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aBsTRACT

Almost all commonly used methods for O.D.Es. and their most
miscellanéous compositions are A-methods, i.e. they can be
réduced to zg=;;'23=Azj”l+h¢(xjml,zj;h),zj ehs,Aeﬂt(s,s},
j=1(1)m. This paper presents a general theory for A-methods and
discusses its practical conseqﬁences. An analysis.of local dis~
cretization error (l.d.e.) accumulaﬁion results in a general
orde; criterium and reveals which part of the 1.d.e; effectively
influences the globai error. This facilitates the comparison of
nethods and generalizes considerably the conpet of error
constants. It is shown, as a consequence, that the global error
cannot be éafely controlled by the size of the l.d.e. and that
the conventional error control may fail in important cases.
Furthermore, Butcher's "effective order"‘methods, the conept of
of Nordsieck forms, and Gear's interpietation of linear k-step

schemes as relaxation methods are generalized.

The stability of step changing is shortly discussed.

KEYWORDS

Differential equations, order criterium, error control, error

‘constant, stability, step changing.



RESUMO:

Quase todos os métodos comumente usados para E.D.Os. e
suas mais variadas composigdes sao métodos-A, isto &, podem ser
reduzidos é 2 = s zj=Azj“1+h¢(xj”lgzj_l,zj;h) ’ Zj € Ps ’
A¢ R(s,s), j=1(1l)m. Este trabalho apresenta uma teoria ' geral
para métodos-A e discute suas consequéncias priticas. Uma anali
se da acumulagdo do erro de discretizagio local (l.d.e.) resul-
ta em um critério de ordem geral que parte do l.d.e. realmente
afeta o erro global. Isto facilita a"comﬁaragéo de métodos e ge
neraliza consideravelmente o eonceiﬁo de constante de erro. B
~-mostrado, como uma consequéncia, que o erro global ndo pode
ser seguramente controlado pelo modulo do 1;d.e. e que o contro
le conveniconal de erro pode falhar em casos importantes. Sao
generalizados os métodos "of effective order" de Butcher, o con
ceito das formas de Nordsieck e a‘interpretagao de Gear dos mé
todos lineares de passo k como m&todos de relaxagdo. A estabili

dade da mudanga de passo & brevemente discutida.

PALAVRAS CHAVE:

Equagoes diferenciais, critério de ordem, controle de erro .

constante de erro, estabilidade, mudanga de passo.



1. Introdua@ion 

This paper deals with methods for O.D.Es. that can be represented
oy o . s - i
in the me ijAzjq_l"'hq) (xj"'l,éj’"l’zj ,h) 'ZjeR yAER(E;S} pj"l (l)“&]r (.La}.}
they are called "A-methods" as they essentially depend upon the
matrix A. Most of the currently used methods (and many others) can

he reduced to this form in a variety of ways.

A special case of (l.1) has first been considered by Butcher [4],
who showed that (1.1) is stable iff Vien :||a% | = const. The
resulting restrictions on the eigenvalues of A generalize bDahlquist®s

root condition.

As O(Al)f> 1 and p(a,) > 1 may imply p(A,Ay) s 1 (p:spectral radius),
an immediate consequence, not explored by Butcher, is the
possibility of composing cyclically two {(or more} unstable methods
of type (l.1) such that the resulting composite method is stable.
The Dahlguist barrier for the order of stable linear kustep methods,

for instance, may thus be overcome.

Relevant examples - yet not derived from this argument -~ were . the

linear cyclic methods of Donelson and Hansen [71 which offered a
second interesting aspect: their order of convergence was higher
than the order of the linear k-step formulae that'generated them.

Thls raised the guestion, under which condition ("order cond1t10n"¥

the local dlscretlzatlon errors with order g accumulate such that

the resulting global error has order {g+l) . Apparently closely

related is the problem of global error estimation.

The answer given in Albrecht [1] led to a new approach to multistage
methods, fn particular to linear cyclic methods, and contained the .

results that the global error is proportional to
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dj: local discretization errors,

and the.“Awgggg"}wﬁ is stability functiomal (in the sense of Spijker)
for all Asmethods that satisfy the (generalized)root condition.
Furthermora, w% Iis, in a certain sense, the best of all meaningful
gt&biiity-functiﬁnals and permitﬁ'fﬁowsiggg bounds for the global

discretization error.

Although 6riginally-de$ignea for multistage methods, these results
made the A~method concept of relevance also for classical {one-stage)

methods,

Tn this paper, the theary‘af‘ﬁmmethmds is extended, and its

- practical consequences are discussed. The aim is to develop the

necessary tools for a theoretical appraisal of miscellanecus types

of (composite) methods and for their pfactical application.

The earlier results of Albrecht [1] are resumed (in slightly

sufficient. The order condition is generalized in paragraph 4,

extending Its applicaiion and‘providing a deeper understanding of
fts meaning. Also, a new approach to Butcher's "effective order”
methods is given.

Frequenélyy several campogite metﬁodé are availéble with the same
ordex of consistency; in sucﬁ aaéesw swmething like the error
constant in linear k-step methods is needed to compare thelr ef-
ficlency. However, gﬁch a'quaﬁtity-ahould primarily not refléct
ﬁﬁe‘gigg of the local discretization error but its effective

“gontribution to the global error. This idea leads, in paragraph 6,

to the concept of “gffectiVQ“ local discretization errors and implies



a generalization of the classical idea of error constants to nore

general A-methods. It is interesting to note, that Henrici's definition
s - ) ;.J { - g 18 i

of error constants, C Lq+l/@ﬁ0fﬁl+m,m{ﬁ&}, is obtained when the

new concept is applied to linear k-step methods.

The result that a method may converge with higher order than the
order of its local discretization errors, already calls in question
whether the global error can, in all cases, be monitored by the

principal local di'scretization errors. In fact, as shown in paragraph 6,

the conventional error control may fail. This result has Implications

to one of today's most popular set of methods, as is seen in paragraph7.

The user of a specific inteqra£ion method is not always éwaré 6f
the fact that his method becomes a composite process as soon as step
changing is peif@rmed (which:represents a major justification for the
gtudy. of composite methods). An analysis of the effects of step
changing demands a generalizatibn of the coﬁcept of stability; a note

on this problem is given in‘EafagraEh 8.
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2. Bagsic Conceplts and Theorems -

2.1, We consider numerical methods for the initial value problem
Y o= £f{x,¥) » Y(a) = g | (2.1)

'Wo € Rn; f:la,blx &7 > " Lipschitz continuous.

¥ s assumed to be sufficiently smooth so that the derivatives
encountered in the analysis exist and are bounded. In order to
Simplify notation, we restrict to the case n=1 {generalization to
n>1 s done by applying the results to each component of (2.1); its
formal representation seems not worth the notational inconvenienceﬂ

and the loss of transparency connected with it).

Let Iy and Ig»ﬁe the grids

e by bxgar xgmey o, 1 Wmys ms e} (2.2.2)
, k1
: ={x¥= L 4=0(L)m* *«mhj |
Ig* w{xijx*j+]£mlrjwa(1)1nhy Tﬂ:h “"‘[j r' ~ { . (Zqub)

h>0 s the  stepsize; k and r are integers. .

l*] denotes the maximum norm in RS, and Gh the space of grid

functions g, : I§.+ 8° with the nowm Ilg]h}:msug!gh(x)!.
XeIh
We shall consider sets of grid functions Ghyr heH = (O,hé}, in the

resp. set of spaces €, with associated norms I[*iih, If

suplfg[lh < const., ghe 6, is uniformly bounded in H.
heH

% %
2.2. We characterize the solution Y  of {2.1} at Xj € Ih (and its
neighbourhood) by a vector Zj eﬁsu Zh E@h with values Zj will bhe

called a discretization of Y. The components of the discretization

vectors Zj usually define an interpolation polynomial of ¥ in the

&
neighbourhood of xj.



Approximations to Zh are denoted by Zy, € @h” itg %alues by zjg

The choice of Zh'(in particular of its dimension s) is arbitraty o
a large extent, and mainly depends on the type of method to be used
and the algebraic operatioﬁs to be performed on it.

The following discretization vectors will be of interest here:

ki

(Yyyp-17 Ygagmar ooo Yoo hFj_H{ml) (2.3.a)
(peetr Wgpeetroes o PP hF ) (2.3.D)
(Y ryHk-17 hy Fi4k=17°" " i,h Yé?ik~l;' jr.k: integers (2.3.¢0)
(Ypgr Ypgerr ove ¢ Ypgugo2r Yrj+k~lfi (2.3.d)
(YJ l+a2 j~l+a3’ coey Yj 1+a ’ Yj;. (2.3.¢e)

here F.: = £(x, . ., 3 = s .
W re Fy (xj,YJ) and Y3+a Y(xj ah)

2.3, Approximations zj of.‘Zj are obtained from
zg=t(h); 5= Azj_l + h¢(x 1, zj 17%5 ,h), j= l(l)mh (2.4)

where ;,ZJF RS; Ac Ris,s): ¢ I X R5x RSx (¢, h ] > R° »
h, such that (2.4) has a unique solutlon for all he(O h, I=:H,

and l¢(x,ul,vl.h} o(x ,u,,vysh)| < Ry |uy-u,f+ Kzlvl v, | (2.5)

* s .
V(XeIh; h eH; e R7); K, >0, K2>0 constants,

RS TASTAS) i

2.4. Definition. Algorithms which can be reduced to form (2.4) will
be called A-methods (resp. B- or C-methods if. the method is
characterized by the matrix B or C). Such a reduction is not

unique and depends of the choice of Z, (see examples in §3).

Definition. The matrix A with eigenvalues.ui satisfies the

root condition if lﬁi['s 1, i=1(1)s, and if eigenvalues with

modulus 1 have linear elementary divisors., It satisfies the
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weak root condition if, in addition, §nk¢lz-pk{mlr and the

strong root condition if (V]{i¢ l)(fpiq"q 1.

Obs.: (a} A satisfies the root condition iff for any matrix norms

dp >0 (Vjell\l)(HAjH £ D).

(b) In earlier papers of the author [11[2], A-methods with

A satisfying the root condition were called “A-methods",

(c} ¢ is not assumed continuocus wW.r.t, its first argument.
The aim is to faciiitate the analysis of step chanéing
procedures (see § 8) and the consideration of non~cyclic
combinations of integration formulae (é,g. Butcher's

"effective order methods", see sec. 4.8.).,

A-methods were considered independently in Albrecht [3], Pierce [131,
and Skeel [16]; Butcher [4] presented special cases already in 1966

for which he defined stability and consistency.

2.5. Definition, (2.4)'15 a k~step method if it needs k starting

values; it is a r~étage method if (s-r) of its components are

identities (see examples in §3).
It is seen later that the step number k loses some of its significance

by the fact that "equivalent" methods may have different step

numbers (see §7).

2.6. Definition. z, converges (for h » 0) with order pe N to Zh iff

Jc>0: (W h el) (|| 7-2| |, ch®).
bE?:x(Zj~zj) are called global discretization errors of the
A-method (2.4) with respect to the discretization Zy,




h
ag 1= (Zg=z(n) | (2.6)
na? 1= B.~AZ. ~hé(x., Z. 1, Z.th), F=1(L)m..
J i i R e Ty R h

)]
* -
The dgy 3=0(1l)m, , are called local discretization errors of

the A-method (2.4) with respect to the discretization z,.

dg, in particular, is the error of the gtarting values.

The largest number ge N for which

Jo 0 0Mt1dﬁ “tdzlihﬁ ch%)

is called order of consistency of the method.

In practice, the l.d.e.s cannct be ealculated exactly for unknown
Y; however, their lowest order term (in h) can be estimated. This

term will be called principal local discretization errox; it is

decisive for step and order control in modern codes. One aim of

this paper is to inguire whether erroxr control based upon the

principal l.d.e. is always justified (see §6).

2;8. Frequently, the components of dg.have different orders {(for

h + 0). Thé order of consistency as defined above is based on the
lowest order component. Cooper [6,pg.661 proposes the alternative
of restricting the definition to a few selected components. The
same effect can be achieved by proper change of the &iscretizationu
The d? may have different orders (see sec. 3.6.); due to the ab@vé
definition, the order of consistency is then equal to the lowest’

order of all d?, ij(l)mzﬁ

[pp—————————p e PR PRI MR R iihandankad

1) iabelled l.d.e.s; the superscripts arecomitted when no confusion
can arise., _ .



2.9, Let ﬁj’ 3=0(1)m, v be "perturbations” of the A-method (2.4)
and Wj the corresponding solution,

, _ ) o * ‘ .
i.e. wg= T +8; Wj“ij~1+h¢{ijl’ijl’wj’h)+ hoj‘ {(2.7)

Note that §.=d4% 4 L= 7L,
' 3745 it 3 23

: 3 .
We define a functional w%[éjs = gup IAjéo +n iy ath o (2.8)

L5 z !
Gujﬁmh =1

A, ; . -

¥, is a nom; it generalizes the Spijker-norm [18,p.81] and is

relevant for the following central result on A-methods which has

been proved earlier [11, [2, p.42].

2.10. Theorem. For any ZysWn 08y € € that satisfy (2.4) and (2.7)
3¢1>0,cz>03(V he(O,%J)@ﬁpﬁﬁﬁjsi{szgth‘czwﬁﬁai) (2.9)
if and only if 30>0:(¥ <) (j|a7]|<D) and hyDpK,<1, n <h.

As a direct consequence we obtain:

2.10.1. Corollary. All A-methods are stable w.r.t., the functional?

wi if and only if A satisfies the root condition.

. a4 j ' - g
For 84 = dj. Hadll < p ana hiDK,< 1, hys hy, we obtain

from theorem anbw
Cf ' A4 o JALLZ
acl,c2>0:vv hﬁ(Orhlj)(Cl¢h[d 1< || 2~z ﬂhxczwh[d ])

2 . Z

Since - W§Ed 1= D sup ldﬁ[,
Osjsmh o

we have:
2.10.2. Corollary. If A satisfies the root condition, and if the

A-method has order of congistency g then it converges

(for h » 0}, Its order of convergence is equal to the order

2) bue to Spijker [17], a method is stable w.r.t. a functional Py
if (in our notation} for any zh,whp&he @h that satisfy (2.4)
and (2.7): Je>0,h;50: (¥ he (0,03} (| [w-z] |y, < oy, [81).



of wﬁ[d‘j (h » 0} which is at least equal to q.
Furthermore, for ||al||=<p, hyDK, < 1, hy< hy we have

. . y A N A Z
Foy,e550: (W net0,n, 1) {ogynta®l <] la-all, <c, vhra®).  (2.10)

It is shown in [2, p.42] that alk(l+{bma}D(Kl+K2)}”1 and
. (b-aju
o ‘@ -

(2.11)
\,,z’w .

-1 ‘ i U 2 N
- 1“hDK2 } (lm&-hi}Kl) with uss{ lmflf}Kz ) 7D (K1+K2 ).

The order of convergence can be (g+l) in certain cases, as will be

seen in §4.

2,11, Definition. We call an A-method strongly (resp. weakly)stable

if A satisfies the strong (resp. weak) root condition. The
term “"stable" always stands for "“stable wwrutowh“ (with the

appropriate matrix A).

2.12. If the A-method is implicit, at each step jyan iteration
0}, 5, ., ,(i)_ L (L=1) oy 5_q1y ;
Zj = ng"l, Aj ”Aij1+h@(xjwlfzjml’zj th),i=1{(1)n, (2.12)

is necessary with a suitable predictor matrix P,

(2.12) may be written as relaxation methods

. . vy s oW - (2.13)
(0) _ . o vy e, (LY (i-1) (i=1)_ , (i=2)},._
Zg  =Pzy g% h$(xj~l’zjwl’h)’zj =z +h(¢j ¢ ),1 1{lin,

J
, (-1 ' ., n _
with h¢j- ):=szml+h ${xjwl”zjml;h) and zj = zé ), R:=P=A,

This relates the concept of A-methods to Stetter's “"generalized
Nordsieck methods" [18, pg.357 ££f1. For adequately chosen P,
{(2.13) has programming bernefits; however, there is no advantage in

analyzing -the method in this form,
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3.‘Examgies

The aim of this paragraph is to give a rough idea of the flexibility

of the concept of A-methods and the variety of methods that fall into

this class.

3.1. Linear multistep methods

With
f”kmi‘ (¥ 5apem1 )
k-2 Yitk-2
tlh) =y ¢ P2y = : (3.1)
M1 V541
\To \ ¥y
/“ak“l "akmz %0 e ""0‘:1 ""0’40\‘ (ﬁkfj‘}‘k"l-"‘ ° o'{"ﬁ()fj“l\
1 0 - 0 0 0
A = - ' Py =
0 L cee 0 0 0
\ 0 . 0 « .’o l 0‘/ \ 0 )

(2.4) represents the (cne-stage) linear k-step method

k-1 ' .k
+ I % Yiig-1 = h ¥ Bef. o

Yoo
Jtk=1 "y g 2=0

with y; = ni(hkp i = 0,160, (k~=1).

The associated discretization vector is ij(Y

™

§e-17 S k-2 e o e T4

The root condition reduces to Dahlgquist's well-known root condition

for linear k~step methods.

We also might have chosen the discretization vector (2.3.a).
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Then ,/ N1 \ yj +}<:-l\‘
M2 ] Y542
Ly = ' 2, = :
| j
o 7y
hEGg ey ) \Pfyik-1)
{(3.,2)
. | “x A
T T io Bofisp-1
1 0 ceoe O 0 O 0
0 1 ... 0 0 O | 0
1 ’ .
A :l G Qe ¢ ¢ O @ & T ¥R O H &S OO0 ¢ 8 e ; A = ®
%5
0 0 .. 1 0 O 0
\ 0 0 ¢ @ © G 0 0') \\ hfj+k_,l J

3.2. RungerRutta methods

The R.K. method

—n e v .= h v .

with ki=f(x,y);kzxf(x+%,y+%kl); k,=f (x+h iy-hkl+zm<2)

is a 1~-stage 4-step A-method with A=1 if the discretization vector

Zj= (Yj) is used.

However, with the discretization vector

T

y Ya, Y. (see (2.3.e)

Z.= (Y. :
57 Wyea2r Yy Yy

it becomes the 3~stage, Ai-step A-method:
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. o
V3e1/2) R | Ry = Fye1 w
]YJ = | 0 0 1 ijl +th | -f, thﬂ 1/2
0 ¢ 1 CIF, 44 £ +1F
b’t} J Yj-1 Lzttt Famre Y 2 5

Y0=Ngi Y.3/2 and §“l:arbitrary,

Note that zj need not approximate Zj with the same order in all
components {(Cooper's [6] considerations on order vectors become

relevant here).,

3.3. Linear cyclié methods

Donelson and Hansen's [7] linear 3-cyclic 3~step method

h(10£

33yyy + 24735 1757735, - 3j+57f3jw1+24f33~2~f3jm3)

125y, ,1-144y35-107y,5 1 +136y5, o = 3h(14f3j+i+39f3jw48f&Fi?15féj«2na i
58Y3542+531Y 35,1 7306y54-283y45 1 o 3h (3 3, #1028 3, +17TE 3 4286 54 1)

Yo = Ngi ¥y = Ny §é¥= "2 B j=l(l)m;

®
may be written as szm Uzj~l+ h ¢1(xj’zj»1”2j;h}’zo"t(h)

with | , ,

ng Y Yo ) 33 0 0 (0 57  -24
C= O? poze=| S0 | L= ;U= |

n11 J Y3941 ~144 125 0 E 0 ~136 117

2y Y3542 ~306 531 58 0 o 283
and thus reduces to (2.4) with a=L"lu,

The associated discretization vector is (2.3.d) with r=k=3,
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A has the eigenvalues«plwlﬂ,p?m w:.9-4ﬂ3*0; hence it is stable
- -t

(although its three stages do not satisfy Dalilguist's root condition).

I3

3.4, Combinations of linear multi-step with R.K. methods
Cyclic application of a R.R. step of the form

y.j»_,: ijl&» hzf;jwl

followed by two steps with the formula of'Miln@—Simpson vields the

A-method
¥34-2 0 0 1M ¥3gs : AL W
~ + 2 e . ; ),
Y34-1] = {0 0 1 Y3qea| + 3 | Efaqa07F 4f3j«2+ ij“3. (3.4
Y33 R | £ B 3yt fagt Magat fage

j::lpzyoac
¥o= ngi ¥, and Y.pt arbitrary

This is a 3-stage 4-step A-method whose A satisfies the strong

root condition.,

Obviously, any cyclic combination of n %gmethe&s (Akem(s,s),kzlnggoﬂﬁ

yields an A-method with A = BBy ipeseByo



Y

3.5. Methods with correction: termns -

Consider the method

Y3+2— m~(l43yj*1wl20yj+23y 1) LR st

Y j+1)-

h -
-+ m(sfj*z"}:;f (305)

hupd “l TR e -
g™ o= (113, -84F.+15%
Tiri™ g e Yy y) 3417

e
; -ZZ(69yj+lw40yj+15yj 8 +~§m(6fj 3384,

i

j:‘:lpz,oem

37"0’: Ng 7 Yl:;l"‘”"’ﬂl? Y= na

where earlier approximations Yia1 and Y4 are“corrected" before
¥3$3 is calculated (the calculation of yj and Y441 needs no
additional function evaluation). Such methods were first considered

_by @ear [81.

This method may be written in A-method form as

Va2 141 =120 23 =66\ (¥y,q 9N

yj*l Lq w3 o-ee 15 66 Iy im, . 3

Yy 4 69 ~40 15 =66 | | vy 5 | 11 Ite 3

hE g, o o o 0/ \nfy,, 11
=1 (1) mf.

It is a 3-stage 3~step method; the assoc1ate discretization vector
ts 2= (g0 Yyuqe Yy hf(x§%2§Y3+2))
The method is strongly stable since A has the @igenvalues'u1Z1,

112":'1‘13&]1 4:‘"0 @



3,6.'Digcontimubuarmﬁmhwﬂﬁ

: ' : - . . .o ¥ .8 s .
In all previous examples,d was the restriction to Ip» B x R »(0,h ]
of a\gggtinuDUs’functiun in [a,bls R®x Rx (O,hO]; Such methods will

-he called-continudus; they are~discontinuous otherwise.

As a simple example, consider the (primitive cyclic) method:

f(xjwl'yj-l) for oddj

Yg=ngi Y5=Yj“1+h¢j7 b4= (3.6.a)

»fﬁxjyyj) for ever 7
I=1(my .

This s a i-stage i-step method with A=A; the associate discretization
vector ig Z,=(¥,).
i I
T
‘With the disé¢retization vector Zj:(Yéj“l,Yzj) we obtain the 2~stage

lestep method:

0 1Y/ Vo - £ ‘
Y2j«1 ‘ ijs + h 23-1 P YoSNgi Y1t arbitrary (3.6.b)

. =lo 1|y £
e 5 I ) B )

(3.6.a) is a discontinuous and (3.6.b) a continuous representation
of the same method. Another example for discontinuous methods are

the Rutcher methods of sec. 4.6,
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4. The Order Condition .

In this paragraph, we inguire under what conditions the order of
- Conyvergence of an A-method is higher than its order of consistency,

~generalizing earlier results ['1].

4.1, Lema, Let Aec R(s,s) satisfy the root condition
with fup|= 1 for k=1(1)s;<s and let be ty € €, uniformly
bounded for h « H:=(0,h 1.

Then e g ad—¥ ty (X jwa(l)m (4.1)

h&xj‘ .

=

are uniformly bounded in H if and only if
j s * | *
o (4wt B hod N - : - -
g;wo.(y h.eH) ﬂ;@il ug pktﬁ(xﬁi)lﬁ ¢, J=l(Lmy, k 1(1)51}_ (4.2)

where P) are nommed, linear independent, left eigenvectors to

the eigenvalues‘ﬁy; kml(l)slo

&
Obs,2(4,1) is equivalent to eo~th€x0), ej«Aej =t (xj), J=1(1)my, . (4.3)
The sum in (4,2) starts with 2=1, in order to make it independent
of the starting values,
Prbéfm Let he'{ur, i=1(1)s} the basis of the normed principal .

vectors of A.

Then, t (x ) o= x ay (x }u
=1

Si(h)

{ 4 0

g
[ (x. )f< ? Eoaylx, “yad- L u,| =

B3 1“1 =0 e =1
3=ty

PN A S

* T S W *
g and ak(xm)a(pkpk) (pkth(xx)).
. e . %
Hence, 5y (h) 3; Z‘ p}%"z(pguk) l(Pg,th (Xsa.))“k‘
8 (h) are Bounded for heH 1f and only if (4,2) holdsg

(b) For i=(s;+1) (st S, (h)= k3 a; (xy) a9 " buy b, el [z: wv | (4.4
1 2=0 t =0
wﬁerafoT"lAT is the Jordan normal form of A, visT lui the Jordan

bBasis and b;=sup sup|a; ()| . The sum in (4.4) is bounded for j+to
heH XGIh '

since |u | < 1,
1
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4,2, Definition. An A«method with l.d.e.s

) ® o w
djw h,thﬁxj}, j-wl(l)mh

‘i said to-satisfy the order condition iff (4.2) holds.

We are now able to specify necessary and sufficient conditions such

. that a method with order of consistency g converges with order {(g+l).

4,3, Theoren. Let be 2y, obtained from an A-method with A satisfying

the root condition and with l.d.e.s

*
dg:z hq+lth(xo) (starting values of order (g+1)),

Z

N e § L

with t; ¢ &, uniformly bounded for he(0,h J.
z, then converges (for h > 0) with order (g+1) to Zy

If and only if the order‘ccnaition (402)‘ié sétisfiéé,
~Rroof . From (2010) we obtain for sufficiently sﬁali h » 0

cr¥pfal < fiz-z Il < cyvpral

: s R ¥
with yoral= sup ,|ada,? + n & a37%aZ| = nh suple, (x|,

0<7smy g=1

Hence, ,Hzrzlﬂﬁ_: o mI+tl) (h/> 0) due to lema 4.1l.

For many applications the order condition (4.2) is unhandy and
unnecessarily generali It simplifies by imposing additional
restrictions on t; or A.

Let be tﬁﬁx;)'z gﬁ}x;)t + ﬁsHkx;Y , jzl(l)m;).

with constant te Rs}-gﬁ;I;j% R, s

- @hVuniformly bounded for

~he(0,n 1,

(4,6}
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4.3.1.~Corvliary. Under assumption (4.6), let A satisfy the~strong

root condition, The order condition (4.2) then reduces to

: 3 P %
either 3 c>0: (¥ he(0,a Dl ¥ g.(x,)]<c, 3=1(1)m, (4.7)
( F 0‘)(5&31 h*"g i re h) .
and/or th=0 for all pT=pTA, lpl=1. (4.8)

Note that (4.7} can only be satisfied by discontinuous methods

(sec. 3.6),

(4.8) is equivalent to rank (I-A,t) = s-n, (4.8.a)

n: number of linear independent left eigenvectors to p=1l.

\Prmafg"Since'pk=l, kml(l)sl, (4.2) yields
3

N O S ST U N TR e S i«i T 3
Ak_j“w N u . pkth (Xm) l - lkilpktll(xb) - (pkt)(ﬁ;i

( *)+h ; Ts. (x))
gy, (% I PSSy ix,
4T h el T 2P kR

1
The second sum is bounded due to the factor h.

~Corollary 4,.3,1. permits an elegant theoretical approach to maximum
order linear cyclic methods [1l, but it is also decisive for
classical algorithms as will be seen in §7. An equivalent condition

to (4.8) is given in Skeel [16].

4,3.2., Coroliary. Under assumption (4.6), let 9y be the restriction
to_I; of a'function g:fa,bl - R, g4&0, independent of h and
with Bounded derivative (frequently, g is the (g+l) -~ th
derivative of Y). The order condition (4.2) then reduces to

th =0 for all p' = pTA, fpl = 1. (4.8)

Note that the"eigenvaluesmi # 1 do not appear in condition (4.8).
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Proof. For k=1l(l}s; < s:

- j J j jlg j j-v-«gf T #§
Akj 2 pk pkthGX )r“}{ppt 12 g g(xg)+zzlhp1 pksh(xz)

Ty e e
[Sz[ s bounded due to. the Ffactor h.
(&) Por py=1, Sy is unbounded for j -+ov; hence, in this case,
: Akj:s const. if and only if (4.8) is satisfied.

(B) For'ﬂﬁfl, Ing|l = 1, as g has a bounded derivative:

§= ?: JE (X ) ?‘; J=2 ( - *
e 9 = T n My 8 s
Lger & 2] Ttk g=1
S := hr © nk g (E ) 3 ras in (2.2.b)
g=1
3-1 . L o . .
?Ki}i p]:l ’zq(“x ) + 8§ = 31}{12(51‘?‘11]:@ (XO)«g (xj)+uks )

- - 1 * % * %
lsll= ip%fll linﬂg(xo}wg(xﬁ)+nﬁ$:'r S : bounded,

Hence, Sy is bounded in case r(B)piwhich finishes the proof,
Corollary 4.3.1. excludes weakly “stable and corollary 4.3.2
discontinuons methods.

Methods that satisfy the order condition are distinguished by the
fact that their l.d.e.s accumulate in a particularly favourable
ways -The following theorem presents a complementary aspect by
showing that any method with order of consistency q that satisfies
the order condition may be- interpreted as a method that has order

of consistency (g+l) wcr¢tc%a%"ne;ghbouringﬁ discretizati0n Wy o
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4.4.\Theﬁram@ Let a stable A-method have 1l.d.e.s

Z *

Zo_ opatl, o * de - *

With.tﬁ e &; bounded for hs(O,ho]n
If and only if the order condition is satisfied, a

discretization Wy exists
Wy= 2y - esn¥" | o ¢ &, unifornly bounded for he(0,h 1, (4.9)
. - 4 * . *
eo == ) th(XO) ; ej b Aej""’l = th(xj) 1 4 le(l)mh, (4010)

with respect to which the method has order of>consistency (g+l).

‘Proof. By definition and from lema 4.1:
=r (B +p 3T . o : * . g+l L *
Zg=t (A)+h=""t,; Zj Azjv1+h¢(valfzjml'zj'h)+h tye 3=1{1)m,,

g+l ., qg+1 _ * g+l +1 W
!‘-ﬁ, 3 == Z L2 q ™ - q ] - q . * .

1

ejwl'z

—hqflej;h)

W, LA 7 B * _nat
dy: ¢(xjwl,zj“l,5j,h) b %y qr%y g~ 3

= 0(h?™)  due to (2.5).

Note that the transformation- (4.9) need not be performed in order

to have order of\cbnvergenceﬁfq+1)fnor need e, be known: Theorem

4.4 offers, however, the possibility to obtain a discretization
with respect to which the method does not satisfy the order

- cendftion; this will be of interest in a later context (sec. 6.3.).

‘We might congider Wy the "natural" discretization for the method
-ndexr consideration. However, Wﬁ;i&, in general, not a suitable

discretization for practical use.

In an effort to reduce the k-step AdamsﬁMoulton«NQrdsieck method
‘With order of consistency (k+1), Stetter [18, p.352] calculates
the ej such that (4,10) h@ldso.ln that special case this is possible
~Hecause- the order condition is satisfied; in general, the e, are

1nbounded .




~21~

In a fairly simple way, the oxder condition solyes the problem Qf
finding the order of convergence of all (stable) Awmethﬁ&s»ﬁhat
satisfy (4;5), This assumption may be relaxed if order p convergence
Iz not needed at\éii gridpoints Xj € Iﬁ_but only at a few selected

ones; we consider a special class of such methods next,

4,5.,~ThHeorem. Let Zj' j=l(l)tm;~l);=be obtained from a stable
. k4
A=method and the last agppoxfmation zm;'m$mh, from a B-method.

(a) Let the l.d.e.s be

% _ .q * (4.11)
Z. gl 2, * 1 (1) (e
ay = 0¥ (g ey) + g}, 310 o) (4,12)
dm w‘wh Be, 4
with t%, té,s L= uniformly bounded for h*é‘(O,hOJ
a Bamto(x%), Bi=ad, o+htixl), 3=1(1) (m-1) (4.13)
. an eo"‘th (Xo) r ej—Aej“l+hth(xj) 7 J"’ m=- o o ded

(b} Let be

0 Gy g 1By o Ty V=D (5 g 02y -8 _p% 280 % n%e] )0 T,
| - (4.14)
=1(1) (n-1).

Then (7.ez:) = 8.3

and |z -z | < (1-hRy) TR |G [T for BKy < 1.

J - %
Note that &,h9, &,=t (xa)+ h T Al zt;(x,), is the exact global

erroxr of Z4r =0 (1) (m=1).
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Proof. By definition of the l.8.e.s for j=1(1) (o=1):
- s ot W PR ..q+l 2, *
Zy = BZy g% DO Gxy g2y 0, 2y7R00 BE0E (x4 B ty &4
WLth (4.13) and (4.14):

‘v e 1y “n X *M = Xel -z na,
(Zjnejh.} A(Zj—ej«lh )+h.<1>(:é:,jmj_,,zqu_‘l ej_lh ,Zj ejh sh)

Hence, z, = 2 B9

. 4.15
5 ( )

375
- This proves the first part of the theorem.
-By definition of d;;

Zm?Bgm“l+h¢ijwl,Zm“l,Z

ok “.qgo\
iniB) - hEBe

1

2B HE (g 42 g 4 2 7B)
Subtraction yields with (4.15) and (2.5):

, +1 , g .
|2~ 2l < rd Klfemull_+ Koh |2, -z |

which completes the proof.

Theorem 4.5 generalizes and gives.a new approach to methods that
wWere originally presented by Butcher [5] and theh“analyzed by
~Stetter, who already observed that their basic idea extends to

certain predictor -corrector procedures [18, p.2991.
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4.6, Exampie. Consider a procedure consisting of three explicit
R.K. methods:
= 8 first step (or initial value) with l.d.e:
4 _..q g1,
d, =h Q(xé). + 0 (h* )
- (m~1) steps~with.£he 2nd method and l.d.e.s
ag'-; r9{ L o6 - fy(X,Y(x)))j + 0™, 3=1(1) @-1)
= a last step with the 3rd method and 1.d.e.
Z _ 9=l
4= ~h* Tolx)
where Q « Glﬁa,b];'
Then, 5j= Q(xj+1)+ 0(h), 3=1(1) tm=1), B=1 and (4.14) is satisfied,

thus, theorem 4.5 applies.

The above procedure characterizes Butcher's "effective order" methods
(see Stetter [18, p.1601). This name refers to their order of
convergence bBeing different from their order of consistency. However,
the same applies to methods that satisfy the order condition.

Therefore, it seems reasonable to substitute this nomenclature and

to call them Butcher methods.
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5o\Appliﬁa%ibhE“@f“tﬁé\ﬁwﬂém“ﬁahﬁikibn-

5.1. The classiaal\Adams%Mbﬁ&tbnthrdsieck&meth@&g»are perhaps the

Wost Important procedures that satisfy the order condition.

As an example, we consider Nordsieck's form of the 3-step

Adams-Moulton method given by

(¥5 ) (1 s ass - [ Y1 ) (3/8)

k “hyﬁ" N ’ O i . (5.1)

%y | 0 =3/4 -172 374 gmyy SRV

<§53y5 | \o ~/6 -1/ 172 \%h3y;;1 \1/6}.
j'—-:S(l)mh

. - (l) 1 .
r a 3 . £ b4 °
) Yj enote approximations of Y j H j £ ( j rY.j)

For sufficiently differentiable Y the l.d.e.s are
a; =52 () e40 (1) ; t=‘§%z(;3;o;18;2qf’, 353 (1)my.

. Thus the meﬁhcd has order of consiétency- 'q==3° fl:t.:is strongly stable
as A has elgenvalues pl~1, vzﬂh3~n4~0' furthermore, p pfA for
P =(1;1/2;1/6;0),

Hence, (4.8) is satisfied and - with starting values of order 4 -
the method converges with order (g+l) = 4 (theorem 4.3 and
corollary 4.3.1).

Qbs.: The above notation differs from Gear's [91; we shall come

~back to this point in section 7.5,
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5.2. The> Vinewr cyelic wethod (3.3) is strongly stahle; for

sufficiently differentiable Y its 1.d.e.s Have order ¢=5 and the

Form-

dy

with t = 1

‘With A = L™ we oBtain

= ehe r0om®, ge1imy

,
£%, t* = ©(33;261;~225) , c#0,

) 33 -57 24
yank (T=A, t)=rank (L-U,t*}=rank |~ 144 261 =117
~306 531 =225

~57 24 33
=rark | 261 «117 261
531 =225 =225

Thus, (4.8.a) is satisfied and, due to theorem 4.3, the method

converges with order g+l=6, if the.Starﬁing values have order 6.

33c¢
261c
«~225¢

H
N

A detailed treatment of linear cyclic methods is given in

AlBrecht [27. -

- 5¢3. Consider the A-step, r-stage~block=implicit method

A

) N : <\ 7/ N
(Yrjvr+l (0 eee 0 »l yrj~21+l\
Yejeps2| _ | O oo O 11| Yrje2re2

) o T
ZO: (voiuqt;O;n‘O):. & Bro

Let r Be even, and let the S% Pe determined such that the last

~gtage has order of consistency g=(r+2)

(the method is then uniguely defined).

CRIVERSIDAZE

+h

(2l al
A

o °°* F¥
ﬁ% Q.oyﬁﬁ

Lv-O‘QQ.OOC

15 A

*
j=lUJmh

by ey
Cor 8 s beah

S333/83

§

(

frj-—r

o
c
Q

s

L7

frj-—r+1

J

(5.2)

and all other stages q%(r+1)
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- Theoren. Under the above assumptions and for sufficiently differ-

- -entlable Y, method (5.2) converges with order (x+2).

It should Be remembered that order of convergence p implies that
~Bll components of zj converge with order p to the resp. components
Of Z,. |

3

“Proof. The method is strongly stable and p'= (0;...:0:1) is left

12

elgenvector of A to p=1. The l.d.e.s have order g=(r+l):

dj: pE+1 Y(r+2)6x;)t + O(hr+2), jzl(l)mz

. o v
t = ({ty5 coas tewri 00, tyserror const. of i~th stage.

-Hence, prt:O and the theorem follows from 4.3.

?or\@ﬁ@fr, the order condition cannot be satisfied; the correspond-
"ing methods therefore converge with order (r+l). Shampine and Watts

[14]1 showed that the procedure (5.2) is A~stable for r=2(1)8.

5.4, The (discontinuocus) primitive cyciic method (3,6.a) is strongly

stable and, for sufficiently differentiable Y, its l.d.e.s have
order g=l:

for odd j
Y (xh+ 0 (nd)

~
-

#JH n#;

for even j -

-Hence, corollary 4.3.1 applies and condition (4.7) is satisfied with
gh(xj)=(vl)j+lY"ij). Due to theorem 4.3, the method converges with

order (g+l) = 2,
In Its continuous representation (3.6.b), the same method has

a,= in yro 0 (n2 t~(l) =1 (1)m.
j*"-'z Y (}{j) t_+ 0oy =\o/r 3= mho

]

A'z(g i) has the eigenvalues~plﬁl,'n2=0 and the left eigenvector

p= {0;1). Hence, th=0-wﬁich again proves the order of convergence

(@p1) = 2.
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5.5. Method (3.4) is an exgmple of a procedure that does not
satisfy assumption (4.6). Therefore, the order condition applies
= If at all - in its general form (4.2). With ¥,;=1, R =0,=0,

r A
Py= (0;0;1) it reduces to
| (3)

(¥ ne 0,n1) (léop";th(x;ﬂ: tg:_zzoth <o, =t@m, 6.

.where'té3)denotes the 3rd component of t,.

Assume that the R.K. formula in (3.4) is a 5-stage order 4 method
. designed such that the last formula of (304)'has order 5 (this

- cannot be achieved with a 4-stage order 4 R.K. formulal)

The method then has order of consistency g = 4 and
S e
68 =0 (), 2=1(Limg .
Thus, (5.3) is satisfied for a constant ¢>0, and the method has

oxrder of convergence (g+l)=5,

This s only a simple'éxample out of aAlargé variety of_methods‘
- that is generated by“composite>appli0ation of different integration
lxormulae, and that may contain effibient alternativés to achally
applied proceduresobThe aim of this paper is to provide the means

foxr their theoretical analysis,

As step changing automatically implies the transition-to a multi-
\stagefmet50653Aeven if we continue with the “samé" formula (see
‘Sec.'Bol),.we'may ﬁse the order condition to combire step changes
with an increase of order; yet, ﬁhis possibility needs further

‘Investigation,
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6. Error- Control -

The rest of this paper will bhe primérily concerned'with.the

practival conssguences of the A-method theory, beginning with its

implications to error control:

6.1. The usual way to control the global discretization error at
&

Eyr Bp3=(Z~z.), is to estimate the principal l.d.e. (sec. 2.7)

and to monitor stepsize and order according to it. An essential

part of all modern codes is touched if we ask for the justification

of this procedure.

There is no doubt that the global error Em is composed of the
l.d.e.s dg, 2=0 (1)m; however, they do not accumulate in a purely
additive way (safe is special cases such as R.K., methods or

Adams methods) . Essential for the influence of the di on Em is,

therefore, not only their size but how they accumulate. If thKﬂ( 1,
this depends upon the A-~norm of dhi

. S ., :
Uhldl = sup |atao + b T a37%a (6.1)

|
0<5 < =1 %

as is seen from corollary 2.10.2, Rather than monitor the method}
in the j-th step, by the quantity !d?l; we should estimate the

effect of the j~th step on (6,1).
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6.2. Thig reasoning affects, in particular, our definition of an

Yerror: vonstant" for general A-metHods.

In the case of the linear 3~cyclic method (3.3), for example, &
stepsize and order cgntrol based upon the l.d.e.s of the stages
(in analogy to the procedure in linear multistep methods) would
fail since'itsv"error consﬁants" céi) (i$1,2,3)_do not reflect the
composite structure of the method and, worse, thé order of the

l.d.e.s does not even indicate the correct order of convergence.

This excludes also the suggestive idea of defining an error constant
for multistage methods simply by |t|, if the method has l.d.e.s of

the form

a5 = 2% e v 0™, g1 0my. (6.2)

When analyzing the accumulation of the l.d.e.s, we have to
distinguish between methods that satisfy an order condition and

those that do not,



w3 ()

6.3. Consider a strongly stable A-method, with l.d.e.s
-a?‘% Eth(x;)} $=0 (Lim;, | (6.3)
that doesﬂggg satisfy the order condition.
Let be uk, i=1(1)s, the eigenvalues of A with ¥ =1 for k=1(1)sy;
Py« kml(l)sl,linear independent normed left eigenvectors to u=1;
Uy kml(l)sl,linear.éndependent.normed eigehvectors to p=1;
'{u\,i~l(l)s} the basis of the normed principal vectorsof A.

Then, t (x } = Z a. (xz)u
i=1

* -— *
ak(xk):=(§£u-) l(ﬁ;th(xz)), k=l(l)slo

N o~ z *
Let be ey:= Ajto + h L ad- tor j=0(l)mh

L=

= E a. (Xo)Aju

J
+h Z S {(h); 8.= ¥ a, (x )Aj gul, i=1(1)s.
=] '

=1 * Ty 1

The sums Si? i:(s1+l)(l)s, are bounded due to (4.4), and from

lrg 17 <1 follows [adu;| = oth) (m0), 1=(s,+1) (1) (s).
L1 3
Hence, e = z Ca (xo)uk+(pkuk) g Bz (pkt )) + 0(hj,
R(L‘
As w [da1 = h9 sup |€;] , the effect of the j-th step on wA
h 0< ® 17 h
Jemg
S1
is h E (pk k) (pkt )u ;, in essence.
k=1
Thus, the quantity to estimate for error control is
s
1
o -1, T
E»j""‘kEl (pk k) (pktj) ° (6. 4)

In most practical cases we have slﬁl.

In the (very common) special case

* X
s,=1; agz,hqy‘q+l)(xj)t + 0(h%*) with constant t ¢RS (6.5)
(6.,4) takes the form (oﬁitting-the subscripts k)
- . & .
e= 0w T Y‘q+l’<xj> (6.6)
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6040“E@finiﬁ$§ng~cj will he called\éﬁf@ﬂtﬁ&@fi}ﬁke§§;1@nd the
constant

¢ o= (@?u)vl(ﬁft)

s the error constant (of an A-method with (6.5}):

In the special case of strongly stable  linear multistep methods (3.1)

v .
with 1.d.e.s (6.2), t=(c y1i0700050) e &, we have

+170
' k-1 T
érzil;u+akmﬁ;o.a;@ + I u;ﬁ; u= (l;lse.o;l)
i=1
thus,

C =y 1/ (BgtByteeatB). (6.7)

Hence,. definition 6.4 contains the classical error constant for

linear multistep methods (see Henrici [1l, p.223]) as special case.
Obs.: Extension of the above. considerations to weakly stable‘methaés
is omitted as it is of little practical interest.

The concept of error constants and, more general, of effective
l,d.e.s permits a finer measure of accuracy and is useful for

avtomatic order control in A=methods.
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6,5, We consider now the case of a stable Awmethod with 1.d.e.s
Zo ¥ . Lqbl e Ga_L g, wq%l; Ry ‘; *
dh (.Xo) - h th (:XO ) F dh“""h th. (Xj ) + h SH (ij 7. j"‘l (l )mh (,6 o 8)

thatvsatisfies the orier condition (4.2).

Due to theorem 4.4, , the method then has order of consistency
{g+l) with respect to W s sza ijhq+lajo For sufficiently small h
It follows from corollary 2.10.2, that

A W 1 A
cy¥pla’l = ,SuP *Izj—z ;~p% NE coUpral]

J
| ﬂj <mh ,
where wgtdwl depends on the terms hq+lsh(x;)o

Consequently, the global error Ej j»zj) cannot be safely

~ebn61tlon\1s\satlsf1ed- both th ahd shfmust be considered (by

monitoring €y and the principal 1.d;eqs»w1th\respect to W) .

As an\aiterhatiﬁe, the method may be modified such that its order
of consistency is maintained bBut the ogder condition not satisfied;
Of course, this reduces its order of convergence by 1. An example,
that concerns one of toéay‘s;most Qidel§'uséd codes is given\in the

hext paragraph.

Hence, the sigﬁificance of the concept of order condition lies not
only in its capacity to increase the order of a méthod, but in the
possibility of finding out whether conventional error control
techniques are permitted. This affects error control in the block~
implicit methods (5.2), the linear k~cyclic, k-step methods of order

2k, certain Nordsieck Fforms, and many other methods.
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7. Emr&sienk ?n%ms @ﬁ AﬁMﬁt&@ﬂS'

In this paragraph, linear transformations are performed on A-methods
"In order to obtain new procedures., This yields, in particular, a
very simple approach to the well~known Adams-Moulton-Nordsieck

methods and a generalization of its main ideas to A-methods.

7.1, Definition . Two stable methods My and Mgy that can be

represented by

. * -
zg=t (h) ; zj=Azj“1+ h¢A(ijl’£jwl’zj;h) . (7.1}
jzl(l)mh

and
&
= - - P=3 - © i ]
Wq wlh) Wj Bwj~l+ hd’B(Xj"l'ijl’wj'h) (7.2}
aieicalled”eguivaieht-if

o *
wy = Tzy, 3=0(llmy, Te R(s,s), regular.

Apparently, if My and M, are equivalent,

- * * e -
B = TAT l; ¢B(ij1’u’v;h) = T¢A(xj«l’T lu,T lv;h).
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7.2, Let
Y3ake1" Yyuge2® BEEEy e qte e tBofyg)e 3=100my
Yy = g, 1=0(1) (k~1)

tepresent the k-step Adams~Moulton method of order (k+1).

With the discretization (2,3.b) it takes the form

L3
zg=c(h); z4= Azj 1+ hE, 3=l(l)mh
£

*
J ’
f

*
(x j’Yj) = PRy 1Y gagm1)

(Y545-1) (1 By Byrop cee By Bo)
hf3+k L 0 0 0 ... 0 0
B 0 1 0 ... 0 0
= : 7 A= Seceescosacecssnscascocaco ; a=
hEg ) 0 0 0 .. 1 0
e ) L0 0 0 ..o 1 0y

Let T be defined by Wy=T2+ 0 (nk+1)

(o

2 ooe

\ 0/

(7.3)

where Zj and Wj are the discretization vectors (2.3.b) and (2.3.c)

with r=1. By transformation of (7.3) with
= T
i I

we obtain the equivalent method (re~labelling w by z):

z.=Bz. .+ hf;b, B=TAT ¥, b=Ta.

3 j=-1

This is the k~step Nordsieck form of the Adams~Moulton method

(labelled A-M-N method) of order (k+1).

(7.4)

(7.5)
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7.3. Tt must be distinguished hetween the above classical k-step
A-M=-N method withbéggggﬁk+ll } and the k=step A-M-~N method of
*gﬁggg‘k that results,if the same transformation (7.4) is applied to
the (k~1)-step Adams-Moulton method with discretization (2.3.b)
(dimension s=k+1) and\éﬁgéi-ko Note that this method is a k~step
method although its equivalent counterpart is a (k-1)-step
procedure (which confirms the previous remark that equivalent

methods may have different step-numbers k).

By the following definition, we extend the concept of Nordsieck
forms to more general A-methods.

*

e : a4 ey Y . _ * %
7.4, -Definition. All methods w1th.ze~c(h), zj-Azj*1+h¢(xj,f3éyfj,h)
with associated discretization vector (2.3.c) are called

" Nordsieck forms.

Nordsieck forms have the well-known advantage that step changing
is particularly simple, consisting of pre-multiplying zj by the
matrix D(e)= diag(lrdrdzlooQ;ds*l)y where o is the step changing

factor.
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7.5. The noﬁatiQn.(?%51 of the Adamg=Moulton-Noxdsieck wmethods
differs from Gear's [2]; ﬁowever; both.are equivalent,

To see this, let P be the matrix of an explicit method ("predictor’)
with order k

. ®
Z jml(l)mﬁ, and Rz= P-B,

IR S R

Solving (7.5) by iteration vields

0)_ | . L (1) LA S PR R € 9 I
Z4 Ezjwl’ 24 sz l+hfj b, i=1(1l)n; zy %j H
= (P»R)?j 1+ hf (l”l)b (7.6.a)
o (I=1) =¥ (1-2) 6
&j ip R)zjwlﬂ hfj b, (7.6.b)
From (7.6.a/b): zj““ = zjﬁ + h(f”’““” ;“1“2))13, i=1(1)n, (7.7)
- ce ¥ (=1}, _ (0} . R
where hfj .b.~— zj - szwla«- szw_l = sz_l

{7.7) is Gear's representation. Apparently, (7.5) is simpler and,
therefore, more suitable for-analysis; however, (7.7) has well~known
advantages>when coded.

It has already been pointed out in sec. 2,12., that any implicit

A-method can be written as relaxation methoé’o Hence, the advantages

of - thig: form, as explained in Gear [10] for the spe01al case of linear

multistep methods,” extend to all implicit A-methods.




7.6, Let be

*®
wo=w (h) Wy ij~l+ hﬁBCijlfwjvl’wjgh} (7.8

b

obtained from
*
= - ° ] ¢ y » {”"QC‘
zg z(h); zj Azjwl+ h¢A(xj«1,zj_1pzj,h} (7.9}

%
by the transformation Wy = sz, ij(l)mho

Assume that zye G converges with order p to the discretization
Zh of ¥; we then may interpret wy as an order p approximation to

'ﬂﬁg\@thﬂr discretization Wh,Of ¥ with

. — ) . . ,
W= sz +»_chv(.xj)h , T2p, 3=0(l)m, | (7510)

clgﬂhvuniformly bounded in (0,h 1.

With respect to this discretization, method (7.8) may have advantages
over (7.9) which motivated the introduction of equivalent methods.
They may differ in many aspects such as order of consistency, number
0of starting values,‘step changing procedures, and error control

techniques,

The case r=p is of special interest; the L.d.e.s of (7.8) with

respect to W, are then
) . . % .
ay= raj + (cy=Bey 1)nP L o@mPy, 3=1(my. (7.11)

If (7.9) has order of consistency p, d?ﬂﬂ(hp), then method (7.8)

has order of consistency g=(p-1) but, due to,construction, it

converges with order p to W,. This proves the following two theorens.
7.7. ThHeorem. If two equivalent methods have different orders of

consistency (but the same order of the atarting valugs), then

the lower order method satisfies the order condition.

7.8. Theorem. Let (7.9) have order of consistency p WoTote Zypo
If (7.10) bolds for r=p, tnengmethod,b708} satisfies the orxder

condition.
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From (7.4) follows for the special case of A«=MeN methods:

7q9a\ﬁﬁr§§1arxe All kwstep Adams-MoultoneNordsieck methods with
order (k+1} satisfy the order condition.

7.100 Gear's widely used code DIFSUBB)

is based on Norfsieck ftorms
of Adams-Moulton metHods and, in view of the results of sec, 6.5,

One may wonder why its error control works,

It Has been said in sec. 6,5§ that 6ifficulties with conventional
error control can be avoided By mo@ifying the meﬁhod such that the
Order condition is not satisfied while tle order of consistency is
Maintained. The error control in DIFSUB is correct because the
classical k-step A-M-N= procedure of order (k+1) is modified to the
kestep, order k A«M-N method of sec, 7.3, As DIFSUB starts with

k=1, tHe lower order of these formulae has no negative consequence,

The following theorem implies that error control of a method may be
performed with the effective l.d.e.s of any equivalent method, if

bhoth do not satisfy the order condition.

7.11. Theorem. Equivalent methods that do not satisfy the order
condition have the same effective l.d.e.s ,in particular,

- In case (6.5) - the same error constants.

~Proof. Let be B:TAT”l, Ejotj. 5;335;, Bﬁkzﬁky kwl(l)gls

Then ﬁ; = ﬁLT“l, i =Tu, and the theorem follows from
S1 . 1.t
& b N 8T G - o %“ = o
317 Ly B BBy ey

3)Refeiing to DIFSUB always includes iES"modifiGations, €sGa
Hindmarsh's code LSODE [12].



8. A Note on Step Changing Effects

This paragraph deals with a‘génaralizatian of the concept of
A-methods which is of interest for the study of step dhanqing
effects. A complete theory does not yet exist:; the considerations
here are fragmentary and should be taken as. a first step.
&.1. Our fhedry geﬁeralizea without changes to methods
' * %
zomc(h); zijzj_lf h¢(xj~1'zjml’zj;h)’ jal(l)mh, _ S {8. 1)

on non—~equidistant grids

= o o = 2 % ms 2)
Ine {lexo 8, Xy=x,_gtesh, o0, 3 1¢1)m, } o (B
m .
. co h * % ‘ B
with I (ajh) = (b-a), he(O,hO]; xjeIh as in (Z.Q.bh

j=1

Then, (8.1) is of discontinuous type, where ¢ depends on the

grid factors aj.
As in §2, the l.d.e.s dj of (8.1) are defined by

* . . *
Zj = AZj_l+ h‘f’ (Xj"lyzj”lpzj;h) + hajl le(l)mh’

where Zj is the discretization vector (on the grid (8.2)).
Composite application of n Aiem@thods, iil(l)n; on (8.2) generates
an A-method éither if the methods are used cyclically

(then A= Ay An*laa.Al)'Or if all Ai are egual. In order to specify
those compositions that do not result in an A-method, we introduce

the term "n~-composite” method.

8.2, Definition. The composite application of n Aiﬁmethdds ig

called a n-composite procedure, if it cannot be reduced to

an A-method.
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§.3. Step changes in an A~method on’ equidistant grid result in the
procedure

‘ % . L *
Z 4=t (hy; zjm,Ajz i ho <ij1’zj~«-»1’zj sh), =1 (_l)mhv, {(8.3)

jm
on the gxid (8.1}, where Aj and ¢ usually depend on uj. In general,

(8.3} is n-composite.

As n-composite methods are no A-methods, the stability and

convergence considerations presented so far do not strictly apply
: ralized. Fre . ave 2.=AL AL ....A 2, . +hG,

and must be generalized. From (8.3) we have z; AjAj—l Az g th

where Gj depends on Ai,¢i,w and h, i=k(l}j. This motivates the

i

following definition which obviously generalizes the root condition.

8.4. Definition. The n~composite method (8.3) is stable, if there
is a constant ¢>0 such that for any he(O,hQ] and any seguence

. m¥
{aj} with Zh

(ash) = (b-a)
j=1

» . . . % .
D = §uﬁ “AjAjwl’“’Ak+lAkH £ ¢ 4 Isksism, (8.4)
¥

8.5. Usually, Aj=A for nj steps with fixed stepsize, and Aj#A for

mj subsequent steps which characterize the step changing process.

The latter matrices will be called step changing matrices,

The current codes possess no particular means to satisfy (8.4) which
works if the step increases (mj+l/aj) are not "too large". {In LSODE,
for example, (aj+1/mj) is limited by 10, except in the starting
phase, and in Shampine's code DETESi [15] it is limited by 2). Our
aim is to quantify this assertion. This seems guite difficult for

all situations that may arise in step'changing; it is possible,
however, if we restrict to special step changing techniques.
Condition (8.4) can be satisfied simply by performing the step change
such that the product is egqual to some power of a matrix B with

bounded Hlef; B need not be equal to A. This can be achieved in
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two ways:
(a) making the step change matrices equal to A (in this case B=A),

(b) performing, after every step change, p steps with a B-method
such that BPT = BP, . | (8.5)

where T denotes the product of the step changing matrices.

Stability, as defined in 8.4, thus becomes independent of the grid

factors aj.

In case (a), (8.3) reduces to an A-method on (8.2), and it is seen
from corollary 2.10.2. how the aj must be bounded: As the Lipschitz

constant K, now depends on Gy we have as a sufficient condition

for convergence:

|DK, (a.)h| < 1 with D:= sup |[B°|[. (8.6)
27730 X

. J N
It is possible to establish a similar restriction on uj in case (b).

(8.6) excludes stiff problems.

7Y
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8.6. Example. Consider the i-th step of a linear 3-step method of

order 3:
A (o o)) 0. 0. 0 0.\
(’yj ay ~a, ~a 0 fﬂﬁwi’} by ¥y 0, o
Yq1 100 o)y, 0
¥ 1y THo 1 o0 o]y " 0 8.7)
3 -2 ntrj_,g i
hf, 0 0 0 o hf, ? £,
3 ) \ J Y| ] )

A common procedure for a step change h%aih at x, would be to
calculate new approximations at (xiwuih) and (xi~2uih) by inter-

pelation, i.e.

| \
vy A 1 0 0 o0
Tloy)z;=%;= | Yi-oj ; R (8.8)
¥i-20, * % % X
he o o0 0 1
\ i ) J

X

and then to apply (8.7) for j=(i+l), (i+2),... with zi+§. and

h+aih. This would define é n~cbmposite method (with Ay=A, AifkT(ui)).
Its stability (in the sense of definition 8.4 ) depéhds on the size
of the “j and the frequency of step increases. The following two

alternatives maintain stability.

(a) The step chénge is performed with formulae on the non-equidistant

grid points {xi~2’xi»l'xi’xi+l’xi+2} by

_ ) o el 1
Y417 T8pY; T ¥ 37 8g¥y ot hibyle ) E, +..Hby (a0 )

o | 2 ] 2 «
Yi42T "83¥54178¥ " agy; g h(bIlaE, o+t Bola)E, )

where bi(ui} (r=1,2: k=0,1,2,3) are determined such that the formulae

have ordexr 3.

This method is discontinuous but not n-composite and

Kz(aj) = Lmax(rhér)(aj)l,l), r=0,1,2; L:Lipschitz constant of f.
i,

14



(b} The step change uses Ei’ but it is performed with two Adams

steps with order 3 and stepsize dihi

_ *
2i417 BEy * 04RO bRy B8 g regh)

ccoo
cooo

. |
Zi42™ BZyggtoshé (X, 002y 0025 0000)

OO
orHoo©

Since B2

T :th»fOf any T of the form (8.8); we have
D = sup (}BJ[[,IIBT]|> and thus stability.
C jeN T A ‘. L

If (8.7) is an Adams method itself, then stability is achieved
43y

simply by keeping the stepsize fixed for 2 steps after a step

increase. This appears to be the ﬁriﬁéipal advantage of Adams methods

in comparison. to other schemes.

8.7. In DIFSUB, for' example, after any step increase, at least

(k+1) steps with the current order k are performed without‘allowiné
another increment or a change of order. The above analysis reveals
that this measure stabilizes the code in its Adans-mode, . but not. in:

its BDF-mode, since the BDF-matrices do. not have the property (8.5).

A stabilizing effect could be’ achieved in the BDF-mode, if Adams
forms were used in the k steps following a stép increase, but this
would destroy‘ﬁhe‘code's*advantagés'forfStiff problems. On the other
hand, step changing also effects stiff stability. This might not

be noticed as a defect of the method but, instead, be: interpreted.
as an increase.of_$tiffness in the problem, since the effects due to

step changes would be undistinguishable from the effects of stiffness.

D Y Sl D S P Dl SO S D T Sl W SR N S ST W T WA A e S P S Wl S50 P I A D W e N o WS

4)Note that this requirement is as restrictive as, for a 3-stage
cyclic method, the rule to finish a cycle before the stepsize is
increase, which shows that linear cyclic methods have no
disadvantages with this respect over oné-stage methods.



v} e

Conclusions

An unlimited number of new methods can be generated by proper
combination of classical procedures and, considering the large
variety of possibilities, it seems very likely that some of them
will prove superior to the methods that are used tdday. One reason
why this vast area of alternatives yet has been very little explored
was probably the absence of adequate theoretical taols for their
analysis and comparison - apart from the very satisfactory ‘
performance of the existing codes. But, how develop competitive
alternatives without proper means to compare méthods, to perform

error control, or to execute step changes efficiently?

This paper is an attempt to remove these difficulties by‘ahﬁiifying’
the theoretical basis of a large class of 0.D.E. methods that
includes almost all relevant procedures (with the exception of multi-

derivative methods to which the theory probably may be generalized).

The theory presented does not add new aspects or results to
Runge-Kutta methods, due to their special structure, but the
A-method notation is useful (see e.g. [6]1). It is the natural
representation for composite methods of most miscellaneous type,

and thus may become the standard notation for 0.D.E. methods.
It has been observed in sec. 2.2. that the discretizations Zé’&efine
an interpolation polynomial; hence, A-methods may be interpreted as

procedures that generate sequences of polynomial approximations of

the solution Y. In this context, Stetter®s ideas in [19] become
relevant for the A-method theory, and one wonders whether the
A-method approach could produce a contribution to this line of

research.

Major parts of our analy31s rely on the assumption hH D<l which is:

not satisfied for Stlff problems, This restrictlon ‘can be overcome
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- however not in an easy manner - if we include the Jacobian of

f in a generalization of theorem 2.10.

It is not yet well-seen, how the ideas in §8 can be effectively used
in practice, and when stabilizing efforts - beyond those that are

already applied in today's codes - are necessary.
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