | ‘uv. Notlce that this is prec1se1y ‘f:_the

case of the method & of Sectlon 3, In any case, the key to the
problem is the following:

Lemma 1: If P, and || [{, axe defined by (14), (15) and (16) then
¥veR?(g) - Byp-vll, = culp| ,
‘ 5P ).

Proof: Let Ty W be the inteypolant of a function WGVh in the
space Wh’ which consists of continuous piecewise linear functions
assocxatedvWLthﬂgk.‘ We then bave:

I!th””![k = l“hphv v[,HI(ﬂ) * }!wklfk
where wk = “h hv Ph

Now we note that Remark 2 implies that (see also [7]1):

Thus thkv satisfies:
and by standard estimates we have:

< chlp].2

It wpPro—oll 470, 72 ¢a)
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On the other hand, Remaxk 2 alge implies that
2 . '1/2_ 18
Hopll = Caplugavy) = - B wavyd s lelyz o llvgll 12,0,

Since we clearly have [[thIL2(QJSChlIwh}!hJ the result
follows. g.e.d [} v

Remark 3: Lemma 1 allows us to conclude that the values at the

vertices ofqg " of the Ritz-projection of a funetrion

of Hgﬁﬂf'onte any associlate space of plecewise quasilinear func-

tions with the symmetry preperties defined in Section 2, coincide
with those of its Ritz-projectien onte the space of continuous

piecewise linear functions. 0

Finally we have:

Theorem 2: Let (I10) held and u and %% belong to 0°fo,t;52(911 .

Then if 2,15 and f are defined by (77) and (12) the approxima -
te  solution of problem (P) satisfies:

2
I| u” = uz 1%2(92 £ Ch

where ¢ is a bounded constant depending on T and u.

q’-e:d'- D

As a conclusien, one can see that the method presented
here is explicit and cenyergent if ﬁt/hz is hounded by a certain
constant. But now we can take A? small, because the mass matrix
inversion is replaced by straightforward and unexpensive ope -
rations. Moreover, the lacal approximation properties of the
piecewise linear finite element methed can be expected to im -

prove.
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