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I INTRODUCTION AND HOTIVATIONS.

Recent years have withessed & series of efforts attemping to model the
software development process. These efforts range from the search for
canonical step [Leh84; LST&4; L+BES; M+T84] through calculi for program demgn
- [5inB5; 5inG6; JHW36]. Software development process consists not only of
program construction but also of specification construction. The process of
specification construction starts from the actusl problem and obtains a formal
description for it in a precise formalism. Its correctness criterion is a
synthetic one, which specification validation aims to achieve. The process of
program construction, which starts from a formal specification of a problem
and obtains a program for it, has an analytic correctness criterion, relmnq on
proofs.

The entire coftware development process, which starts from the actual
problems and obtains a program for it, involves & correctness criterion which is
not factorizable, ie. it is neither purely synthetic nor purely analytic. As stated
by Turski [T+M87] and formally proved in [H+¥80b], the synthetic character of
specification construction snesks into the correcthess criterion of program
construction. So, ane might be led into considering a purely empirical criterien
for the whole process. But, the relation of "being a program for an actual
problem” is a complex dis,nosit'inn, involving arguments that are non-refutabile
in principle. These arguments must be subsumed under their theoretical
counterparts. As a result, establishing the correctness of the entire process
involves an inevitable intertvwining of experiments and proofs [H+VE9b].

We would like to have & uniform formalism for reasaning ahout the entire
software development process. In other words, we do not want to deal with
proofs in the language and experiments in the meta-language. Such & formalism
should be able to deal with synthetic aspects within it, which leads to its non-
monotonicity [H+vE9a). This is what happens when one appheq a formalism fo

an empirical science.

We have two kmds of desiderata for @ calculus for software construction,
- hamely, those imposed by the nature of the software process per se and thm,e
expected in a good reasoning tool. Among the former, we have the ability to cope
with non-monotonicity and other aspects due to the synthetic character of the
software process. As for the latter, an important desideratum concerns the
uniformity of the framework; especially, uniformity with respect to:.

the objects of different phases: problems, specifications and
programs;

the nature of the cbligations: proofs and validations; ‘

levels: programs, families of programs, programming methods, etc,;

size and complexity: programming in the small and pmgrammmg in the
large.

We have barely started the development of our calculus. Its central concept .
is that of {relational) probtem, introduced in {Vel84] and further developed in
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[HBVE7; V+HE9a). This concept was used to model several aspects of the
software process in an exploratory way [HYB89; V+H89b). Some preliminary
steps towards our program derivation calculus appear in [EVHVYS9; Y+EB9)
Finally we used the problem-theoretic framework together with Carnap's ideas
to prove the sbove resulls on non-factorizability and non-monotonicity
[H+v39a; §9b].

In this paper we shall emphasize our .calculus for program construction,
which is meant to be part of a calculus for softysare construction.

In constructing a program from a formal specification, one deals with-
diverse levels of details and, hence, of decisions. For instance, an early decision
concerning the application of a particular divide-and-conquer technigue will
have the status of a strategy, whereas an application of unfolding has some
flavor of a local manipulation. '

Another aspect is the right amount of details in the manipulations. This is
enhanced by the possibility of hiding undesired details at each level of
abstraction. In other words, ong should be able to choose the approprmtp atomic
objects at each step.

Our program construction calculus should cope with bath aspects above: we
do not want our notation to bury strategic decisions under local manipulations
or to force us to confuse different levels of abstraction.

wWe would like to be able to manipulate descriptions of problems and
programs much as one does with algebraic expressions. This is why we have
decided to base our calculus on a few basic algebraic laws.

il.  PROBLEMS.

IL1. BASIC DEFIHITIONS.
I.1.1. Definition. A problem P over a universe U is a 3-tuple of sets
=D, R, #} such that:

i. D,RclU
ii. ?<DyB.
Hotation. e will use subscript P to indicate that P is the
problem wre are referring to. So:
Dp =1y (P)
Rp = 15(P)
2 = nz(P)

where n; is the ith projection function.
we will say that Dy is the data domain, Pp the result domain and £ the
condition of problem P,

Henceforth we shall fix a universe U and denote by P the set of all problems
over U. ‘
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1.1.2. Definition. Twao pmmemé P and @ are equal iff they are equal
as 3-tuples, i.e.

P=.u<_) Dp= Duf’sﬁp= Rui&l(":Q;
I.1.3. Definition. A problem P is viable iff every eiement of Dp is

related to at least one element of Ry by the relation @,
ie.

P is viable ¢ (vd)ldeDp—>(3ri{reRg P(d, .
Notice that P is viahle iff Dp = Dem{(P)!.
We denote by ¥ the set of all viable problems over U (obviously, ¥<®).
11.1.4. Definition. A problem P is:
i surjective iff Rp = Rae(?)
ii. deterministic iff {a, e ala, C)el - b=c,
iii. Injective iff {a, bye® a{c, bde = a=c.
We say that & problem is genffe iff it is viable and sur]ectwe We denote by @
the set of all gentie problems over U (obviously, @Y. It is also clear that the
data and result domains of & gentle problem equal, respectivel ely, the domain and

range of its condition; so, we can refer to & gentle problem simply by its
condition, i.8. 7 = {(Dem{P), Ran(?), 7).

11.2. SPECIAL FRBBLEHS.
1H.2.1. Identities.

11.2.1.1. Definition. We denote by | the family of all viable problems
over [[) whose condition is an identity relation, i.e.

f=(4, &, 3, - A}
where J, is the identity relation over A.
11.2.1.2. Definition.
i.  1p={Dp, Dp, Ip, ).
‘s p=
i1 {Rp, Rp, SRP ).
Notice that 1p € @ and 1P e @.we will use 1 polymorphically to refer to any
prablem belenging to {. ‘

Twe will use along this paper the usual notation Do and Ran respectively for the domsain and range
of a relation.



11.2.1.3. Theorem. ForanyP =[P the following are equivalent:

i. Pef
i 1p=P
_ iii. 1P=p.
11.2.2. Extremes.
{1.2.2.1. Definition.
i 0=(J,a,0.

ii. 0p={(Dp, @, D).
iii. 0= (@, Ry, @).
iv. 0=(Dy, Ry, @.

Notice that ﬂ is not a viable problem. We will denote by @ the family of all
the problems of the form (A, B, Qi} for A, Bc i
11.2.2.2. Definition
oo = ({1, M, { x @
11.2.3. Forks.
11.2.3.1. Definition. Given a problem P we define the fork problems 2p,
3p, etc., of P as:
i. 2;,= {Dp, €y, yry=Dgl, {x, {x, %) x=Dp}),
. 3p=iDp, {{y, U, uy=Dpl, {x, {x, %, ¥): xeDph,
L1
Notice that problems 2p, 3p, etc,, are gentle.
We denote by 2, the family of all problems of the form 2p for Pel. Similarly
for &, etc.
1H.2.4. Projections.

.2.4.1. Definition. By #h-projection (denoted by ;) we mean any
representant of the equivalence class of problems such:

i DW is a set of n-tuples, for some positive integer n2i, of
elemunts of the universe,

. Ry, {yxeDy, a =), and

iii. q“i={{:~s', g}:XEDHi A gr—:R"‘. A Y=m R,

Motice that every problem Ti; for any choice of a positive integer i is gentle.



11.3. ALGORITHMIC OPERATIONS.
1.3.1. Sum of Problems.

H.3.1.1. Definition. Given problems P‘ and @, we define their sum as
the problem P+0 whose components are the union of the
components of P and Q, i.e.

Dpyg = Dp v Do Rpg = Pp u Rg, PHQ = 2 v Q.
11.3.1.2. Theorem. Properties of the sum:
i. Associativity  (P+HOHR=P+{Q+R)
il. Commutativity P+0=0+P
iii. ldempotence P+P=p
iv. Neuter P+0=pP
y. Zero . P4oo =00
Notice that given a problem P, P%L{l} =P. 50, il} is & neuter for any problem §
differing from P only in its condition.

11.3.1.3. Definition. Given a family £ of problems we define their
summat fon as the problem:

Zex = (D, Wy, Vet

where LJr stands for the generalized union over .

11.3.2. Product of Problems.

11.3.2.1. Definition. Given the problems P snd @, we define their
product Pel) as the problem whose components are:

Dpeg = Dp, Ppog = Rg. P20 = £/Q
where / stands for the relative product of relations.
11.32.2. Theorem. Properties of the product:

i.  Associativity
(PoQ)eR=Pe(fleR)

ii.  Left distributivity over sum
Po{Q+R)=PeQ+PeR

iii. Right distributivity over sum
(Q+R)eP=0eP+ReP

iv. Left neuter 1peP=P

v. Right neuter  Pe1P=p.

vi. Bilateral zero JoP=0-pol



11.3.23. Definition. Given a problem P, we will denote by P*® the
product of P by itself n times, i.e.

pe0 = 1?
pen+l - pep®n
11.3.3. Direct Product of Probiems.

11.3.3.1. Definition. Given problems P and @, we define their direct
product P x 1} as the problem whose components are:

Dpyy = DpXx Dy, Rp,q = Rpx Rygand
PXQ = {{d, d, {r, ©9%4d, BeP ald’, ried}
11.3.3.2. Theorem. Properties of the direct product:
i. Left distributivity over sum
Px{Q+R)=Px0+PxR
il.  Right distributivity over sum
(QHRIP=0xP+RxP
iil. Zero Px0=0xP=10.
Motice that P x g =Oxp =l

[1.3.33. Theorem. Pe0xReS=(PxR) e (Qx%).

11.3.3.4. Definition, Given a family £ of problems we will call
generalized direct product over £ the problem:

K = {(XeDy, KPRy, o)
where Xg stands for the generalized Cartesian product

over £ and g = {{x, YPeXcDy X XcR, : (wisfXx(i), y(ideq(idh

since X is not associative, we should write (P x8) xB or P x{0) xR) to avoid
ambiguity. Therefore, by P x @ x & we will denote, by convention, the germrah,.ed
direct product over the family {P, 0, B).

[1.3.35. Definition. Given a problem P, we will denote by PX“ the
problem:

= Kepk

where £n stands for the family of problems resulting of
the non injective application of the initial segment of
length n of natural numbers on the set {P}.

11.3.4. Closures of problems.

o0
[1.3.4.1. Definition. P™* = 2p™
n=0
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11.3.4.2. Definition. P*¥= 2 pxn
n=0
I1.4. RELATIONS BFTWEEH PROBLEMS.

1H.4.1. Relaxation.

I1.4.1.1. Definition. Given problems P and G, we use P J § to denote P
is a refaxation of § in the sense:;

PJ0e Dyc DPAPIDQ_C_Z_Q.

Notice that P 4 P2 @ = Hp nRg 2 @. So, relaxation places very yreak
| constraints on the result domains.
11.4.2. . Additive Subprobliems.

[.4.2.1. Defirition. & problem P is an additive subproblem of a
problem @ (denoted by P&0) iff there exist a problem B
such that P+R=0.

11.42.2. Theorem. The following statements are equivalent:
‘ i. Pe0,
ii. P+0=10,
iii. DpcDgaRpcRyaPrc@
11.42.3. Definition. 'Eig saying that a problem P is a complete additive
stibprobiem of a problem @ {denoted by P&, 0) we means:
Pell < P2l A Dp= DQ.
11424 Theorem. The following statements are equivalent:
i PgQ,
. Pelialp= 1,
i, Pe@aP ol
1425 Theorem. P.10,P <0 andP <R are transitive.
1.5, NON-ALGORITHMIC OPERATIONS.
LS. 1. Difference of Problems. _
IL5.1.1. Definition. Let P and @ be problems:
 R=P-0¢ Dpg=DpDyaPpg = RpRys
P = (P=0) ~ (Dp_g X Rpp).
We. sag that R is the complement of Q (and vice versa) with respect P, which
will be denoted by R =0 when P is clear from the context.
11.5.2. Theorem.

QeP > [R=P-0© 0+R=P 4 (vSNQ+§=P > Res)]
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In ather words, when Q&P, P-0 is the smallest subproblem of P that added to
1 yields P.

11.5.2. Inverse Problem.

11.5.2.1. Definition. The inverse of a problem P=(Dp, Rp, P} is a problem
P":{HP, Dp, P*), vhere 2% is the converse! of 2.

- 11.6. ALGEBRAIC STRUCTURES OF PROBLEMS.

i1.6.1. Theorem.
i. (B, is apreorder,
ii. {B, & isapartial order.
ili. (@, € iz a complete lattice with Tub =co and gib =0.

Let P, and P, be respectively the sets of all additive subproblems and of all
complete additive subproblems of P, then:

1.6.2. Theorem. ‘
i {P,® is a complete lattice with Tub =P and glb =0,
. (P, &) is a complete lattice with Tub =P and glb =0,
i, {Py,, € = (P, ).

11.6.3. Theoremill, € is a compTete Boolean algehra with Tub =1 and
gib = and the complement of 1 is ig-1 for every l={.

11.6.4. Definition. Biven_ a set of special problems @, which will be

called easy problemns, by the algebra of problems over §
we mean the algebra:

Bigy=®.0,1,2,8,. .. (N ich}, oo, @,
H; 2, % -, 3, -1 , ;v.:n, x*' w}),
where: R.0O1,28,. .., 6 (W ieH}, o0, and {+, o, x, -,
T, 1A %* "M are as previously defined.
11.7.  PROPERTIES OF SOME SPECIAL PROBLEMS.

I.7.1. Motation. Given a problem P we will denote by P - {Demli?),
Ran (), 3.

Motice that P is the maximum gentle additive
subproblem of P, i.e. P &P a (vS)HS<@ » SeP > S P ).

THere, the converse of a relation R is, as in {Tar41] and [McK40], the relstion R% such that for all
¥ and y, xR yRx.



11.7.2. Theorem.
i iyl
i 1P gif,
iii. 1p = 1p© Pisviable,
iv. 17 =1Po Pissurjective,
v. 17ePel P=p o Pis gentle.

11.7.3. Remark. Dg nDg=Z & tpe ‘Q=P§u’
ldentities can be used to denote restriction of & problem to a subset of [

Thus, P]D‘; 14 @ @ and similarly for 1% This gives a convenient way to express

decisions in deriving programs. Nolice that in our unified framework, instead of
using subsets of ], we waork with the corresponding identities, which is very

advantageous.
[1.7.4. Thecrem. |
i, Pisviable & 1pePep,
ii.  Pisdeterministice Plep g1?,

ifi. P isinjective & Pepi glp,
iv.  Pissurjective© 1Fgplep
v.  Pissurjective & P! is viable,
vi. P isdeterministic a P is surjective © P lep = 1P
vii. P isinjective a P is viable © PeP~! = 1y,
vill. PO © 1g0P g 1pelet?.
118, HMoRoTOMICITY.

As usual, given relation < over a set &, we say that an operation @ is jeff
monotonic an (G, < iff for every A, B and C in §, A<B - AeC < BeC holds,
Analogously, we say that @ is righ? monotonic 11T &<B - C8A < CeB holds.
Finally, we say that @ is monotonic iff it is both left and right monotonic.

[L8.1. Theorem.
+1s monotonic on (@, €,
x is'manotonic on (B, €3,
o is right monotonic on (@, €.

The following theorem states conditions for the left mohcmnicitg of the
product on {8, ).
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1.8.2. Theorem. ~ Given problems P, § and B such that Pe
i. sufficient conditions:

it 1P P g T s pene, e,

i2  1Peiy> PR g, OoR.
1. necessary and sufficient condition:

PoRzdohe> 1 PO° Py g o TPe° P

The following three theorems state conditions for the monotonicity of the
operations +, xand  on {@, ). :

I1.8.3. Theorem. Given problems P, §§, B and $§ such that P.@ and
R.AS:

i. PR S HS & 3&*9 &1 Q"S A is‘”P &5+ s‘ﬁ'ﬂ,

i Igelg= 00> (P4R BG4S © 1goR €8 1 149P &8).
.84 Theorem. Given problems P, @, 8 such that PJ:

1. left monotonicity,

]iﬂgﬁ@ 1 'i?{='3!a“ﬁﬁ i > PeR . Qe

i, right monatonicity,

i 1.53:{!—@ Rg }—[-l— =1 1§:ﬂ—@ R - BeP I Ref.

[1.8.3. Theorem. Given the problems P, §, B and §:
PO ABRIS > PXBIOXSABXPISXD

i1,  REDUCTION, DECOMPODSITION AND SOLUTIDHS.

111, REpucTioN.

Consider the algebra ;;{!@ af definition 11.6.4. We will now consider a language
Lg with symbols for the constants and operations of dig, in addition to a set [l
of varisbles. Let us denote by Tg the set of terms of and by Fg the

corresponding algebra of terms [E+1M87; GTW75) In a strict fashion we should
distinguish between symhols for the constants and aperations, on the one hand,
and their interpretations on the other hand. Mevertheless, in the sequel for the
sake of simplicity, we will not always stress this distinction.
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HEL1.1 Definition. Weshallcalla termT_ of ‘T@:
i.  ground iff it has no occurrences of variahles;
il ~G;"§Q.'"-"I“f}'.'h.'i.’: iff all its operation symbols correspond to
algorithmic operations: +, e, 3¢, 0 *¥*
Pii. ?‘ar@m‘ iff it is ground and algorithmic. ,
We will refer to L. as the global language. We shall also consider the ground

fanguage as consisting of the set of ground terms. Similarly for glgorithmic and
farget ianguages.

11.1.2. Definition. A reduction in L@ is a pair {T, T%, where T and T'
belongs to Tg.

As usual, a valuation is a function s : [l = P which extends to a unigue
homomorphism § : Fig > g, assigning a problem as value o each term.

HILLS. Definition. We will say that & velualion s satisfies the
reduction {T, T% iff the value of T' under s is a relaxation
of the value of T under s; formally:

sk {T, T © 5T J §{T).

.14, Definition. We say that a reduction {T, T% is correct with

respect {0 a valuation s (denoted by T' [¢ T) iff s

satisfies (T, T and §(T") is viahle.

~ HNotice that &, and = (the equality between problems) are specisl cases of
relaxation, but they deserve attention because they have betier monotonicity
properties. The decision of restricting the correctness relation to one of them
is part of the perticular software construction strategy being used

H1.2. DECOMPOSITION. ' .

IH.2.1. Definition. A decomposition schema is a reduction of the

~ form (g, T), where gefl. ‘

A more general version of decomposition schemsa would also include a set of

reductions expressing constraints on the symbols appearing in T.

H1.2.2. Definition. We say that a decomposition schama &, T) is

| recursive iff 4 occurs inT.

By a decomposition schema for a given problem P we mean a decomposition
schema {1, T) in which all the occurrences of # are evaluated to P. We shall
write this informally as P~ T.
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11.2.3. Definition. Given a problem P, a decomposition for P is a pair
~consisting of a decomposition schema (#, T) together
with & wvaluation s such that s{#) = P and

T [g &,

113, SOLUTIONS. .

[11.3.1. Definition. Given a problem P, a sofution for P is a
decomposition {{#, T, s} for P, such that T is a target
term.

One might wonder why we require a solution to be a decomposition of P into a
target term. The assumption underlying this reguirement is that the target
machine can interpret the set & of problems {(actually symbols for problems)
and the set of operations symbols {+, 2, %, *", **, **1. Since the set § depends on
the target machine we are referring to, the property of being a target term is
relative to a particular target machine.

As mentioned, ® is the set of symbols for special constant problems, called
easy probiems. & formal definition of the concept of easy probilem requires a
theoretical framework beyond the scope of this paper. So, we will give an
informal characterization and refer the interested reader to [H+Y89a; bl.

We regard a program as a term that should be interpreted by a Yarget maenine
{a computer plus some basic software) Then, it is clear that such a term should
be algorithmic. 1t is obvious that we cannot pretend that a targel machine can
interpret every problem belonging to [P. In fact, a general-purpose target
machine will interpret a finite, and usually not too large, set of constant
symbols over problems of [P. This is the set that we have denoted by §.

1il.4. Determinism and Non-Determinism.

As discussed in [H+V89a; b, our standpoint is that a target machine H
together with a program Ty (i.e. a target -with respect to H- algorithmic term)
such that Ty C P, Tor P<Y, realizes a virtual machine LU that behaves as an
engineering model of the problem denoted by P.

Infarmally, we say that a virtual machine mTH, g 18 an engineering model of

a problem P iff when we apply machine mTH: g 1o a data belonging to the data

dommain of P, after certain time the machine halts and produces a result
connected to this data by the condition of P. In other waords, L will

compute the relation @ that is the condition of a problem @ obtained by
interpreting T on H and 8 i a relaxation of P.

Thus, if M, H is @ deterministic machine then the problem @ resulting of

the interpretation of T should be deterministic (i.e. the elements of § should be
symbols denoting deterministic problems and the operation symbols should be
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interpreted in a deterministic fTashion). In this case the relation @ computed by
My H is an extension of a Skolem function of the condition @ of P.

On the other hand, whst will be the situation if myp, g is 8 non-

deterministic machine? We can assume, without loss of generality, that the
machine computes a nhon-empty set Qg of extensions of Skolem functions of the

above condition @.
In general we can say that the machine mTH} g computes & set (0, as above.

Thus, Qg can be regarded as a solution for problem P (provided that § 4 P}, but

not in the same sense as in definition [11.2.1. The concept of solution introduced
by definition 111.2.1. is an intensional one related to the concept of sofving, on
the other hand, the ides of Qp being a solulion is more an extensional one,

related to the the restriction of the choice involved in accepting condition @ as
8 solution for P.

l"#’. 1Y REVISITING SOHME MOTIVATIONS.

At this point we can do some comparison betyeen our initial motivetions and
our theoretical framewsork, We use relstional problems as theoretical
counterparts of actual problems to be solved (usually known as applications),
as the objects denoted by specifications, as well as the theoretical counterpart
of the basic modules built inte the target machine.

As was discussed in [H+V89a;b], we assume that every actual problem, well
or ill defined, has a theoretical counterpart. But, we do not have direct access
to this theoretical counterpart; all we can hope to achieve is a formal
description whose denotation is a relagation of it.

Relaxation also reflects correctness relations between formal objects, be
they programs, snecifications, or theoreticsl counterparts of actual problems.

On the other hand, being viable is a theoretical concept to capture the fact
that an application covers its domain, i.e. that it is well posed. Viability, being
a theoretical concept, can be established or refuted by theoretical arguments,
which cannot be done with the actual problem.

Relaxation is & relation between theoretical objects and wviability is a
property of such objects. Thus, relaxation and viability preservation between
denotations of formal objects reflect the snalytic aspects of the software
development process. On the other hand, the need to resort to the extension of
the actual problem in validating relaxation and in backtracking due to a failure
of viability are sources of synthetic aspects of this process.



14

Y. TOWARDS THE PROGRAMMING CALCULUS.

¥.1 SOME USEFUL PROPERTIES.
Some conventions will be convenient in order to simplify our notation.

When we write 2, 3, etc,, for 2, 3p, etc., should be understood that problem P
implicitly referred is any of the problems composing the generalized direct
product right multiplying 2, 3, etc. Otherwise the data domain of 2, 3, etc,
should be the results domain of the problem left multiplying 2, 3, etc.

¥When we write T;, it should be understood that we are referring to the
prablem of the class Ml; whose dats domain is the result domain of the problem
left multiplying ;. ’

Y.1.1.1. Theorem.

i. Fors in~{+, X}, 1p and 1P are homomorphisms, i.e.
Tpag=ip* igand 1P*8-1P 1

ii. i pog E‘i?,

ijii. 1Pl g0

v, 1 pap =]—:;>:@-a_§',

v 1Pl o
vii 1p =
vii, in?:‘i’p“q
viil. 1pe P s P-1,
ix. 1Peplsp.

At this point we will introduce some miscellaneous properties derived from
those of the special problems, the direct product and the product.

V.1.1.2. Remark.
i. For any problem  is:

(2px2p) 0 28 (I XT3 ) = 2 p, that can be written:

(2x2) 020 (N x W) =2,
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ii.

ii.

iv.

V.

¥i.

vii.

viii.

ix.

for P, 0, B and § viahle problems is:

[(Px@yx(BxS)e2s (W xTF) =

20 (I xT3) o [(P xR x (G x5,

for any problems P, @, R and § is:

°2 7 Y4 o7
2(peqx(mes) © (My XTz ) e 20 (" xT;) =

(pxig x(ipxig),
for any viable problems P and 4 is:
20 (lpxig=tpetge2o(Ixb=ipeigez,
for any viable problems P and G is:
(Pxﬂ)*ﬂ2=(Fx1Q}@Hz'@[l:Hgaﬁ}
for any viahle problems P and 0 is:
Px@ely=(IpxQell;eP =T oP
for any problem P is: ‘

2pe 2 = 2pe(2x2), that can be written:

2e¢2 =2e(2x2),

if P is deterministic a P is surjective, in other words
if

Plop=1F is

Pe2=20c(PxP)ingencral Pen=ne P

for any problem R is: _ '
Re2ell{=Re2elly=R, thal can be written:
2ellj=2elip=1.

In general for every O<izn, is:

neffj=1,

for any problem R is:

Be3e (il xMz)=Re3e(llzxMy) =2, that can be
writien:

Je(lly xM2)=3e (W3 xM2)=2 Ingeneral for every
Oumsn and every 0<iy, ..., i,¢n, is:

n@(HH X..‘.X“in)=m.
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V.2 DECOMPOSITION SCHEMATA.

In order to illustrate some of our ideas on problem solving and algorithm
development, we shall examine some versions of divide-and-conguer. The
central ides of divide-and-conquer is to divide the problem P into subproblems.
One of them, denoted E, is easy, because P is easy on its data domain. The
remaining one consists of data that are going to be split (via & problem %) into
problems, whose results will be merged (via a problem M) into a final result.

We can express an n-ary divide-and-conquer strategy by means of the
recursive decomposition schema

(R, E+SouXNe M)
Here, # stands for a given problem P to be solved by divide-and-conquer. So,
we write this as
PxE+SePxnoap
to indicate that we still have to find problems £, § and M.
& more general expression for an n~arg divide-and-conquer schema is
(M, E+5 e (T X .. XT ) e M},
where each term T; is # or a constant in§. This captures the idea that each
data is split into n data to be handled independently of each other. _
A very simple case of this strategy is the unary divide-and-congquer
decomposition schema gf the form:
| PzE+SePaM
We wish to instantiate this schema, by an appropriate choice s for E, 5 and
M, 1o 3 decomposition for P, ie. E+ 8§ e P o M [ P. This means that the
extended valuation S{E + § e P » M) is a viable relaxation of P. Leaving §
implicit, a strong but useful sufficient condition for this is:
E+SePoaMg, Pand
5 & W, for some W with a well-founded condition.

¥.3  STRATEGIES.

¥.3.1 Generalization.

With this strategy we want to capture the idea of reducing & problem to
another one, as used in mathematics, for instance. By a genaralization for a
problem P we mean any problem 0 occurring in a decomposition schema of the
formP=TefaT"

¥.3.2 Trivialization.

Assume that we have a problem P that is not easy but contains an easy viable
additive subproblem @} € P. In other waords, the data domain of § contains only
data for which P is easy. Therefore, we can apply the decomposition on
identities:
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fp=Tlg+{ip~Tg

Clear}g, the effect of this decomposition for ip is to obiain a subdomain ty of
the easy data of P and a subdomain 1p - 1q 0f remaining data of P.

Now, we can use the preceding domain decomposition to induce a
decomposition for P itself, so, we can write:

P=1peP={1g+(1p-1gleP=1geP+(ip-1geP

where, 14 © P is, obviously, an easy subproblem @ and {1p - lﬁ} e P is the
remaining subproblem @'

The idea is that we should annihilate §' by converting it to zero by means of
suilable manipulations. If we succeed in doing this, we are using, instead of P, &
restriction of P to its easy data. In other words we #riviatize P without making
P an easy problem.

V.4 A CASE STUDY.

As an illustration of the use of our programming calculus, we will now
putline the derivation of a program for the Palindrorme problem. This problem
can be informally stated as “decide whether a given sequence is a palindrome,
i.e. whether it reads the same forward and backward®.

H. Partsch [Par@8] used a CJP-like [Par86] method to derive a program for
this problem by means of extensive use of fold-unfold techniques. Our goal here
is to illustrate our algebraic programming calculus, instead of presenting a
original derivation. So, we will pick some of the ideas in Partsch's derivation,
without following its details literslly. Instead, we shall use our own
strategies, as in the case of deriving decompositions from domain properties
rather than imposing a schema a priori.

The domains of our prablem are:
Ly = set of lists of elements from a sett, and Bool = {1, F}.

Ite condition consists of:

(¥, Uel} X Bool s_uch that y=1 & x = X";
where Xx™ denotes the reversal of %.

Thus our palindrome problem is:

P=({L;, Bool, {{x, yelx Bool : y=T € x = x™}).

Since our problem involves lists and Booleans, some problems (cofresponding
to primitive operations) will be considered easy. In order to introduce them, let
us first fix some notation:

head () denotes the head of g,

it (%) denotes the tail of ¥,

fast (x) denotes the last element of x, '
mitiaf (%) denotes the result of extracting the last element of list ¥,
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cons (@, X} denotes the result of inserting element e into the beginning
of list ¥, _

append (%, €) denotes the result of inserting element e into the end of
list x, :

| x| denotes the length of Tist x.

We can now introduce our easy prob]ems Some of them correspond to simple
aperations on lists:

H= (Lt (=, welpxt: [x[>0ay= ead (GO,
T={Lly, %, g)eLL: X Lo [%]=0 &y = it (0N,
L={lp, b, {x, welpxt: [2]50 4 y= (0},

= {Lply, {x, Yelpx Ly [2]50 4 y = misiat ()1,
L= Exlply, €, el L) X Ly Yy = cons {1y (%), (),
A= (L xtly, i, Weltx Ly X L Y= append (g (%), np(x)),
M= (Lply, (3, Welpx Lp: [%]>1 & 4 = sitial (s (0.

fe alsn have problems corresponding to simple‘restrittions of L} according
to length:

Tog=(Lp Ly, %, Welpx Loy =% a |x]=0b,

Lo={lp Ly, &%, Pelpx Ly y=xa |x]=0B,

Top={lp Ly Kx, welpxlpiy=xa [x]al,
Loy= (L fx, el X Ly =% a [x]1h.

In addition, we have problems corresponding to some simple Boolean
operations:

True = {UJ, Bool, {(x, yyeld x Bool : y=1},

farse = {1, Bool, {{x, yeld x Bool : y=fh,

Rap = (Bool x Bool, Bool, {{x, yre(Bool x Bool) X Bool : y=my{x} A no(x)h.
Finally, we have as an easy problem the test for equality of elements of t:
£ = (xt, Bool, {x, el xt) x Bool : y=T & (ny(x) = n(x 0N,

some properties of the easy promems on lists can be stated in our notation
as follows:

i. Celt=1p e T, (which is how we state Ged (ewns (g, %) )=g),
i Cel=1g o T, (which is how we state st (ans (2, ) )=x),
il YeM=tyel,  where¥=[3s (HxMxL)

iv. fi= L: 1ge T,
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v, YeT=2ye (M, xMz)eR

vi.  2pe(HXT)=C1a2pe(ixi)=f"

vil.  I,y=l,e¥ley

The very definition of the palindrome problem suggests restating it in terms
of two suxiliary problerms:

the problern of reversing lists, which we can define as:

R=(ly, L, {{x, Wely XL : y=x"h,

and the problem of equality on lists: ‘

E = {Ly % Ly, Bool, {{x, yellyx Ly} x Bool : y=T > {n (%) = n,())},

Ve can now restate P by means of these auxiliary problems, which yields the
decomposition schema:
P=2pe(IxXR)=E

MHotice that this equation ccxmpacﬂg expresses the idea: Yo check whelfer a
sequence s a patindrame, reverse a copy of it and compare it to the origingt
one. It can be regarded as an algorithm (perhaps not a very efficient one) for P,
gince the right-hand side involves only algorithmic operations. But, problems B
and E do not belong fo.the set of easy problems, which defines our /st
maniputation langtage; thus the right-hand side is not directly executable on
our target machine. So, we must derive expressions for B aad E in terms of easy
prablems. '

Some useful properties of problem B are:
oo. Tyyeli=Rel,;

f. Reli=L;ReM=MeR, Rel=H;
We now derive a decomposition for B.

We start by separating R inld an easy subproblem and its complement, as
explained in 1¥.2.3.2:

R=]R“B=(I$1+]}1)@R= iS’ @R'*'Iﬂ e |
On the one hand 1,y e R=1 0 Ip=1,,
On the other hand: .

hyeR =Rot, | (by o)
=Rel,jeyiey (by vii)
=l,yeReyloy (by o)
=l,yeRedeo(HxMxl)e¥ {since Ia“}"l;ﬁ for any @)

=l,yede (RxRAxR) s (HxMxL)e ¥ {byremark ¥.1.1.2)
=1,ye3e(ReHxReMxBel)e¥ (bytheorem.3.3.3)
=l,je3el{lxMeRBxHjey {(by )
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‘Therefore,
R- 1,4+1,,23p2 (Lx(MoefR)xH)o¥

Notu:e that this decomposition schema is an mstance of the divide-and-
conquer schema B = Easy + Split » (1 X R x 1) e Merge, since the right-hand
side can be rewrittenas 1, +[1,; 2 3pe (LxMxi)]le (1 xBx1)a ¥

By means of similar manipulations and applying Remark ¥.1.1.2 and Theorem
11.3.3.3, we obtain the following decomposition for E:

E=8+(1gxX1,g)022 (HexT%) 2 (ExE) o Amp
where: i
S=(1_pxi_gleTaue+(1_gx1,5) o Fase+ {1 51, ) @ Farse

At this point, we can collect the results obtained so far in the form of the
following equation system, where we have already applied our conventions for
forks and identities:

{1y P=2e(IxRf)ek

(2)  R=1,+1, 230 (lx(MsRIxH)eY

(3)  E=S+{Ipxi.g)22e (2 xT2) o (EXE) e i

(4 S=(_gxl_gloTrue+{1_px1,q) e Fase+{1,4x1_g) o Fase
(5)  ¥=[3eHxMxUI!

From this system we can derive an explicit solution for P by applying fold-
- unfold techniques together with our algebraic laws.

By unfolding R in equation (1) according to {2), we obtain:
?=i$1@2’:?{+ v (a)
1,122 {IxX3o{lx{(MeRIxXH e oL {h)

By some simple manipulations on the first term of the right'—hand side we
have:

(@)= 1% TRuE

Mow, by unfolding £ in the second term of the right-hand side according to
(3), we obtain by some manipulations:

=1,y022{IxFe{ix(MeM)xH)oy)e2e

(B2 xT9) » (EXE) o fup
By applying Remark V.1.1.2 , we obtain:
(b)=1,,020
{22 {(HxL)s E]lx ‘
25 (Tx(2 9 (Mo RxH) > 8)) o E]}
e frp
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Let us denote by {d) the expression within the second pair of square brackets.
By operating on it we have:

6) (M=2e02x2)e{MxL)xMsRxt))e2e (MCxN 202
e (MPexMy) el eE

Now, et us r‘ecaH that:

if %y, Xpetand 14, 1,ely, then:

Ry =1%o A l’ = ]2 € cons (XI, ]])= cons ':Xz, ]2)

This property can be stated in our algebraic style as follows:

(ExEefup=2e (MP2xM2) e el

By applying this property together with points (i) and (i1} of Remark v.1.1.2
to (6), we obtain:

(M)=2e20({(MxMeR) X(LxH)} e (EXE) e fiwp
The use of {d) in {b) yields:
{b)= 3‘}1 e 2

2o (Hx)e E]x

[ZeZ2el(MxMeRIX(L xHN 2 (Ex &) @ fup]}
o fun
By applying Ao properties, Theorem [1.3.3.3 and folding on P, we obtain:
(b)=1,; 20 [(2 e (HxL))xM]e (EXP)e A
Finally:

P=lggeTRUE+T, e2¢e[(26 (HxL))xtM]e (EXP)e R

By means of some manipulations we can rewrite the preceding decompasition
as an iterative one:

hye2ee(ixl)eExM)e (e x1)eTl, e P
which is of the form:

P=t+yeP
that is a unary iterative divide-and-conguer schema.
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Vi,  CONMCLUSIDHS.

we have given theoretical bases of a calculus for program construction. This
calculus is based on an algebra of problems. In this framework we have
expressed some  basic programming concepts, such as correctness,
decomposition, etc.

Our calculus so far is oriented towards the construction of programs from
formal specification. But, we have developed it having in mind its extension to a
calculus for the construction of software pieces from actual problems.n fact,
exploratory research analyzing some aspects of the context of such a calculus
is well under way, some preliminary results having been reported [V+H89b;
H+¥89a,b].

The frameyrork presented here is just one among several possibilities, based
on slight variations of our basic concepts. We have decided to work on the
model-theoretical level. We have resorted to syntactical aspects in defining
solution and decomposition. in section [, This was mainly for the sake of
simplicity; we are not (yet) proposing a language.

¥ think that our calculus is quite helpful in deriving programs from formal
specifications. It appears to be able to express,in a convenient way, some
useful strategies, as illustrated by generalization, trivialization and divide-
and-conquer, as well as in deriving properties by means of algebraic
marnipulations These ideas are illustrated in the development of & simple
example . We trust that this example will give some idea of the heuristic power
of the notation and the calculus.

~ Three important aspects of our calculus are being enalyzed with the goal of
extending it. First, we are collecting more evidence concerning its use in
program derivation. Second, we are starting to use it to analyze and manipulate
program construction methods and strategies themselves (in a "second order”
fashion). Third, we continue the studies towards introducing synthetic aspects
into the calculus.
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