e R R

Beries: Monografiss em Didncia da Computs

Now 2é&/789

THE RIO WORKSHOF ONM THE SOFTWARE PROCESS

Jalio C. 8.

Carlos J. &,

Departamanto de Informédbtica

B S R R A R A R A

PONTIFICIA UNIVERSIDADE CATOLICA D0 RIO DE JANEIRO
RUA MARQUES DE SAQ VICENTE, 226 - CEF’-HMSS
RIQ DE JANEIRO -~ BRASIL

PUC/RJ - DEPARTAMENTO DE INFORMATICA
Série: Monografias em Ciéncia da Computacao, M9 26/39

Editor: Paulo Augusto Silva Veloso September, 1989

THEZ PTO WOPXSHOL ON THE SOFTWARE PROCISS

JGlio C. S. ». Leite

Cardos J. ». Lucena

This work has been »nartially soonsored by DTINED

In charge of publications:
Fosane Teles Lins Castilhe
Ppesesaoria de Biblioteoa,
Fut RIG, Departamento de
Fua s de Bao Vicent
wio de Janeiro, RJ

Documerntasdo e
Irformatice

- e Rie's 13 P
2y caw — Baves

L gl i
EUSRAS RS

BRAGSTL

Tel. (O21)Y529-97846
BITNET: userrtlclince.bitnet

TELEX: 1078

Informacio

FAX: (OT1YD274-454¢

The Rio Workshop on the
Software Process
Hic de Janeiro, Dec. 14-15
1988

Julio Cesar Sampaio do Prado Leite
Carlos José Pereira de Lucena
Departamento de Informética

Pontificia Universidede Catolics
do Rio de Janeiro

July 1889

Abstract

The Departamento de Informética of the Pontificia Universidsde Catdlica do Rio de
Janeiro snd the Instituto de Engenharia de Softwsre of IBL. Brasil organized the Rio
Workshop on the Software Process, to promote & discuesion about the diffevent views
“of the software developraent process by researchers in the srea. These disussicns wepe
anchored on two presentations sbout different approaches to the software development
process. One spproach came from the “formal school®, represented by De. Thomes
Maibsum of the Imperial College of Science and Technology, and the other from the
“kmowledge based school”, represented by Dr. Allen Goldberg of the Kestrel Institute.
Several reserrchers, with & forms! background, as well a8 others with s more praticioner
‘ariented cxperience were present st the workshop. The questions end discusaions thast
emerged during the two-day meeting reflect important pratical and theoretical pointe for
the development of the software srea. '

1 Introduction

Software engineering emerged a3 3 discipline in the late sixties a3 a response fo the problems
involved in developing large scale software systems., One of the first and very popular ap-
proaches to the problem has been the use of a biological growth model, mapped into what
hze hean called the software development life cycle model [Royce 70}, to explain the software
development process. This approach has as one of its main characteristics the clear divizon
of development phases and the concept of certification of the product developed at the end
of the cycle {valiaziion taking place between products of sucessive phases).
 After being in uee and belng diacuzzed for some $ime [Kerola 81), the now classical soffware
life cycle model started to be challenged by several researchers |Agresti, 88]. Most of the
criticism directed at $he traditional life cycle model have addressed its lack of flexibility and
lack of formalisation. Recently, initial discussions on the formalisation and automation of
the software development process, [Lehman 87) and [Osterweil 87] are $aking place. Different
paradigms and different views of zoftware development process are being proposed. Several
research problerr do still exist before the full or even partial automation of the software
development process can be achieved. The Wo*kzahop held at Rio de Janeiro pointed ous some
of those problems and gome possible ways of going about solving them,

Originally designed to be a confroutation of views, the workshop ended up illusirating how
a consensvs is emerging with resepct to very key agpecis of software development problem
The formal school acknowledges the need for using heuristice ana the knowledge based school
understands $hat jormalization is 2 necessary next step t¢ assu~e ;@t‘cer davelopmen’s through
this approach,

fr the next sections we will give an overview of the pzezpmaixons by Or ha,xb;mm and
Dr Goldberg at the workshop, followed by a summary o the important points discussed. A
full report iz avallable from Departamento de Informdiico — PUC or from the Insivivto de
Engenharie de Sofware - IBM Hrasd [Leite 89].

2 Mm%aum g Presentation

Maibaum’s presentation stressed that it is fundamensal $o understand the mathematical char-
acter of he idealizations that are present during program development. Through this un-
derstanding it will be possible to have a scientific basis for developing methods and tools
fﬁv supporting the program development process. The idealizations are seen, basmaﬂy, a5 o

theoretic/symbolic activity, very similar $o a mathematical proof. The four main components

of the idenlization process ave:
e Reguirements,
e Architectural Diesign,
¢ Lmplementation, and
¢ .Spe&:iﬁc;at.ion.

Requirements are understood as theory /hypotheeis formation with experimental vaiida-
tion. Architeciural design is the building of a high level description of the intended gystem.
Implementation is the act of “simulating” one theory by another. Specification is a theory
pressntation in & chozen logic.

The main problems associated with hyphotesis formation or with requirements definition
are the problems of identifying which logic to use, which language (extralogical language) to
use and what axioms fo use.

The presentation of the hypothesis (or the theory) is done vis & specification: Using
this representation {specification) it iz possible, not only, to present the theory, but also
to implement $his specification in terms of another specification. This translation between
theories (S(1) —> 8(2)) is required to preserve the properties of 5(1) in the new presentation
$2. Maibaum points out thai this tranelation ¢ real'y 2 irterpreiation between theories
[Maibaum 86]. In this framework, the properties of conservative extension and modularization
. are important. An extension ir conscrvative when the new theory adds no theorems to the
old one. Modularisation is present when it is poscible to derive, algorithmically, an extension
from §{1) to S(3) when extensions from S(1; to 8(2) and 8(2) to S(3) are knonw. This
property is fundamental for structuring specifications and for implementing specificatiors in
terms of another specificaton. '

8 Goldeberg’s Presentation

Goldberg’s presentation focused on the experience that has been gained at the Kestrel In-
stitute in using & knowledge intensive approach for the development of software. The main
concerns of this approach are: rapid prototyping, maintenance at the specification level,
maintenance based on & formal record of the design history, domain-specific knowledge, faster
development zycle, and correctness by construction. The central theme of the work performed
at Keatrel iz transiorming 2 formal specification into o correct and efficient code.

3

Notable progrsess has been mads at Kestrel, most of it related o the enginearing aspect
of implementing $he ideas put forward by Green and others [Balzer 83]. A language and a
transformation system were defined and developed [Smith 85] and development environment
wag recently developsd (KIDS).

Golderg gave details of one of the projecis under way at Kestrel: the KBSA Perfor-
mance Asgsiziant, I’ main goal is to construct an interactive development system that uses
performance analysis to design efficient inplementations. Different experiments have been
performed, using well know programming problems, like: insertion sort, 8-queens, and topo-
logical sort, among othera, _

The performance assistant is basically composed of a transformer and 2 performance/ type
anzlyeer, Using algorithm design tactics prezent in KIDS and opimizations encoded in ihe
transformer, it has been poasible in the case of the job schedule problem to achieve a linear
impleimentation departing from protofyped specification that had, initially, an exponential
complexity. Examples of optimization techniques avalalble and their degree of automation
are shown below.

o Finite differencing (nser identifies expression).

o Iterator inversion {nser identifies axpression).

o Canonicalisation (automatic).

o Operation refinsment { inter:miér in exceptional cases),

o Optimize membership est (automatic)

o Loop fusion (gréedy algorithm gives near optimal rezults). |
@ Useless code elimination (antomatic).

e Translation of For construct (automatic).

o Data structure selection (user a.nnotationg).

4 Important Observations

The discursions that took place during the workshop were basad in Golderbg’s and Maibarm’s
presentations and by 2 seb of questions posed by Lucena. The questions were focused on the

4

vole and the importance of the use of formalims for the characterization of software process
and the potentiality of applying kmowledge based techniques for the development of soffware
gystems, The questions were used by two working groups that after listaning to the invited
speakers’ presentations, discussed the issues propozed and prepaved a short report that was
later pressnted by each group’s chair. Following the presentation of each working group there
was a seasion of open discussions, followed by a short conclusion statement given by each of
the invited speakers. ' o

The organization of the workshop [Leite 89}, briefly sketched above, encouraged participa-
tion and an objective discussion of the topics proposed. Because of the diverse backgrounds
and experiences of the participants, the workshop wae able 1o cover many very important
topics that should inferest to the software engineering research commurnity. Iu what follows
* we highlight what we consider the most important observations and issues dealt with af the

workshop. '

Seience ond Engincering The expected radical different views about the sofiware davel-
opment process did not really show up in the presentations of the two invited guesta, Clearly,
Maibaum’s presentation reflocts « theoretician’s perapect ive while Goldberg’s reflects an engl-
neering epproach to the problem. An interesting point, however, is £hat thelr views a9 stated
are complementary. '

The distiction drawn srience »nd eneineering led to two importaat observations, First, it
is clear that software engineering needs to rely on a theoretical body of knowledge, in such
a way that methods and toole the cngineering iteelf) can be fully developed. Second, it
has been observed that computer sclence has experienced several situations in which theory
became technology, the classic. example being the area of compiler construction.

The establishment of & science of eoftware requives precigion. Precisior will not come
without the use of formalisms. Alihough this was 2 general consensus, various approaches to
formalization were proposed. Although precision is required, there are paris of the pofbware
developrnent process which are inherently fuzzy. The scientific aspect of software has to
ackmowledge it and the engincering part has to handle it. A possibility {or handling these
fugsy aspects is $he use of the idea of heuristics, which has been engincered with success in
the area of Artificial Intelligence. ’

Aspects of Formalization As the discussions developed, it was observed that in talking
about the formalization of the sofiware process, it is essential ibat the objects dealt with
by thig process be also formalized. T'his apparentely obvious fact iz nonetheless sometimes

forgotten in the rush to nail down the nature of the process of software construction, Veloso
noted that, although there are no adequate formal models of the sofiware process, descriptive
modsls [Lehman 87] and prescritive [Balzer 83] models have besn proposed.

It was a consengus that one of the roadblocks to formalization Is education and better
methods and tools. It was clear that the level of knowledge and mathematical frainning
required $o formally deal with software development needs $o be increazed. Majbaum noted
the lack of methods for applying formalizations, most of what is available are representation
schizmes but not methods.

The overall opinion is that the best strategy for introducing formalism is fo formalize
semi-formal methods already experienced in practice. The strategy shonld alzo apply to
Sofiware Development Environments, which will evolve momentarily despite formalization,
later formalization will influence the developmmzt of new 8D s or the revison of existing ones.
. Voo 8taa noted that the introduction of formalisms follows an evoluationary approach; they
are proposed, used, evaluated and revised.

A side effect of formaluatxon has been identified as a straight jacket; some believed it to
be unavoidable, while others thought that it is ﬁece@ary to enforce a discipline

Specifications Sive and Definiten Problems were raised about the definition of speci-
fication. Maffeo stressed the importance of havmg the specification free of implamentation
congiderations. Maibavm believes a specification is an implementation of a more absiract
specification. As nsual, no conclusion was reached.

Von 8taz pointed cut that there is not a way for evaluating formalisms, that is, it can
not be said that a formalism will work or will do better than another one. It was geuneral
consensus wag that a . necification should use muliiple formalisms. Anotber congsnsus had to
do with the eize of speciication. We agreed that specification rize should not be considered
a complexity measure. ‘

Although the specification size is not a complexity measure, it was noticed that the use of
domain knowledge allows the specification o be shorter. The capture and usage of domain
knowledge will require that domaine be very specialized.

Limits of the Encwledge Eased Approach One of the questions posed for discussion
asked about the extent to which the knowledge based approach could be successfully applied
0 programming in the large, Most of the participants agreed that the problem was different
from programming in the small. Mendes is gkeptical abount it, arguing that mot only do
we have the dificully of encoding knowledge but that software engineering is too young a

discipline to have real experts. Lucena made the remark thal the emperience reported about
the use of sofiware engineering expert systems is nof very stimulating.

Veloso believes that for architectural design there ia 2 nesd for something exira begides
transformation rules. Maibaum believes that the transformation rules ghould apply, but the
nature of the transformatione are likely fo be somewhat different.

Golderg believes that if you coneider a specification fo be complete, then there will be no
essential difference from programming in the small, but lots of more effort should be necessary
in the optimization. .

There were remarks by Maibaum, Goldberg and Lelte about the importance of using
domain knowledge, Maibaum believes that what is holding ue back from applying the trane-
formation and knowledge based approach is the lack of domain knowledpe. Goldberg stresse
the point that domain knowledge is what makes specifications big, he believes that ADTs

Tike schemes should encode domain language. Lalie mentioned the Draco paradigm towards
goftware development, where s network of domain languages is the keystone to developing
software through reuse of requirements analysls.

Maibaum stressed the importance of the clear characterization of the objects in the soft-
ware process, it order to make it possible the use of meta Inowledge about these objects. This
meta knowledge is necessary $o drive the implementation of an specification. As a starting
point in this area, the work of Sintsoff {Sintzoff §5] was cited.

Reusability was addressed aud there was an aggreement that the notion of components
is a fundamental one. The notion of reusing domaing, as a result of the process of domain
analvais, 2nd re 1sability of dezign sirategies (meta kmovledgs) were pointed out as important
fields for ressarch.

Participonts Ana M. Moure, Ana M. Testoloni, Ana B. C. Reche, Autonio C. Lirexd,
Amdt von Staa, Bruno Maffee, Carlos J. P. Lucena, BEduardo T. Tekehashl, Fabio K.
Akhes, Fernando Menso, Geovane ©. Magalhies, Gernot Riteher, Ismael C. Remos,
Julic C.8.F. Lette, Jano M. de Sousa, Pavlo Veloso, Jergio E. R. Carvalho, Sheila Veloso,
Sueli B. T. Mendes, Tarcisio Pequeno, Miguel Jonathen, Antonio C. Livexnd. ‘

References

[Agresti 86) Agresil, W.; New Paradigms for Softwere Development. W. Agresti, Bd., TEEE
Computer Society, Long Beach, CA. 1986.

[Balzer 83]
|Kerola 81]

{Lebnan 87)

[Leite 88]
[Maibaum 86]
[Neighbers 84]
‘ {(}atermi} 87]
[Royee 70]
[Sintzoff 85

{Swmith 85)

Balser, R., Cheatham T., Green, G.; Software Technology in the 19%0’s; Using
New Paradigm. IEEE Computer, Nov. 1983, pp 39-45.

Kerola, P. and Freemun, P.; A Companson of Lifecycle Modela. Proceedinga of the
5th International Conference on Software Engineering, San Diego, 1981, pp.90-99.

Lehman, M.M.; Process Models, Process Prograis, Programming Support. Pro-
ceedings of the Qd& International Conference on aofiw;xr'e Engincering, IEEE, 1087,
p. 14-16.

Leite, J.C.8.P.; The Complete Report an the Rio Workshop on the Software Pro-
cers, Departamento de Informdtica da PUC/RJ, Ago. 1989,

faibaum, T. The Role of Abstraction i Program Development, YFIP 86, North-

Holland, 1986.

Neighbors, J.; The Draco Approsch to Constructing Software from Reusable Com-
ponents, IREE Trans. on Sofiware Engineering, SE-10 (Sep. 1984), 564573,

Osterweil, L, Software Processes Ave Software Too. Prozeedings of the 9th Inter-
national Cmfef’eme on Software Engineering, IRER, 1987 pp. 2-12.

Reyee, W.; Managing the Development of Large Software 8ystems: Concepts and
Tecnmqnes Froceedings of the Westeon, 1970.

Smtzoff, M., Desiderata for 8 Demga Calculus, RR 85-13, Unate d'lnformutwue of
Louvain, Se") 1985.

Smith, D.,Kotik, G., Westfold, 8.;Rescarch on Knowledge-Based Software Buvi-
ronments at Keatrel Institute. IEEE Tranzactions on Software Eﬁgmeeﬂng, Vol
SE-11, Mo, 11, Mov. 1985, pp 1278-1295.

