oy
faber

B P P e

Series! Monografias em Ciéncis de Computacdo,
M. 1790

INTERFACES A8 GSPECIFICATIONS IN THE MIDAS USER INTERFACE
‘ DEVELOPHMENT SYSTEM '

Reoina H.B. Cabral
Ivan M. Campos
Donald D. Cowan

Carlos J.F. Lucena

Departamento de Inforadtica

T A R R T O R R P PR R e O o AN L

PONTIFICIA UNIVERSIDADRE CATOLICA DO RIO DE JANEIRD

RUA MARQUES DE S8AD VICENTE, 225 -~ CEP-22453

o

RIQ DE JANEIRO - BRASIL

e o L o

PUC Rio - Departamento de Informatica.

Series: Monografias em Ciéncia da Computacao, N? 1/90
Editor: Paulo A. S. Veloso January, 1990

INTERFACES ASTSPECIFICATIQONS IN THE MIDAS USER INTERFACE
DEVELOPMENT SYSTEM

Regina H. B. Cabral
Ivan M. Campos
Donald D. Cowan

Carlos J. P. Lucena

This work has been partially sponsored by FINEP

In charge of publications:

Rosane Teles Lins Castilho
Acoecsoria de Ribliotece. Doouments
FUC RIO, Departamento de Informdtics
Rua Maraoués de S8c Vicente, 205 - Givee
o Rio de Jeneiro, FUJ

Lok VR
e MY

:
2RAL

1L
Tel.: (021) 829-9786 TELEX: 31076

FITNET: userrtlclince.bhitnet

Tnformecido

Interfaces as Specifications

in the MIDAS User Interface Development System

Regina H.B.Cabral (1)
‘Tvan M. Campos (2}
Donald D. Cowan (3)
Carlos J.P.Lucena (4)

Abstract

This paper describes an evolving User Interface
Development System called-MIDAS (for Merging Interface
Development with Application Specification) which allows
interface/systems designers - to develop an
application-specific user interface interactively, in a
prototyping-oriented environment, while refining the
specification of the intended application itself. The
interface/systems designer receives expert advice on both
interface and application software design - principles,
emerging from MIDAS® knowledge base, and.can also
animate the intended user dialogue with the interface being
designed via an extensive set of visual programming aids.
The gencrated interface can be further customized by the
end-user, by f{lexibly altering the default appearance of the
dialogue scenarios. Furthermore, the application-specific
end-user interface is also knowledge based. Its domain
knowledge covers user modeling and the application
domain, in order to adapt itsell dynamically to diffcrent
degrees of user familiarity with the application, from novice

1) Federal University of Minas Gerais, Brazil; c¢-mail:
rhbe@ince.bitnet, Supported by grant from CNPgq
(RHAE). ‘

2) Federal University of Minas Gerais, Brazil; e-mail:
imc@Ince.bitnet. Supported by grants from IBM
Brazil and SID Informatica (ESTRA Project).

3) The University of Waterloo, Canada; e-mail:
dcowan@waicsg.uwaterloo.ca. Supported by granis
from Bell Canada and NSERC,

4) Catholic University of Rio de Janeiro, Brazil; ¢c-mail:
cjpl@Ince.bitnet. Supported by grants from CNPq
(RHAE) and SID Informatica (ESTRA Project).

to expert. Both the interface code and the
programming-in-the-large of the application code are
developed within an object-oriented framework. A proposal
for a software life cycle mode! based on the rapid
prototyping of user interfaces as a means to refining the
specification of the application all the way down to the
import-export list and module semantics specification for
each and every application module is also presented. The
lifecycle model is rule-encoded in MIDAS® knowledge
base. The interface/systems designer is guided by the
interpretation of those rules. MIDAS aims to provide a
testbed for new ideas in human-computer interfaces,
knowledge-based support of design activities and life cycle
models based on rapid prototyping of user interfaces.

Keywords:

Prototyping, Lifecycle Model, User Interfaces, -
Specifications, User Interface Management Systems, User
Interface Development Systems, Object-Oriented Design
and Development, Knowledge Bases, Expert Assistance,
User Models, Direct Manipulation Interfaces.

1. Introduction

Making computers easy to use is a major problem of
obvious importance. In this paper a uscr interface is taken
as any compuler software whose primary function is to
provide support and assistance in the use of some other
software system, called the application. Human-computer
interfaces will continue to share the trend towards both less
code writing and more automatic code gencration. At the
same time, software developers have come to realize that
the user interface paradigm is itself a kind of specification
notation that expresses the user’s intent and desires in terms
of images, as opposed to words. The user interface
implicitly defines most of the functional requirements, i.e.,
specifying the user interface often suffices (o oblain an

almost complete system specification. This is especially
true for highly intcractive applications.

Highly intcractive applications can be classified {rom
the perspective of both the user interface (UI) and the
application,

Communication between the Ul and the application
can proceed in one of two directions, either the Ul controls
the communication or the application controls the
interaction. Communication between the Ul and the

application could also be in a hybrid form where the Ul'and -

the application are in control at different times during the
operation,

If menus and dialogue boxes and similar artifacts are
the mode of interaction between the Ul and the application,
then this communication can be viewed in a number of
different ways. Basically ail modes of interaction could be
made available to the user at any time during the operation
of the application, that is so-called modcless operation. This
"natural” mode of operation is described in more detail in
[SCHMSB6]. An alternative approach woukd be to restrict
the modes of operation. For example, the user could be
limited to accessing menus in an hierarchical manner, where
a menu in another part of the tree could only be examined
by traversing the appropriate portions of the tree and thus
also traversing several layers of menu code. The
relationship between the application and the UI and
so-called modeless operation is shown in Figure 1.

The design of the user interface and application in a
highly interactive environment can be viewed in thrce
different ways. These different ways are described in the
next three paragraphs.

Some designers have taken the viewpoint that user
interfaces are almost indepcndent of the application. Thus
the interface can be designed with minimal knowledge of
the application, only a specification of the required
intcractions are needed and then the UI designer can
proceed. At the appropriate time the application can be
bound to the UL

Another perspective is provided by the application
designer. In this case there is a toolkit available which can
be used by the application when a user interaction is
required. Unless proper care is taken, the Ul becomes
tightly bound to the application and a clean separation of
application and UI may not be achieved.

A third approach is provided when development of the
application and the user interface proceed together, In this
case the developer produces the UI but with strong
reference to the application, Al user intcractions are
defined in the context of the application and the Ul is
created. Once the Ul is designed the body of the application

CONTROL -

Application User Interface

<
8

wememoQo
pd
9

FAgure 1 - Communlcation Between Ul
and Application

which does not require direct user interaction can be
completed. This approach could have the same difficulty as
the one described in the previous paragraph which was
application-centred. Suitable use of object-oriented
programming may help alleviate this problem.

Requirements analysis and description can be centered
around the user interface construction activity, during which
requirements are analyzed and described by constructing a
prototype. Design, implementation and testing are clustered
around the architecture and component prototyping
activitics, almost merging into one single construction
activity. The results of a prototyping-oricnted development
strategy are further improved if they are supported by
adequate tools. One important requirement for such tools is
that they support an eyolutionary strategy whereby the
prototype eventually becomes the constructed system itself.
Bischofberger and Keller [BISC89] have proposed a
prototyping-oriented software life-cycle model, shown in
Figure 2.

A user interface management system (UIMS) is the set
of tools which can assist in creating the prototype of a user
interface. Within the scope of this paper UIMS are
considered as tools that help a programmer create and.
manage all aspects of user interfaces. UIMS are generally
characterized by crisp separation of the application code
from the code that implements the user interface, and also
by the support for specifying the user interface at a higher
level of abstraction than that obtainable with
gencral-purpose programming languages.

The search for adequate tools to support a
prototyping-oricnted development strategy calls for the

Requirements Informal Description of User Neads
Analysls
4 User Interface Prototype
Requirements and Completing Specification
Definition '
_ User Inferface
3 Prototyping
A Architecture and Systern Architecture,
ziu; Component Design Component Structure, .
§ Architecture and Architecture and
: Component Component Prototypes
: Prototyping X
: 4 implementation Program
H H L Documentation
i Final
5 : ' Product
: K System Test
H 5 T
: : :
: : :
. E x
.
E A
: :
§ Operatlon and
i é Maintenance
H S SR s AV kA i

Time Axls

.
>

Figure 2 - The Profofyplng - Criented Software Lifecycle

integration of User Interface Management Systems (UIMS)
with Computer-Aided Software Engineering (CASE). In
this paper we discuss several approaches to UIMS design
and implemeniation, and propose a design strategy that
allows the integration of interface design with development
of application software. This design strategy is supported
by MIDAS as described in Section 4. A UIMS separaics
interface and application in order to isolate application code
and interface specification, and also to allow different
interfaces 1o drive the same application. However, a UIMS
does not implement any application code. The main goal of
a UIMS is to let interface designers or even end-users
design and quickly modify the interface, without requiring
extensive programming skills or a deep knowledge about
the application.

It seems clear that a conventional UIMS cannot be
easily integrated with a prototyping-oriented development
strategy because the interface designer must, in this case, be
an expert designer of sofiware systems; that is why we are

using, for the case of the MIDAS system, the expression
User Interface Design System (UIDS), as opposed to UIMS
(as done before by Hills [HIL.L87]). In other words, in
contrast with classical UIMS, the UIDS will require the
joint participation of the end-user and the system designer in
the process of designing the interface (in this case seen also
as concomitant requirements specification). In order to
contribute further to the attainment of these goals, MIDAS
provides knowledge-based assistance on interface design
techniques, as well as facilities for end-user fine grain
customization of the generated interface. 'We can now sfate
the requirements that drive the development of the MIDAS
environment:

° MIDAS is a User Interface Development System
which integrates interface design with
prototyping-oricnted development of applications.

. MIDAS is a knowledge-based environment which
gives support 1o system designers on both interface

dcesign and application software design principles,
having an underlying life cycle model that
encourages the simultancous devclopment of the
interface with the precise specification of the
application.

» The end products of MIDAS are an
application-specific interface which can be further
customized by the end-user (by flexibly altering the
default appearance of the dialogue scenarios), the

binding code between the interface and the

application modules (stubs), and the spccification of
the application software all the way down to the
machine processable import-export list and module
semantics specification of each application module.

. The application-specific end-user interface is also
knowledge based. Its domain knowledge covers user
modeling and the application domain, in order to
adapt itself dynamically to different degrees of user

familiarity with the application, from novice to .

expert.

° Both the interface code and the application code are
developed within an object-oriented framework.

e The MIDAS UIDS architecture attempts to adhere to
the ECMA model [SMARS9], which organizcs, in a
layered model, design principles for object-oriented
user interface development {or management)
systems.

2. UIDS Architectural Constraints to Support
Application Development

2.1. Command dialogues, direct manipulation and
smodeless interaction .

Two key issues had profound impact on the resulting
architecture of the MIDAS UIDS: the communication
metaphor between user and the application interface, and the
degree of freedom the user has to walk about the various
communication scenarios that the interface presents, i.c.,
how "modeless” is the end-user interface.

As to the communication melaphor between end-user
and the application interface, the main advantages of dircct
access 10 objects, as opposed to indirect or
command-oriented dialogues, are the ability to manipulate
directly the exhibited objects, and the transparency of the
representations of those objects and of the operations upon
them. These two advantages have both a psychological and
cognitive impact on the user, as they convey a fecling of
security and reassurance, thus reducing the mental effort
involved in franslating the input actions and output

representations into operations and objects in the problem

domain. A dircct mampulauon dialogue [SHNES3],
[JACOS85] must:
. present good metaphors to represent the application

world in terms of screen objects and of input actions.

° continuously represent the focussed object.

Te allow for fast, incremental and reversible operations,
whose impact on the object of interest is immediately
visible,

. provide access to the operations on an object.

° presume the results of a manipulation shown on the
screen are acceptable as input for subsequent
manipulation.

Direct manipulation does not guarantee by itself a well
designed dialogue. One must look for further principles and
design guidelines, and that brings us to the sccond key issue.
Three relevant aspects [SCHMS6] in assessing end-user
interface quality are naturalness, consistency inside and
outside the application, and the avoidance of modes.
Naturalness is seen here as the resulting feeling when the
interface '

o Does not force you to remember the name of every
command,
° Does not allow disastrous actions (like deeructxon of

valuable data) to occur accidentally.

° Does not require you to understand the entire system
in order to accomplish tasks.

. Allows you to switch back and forth between several
different tasks without forcing you to finish one
before beginning the next.

° Provides a variety of ways to input, manipulate and
retrieve data.

. Has a spectrum of versions, ranging from beginners
to experts.
» Is forgiving about mistakes.
° Allows vou to change your mind and undo any
number of actions.
Internal consistency requires that all concepts,

functions and procedures apply across the parts of an
application. For example, text editing should feel the same,
whether or not one is editing a ficld in a spreadsheet or
typing a formula for a column. External consistency states

that all concepts, functions and procedures common across
applications must be the same. For example, the editing
commands (o enter source code for a compiler or to type a
letter, or to edit the contents of a cell in a spreadsheet should
be essentially identical.

In [SCHMS6] a mode of an interactive computer
system is defined as a state of the user interface that lasts for
a period of time, is not associated with any particular object,
and has no role other than to place an interpretation on
operator input. Modes limit the user to performing a certain
action at a certain time or placing a special, and possibly
unintended, intcrpretation on the user’s action. As much as
possible, applications should be modeless.

The Macintosh User Interface Standard [SCHMBS86] is
an example of a modeless event-driven user interface.
Instead of a rigid, hierarchically structured set of commands
that a user must traverse to rcach a desired operation, most
commands in the application are available all the time.
Such systems are typically designed with a central main
event loop, which cycles endlessly waiting for an event to
occur. When any one does, it causes the appropriate routine
to be executed. On the Macintosh, the lower level system
software manages an event queue in which events are posted
for later processing. Events of various types are placed in
the event queue, packaged with all their appropriate
information (the current location of the mouse, state of the
keys on the keyboard, for example). The.main event loop
processes and dispatches these events in a FIFO discipline.
The kinds of events placed in the queue include mouse
events, keyboard events, window events, etc.

2.2. Relation between the interface and the
application semantics

Models of the user interface fall into two broad categories
{SIBE86]. The more frequently used contain linguistic
models which view the interface as a dialogue between user
and computer. The second category, spatial models,
includes interactive graphics or direct manipulation models.
This distinction is also made by Hutchins [HUTC86], who
distinguishes two basic ways humans interact with
computers. Before introducing his terminology, we should
point out the subtle distinction between dialogue and
interface: a dialogue is the observable two-way exchange of
symbols and actions between human and computer, whereas
an interface is the supporting software and hardware
through which this exchange occurs.

Current research in UIMS has two main directions:
making it easier to specify user interfaces and increasing the
range of user interface styles that are supported. With
regard to interface specification, the state-of-the-art also
requires a prototyping approach (diffcrent {rom the one
discussed in Section 1); user interface specification

techniques are so poor that ilerative, or trial and crror
approaches to the design of Uls, are neccssary. In this
realm, a Ul design would first be roughed out and a
prototype would be developed. The design of the UI would
then be evalvated by examining the performance of users
with the prototype. With the knowledge gained from this
evaluation, the design would be modified, a new prototype
developed, and the evaluation repeated. We see this
(re)design-prototype-evaluate cycle as the phase of
functional requircments definition in our software life cycle
model. Nevertheless, much of UIMS rescarch (e.g.
[TANNSS]) is predicated on the assumption that the user
interface can be scparated from the application and the two
can be developed separately. It is commonly claimed that
UIMS should allow non-programming user interface experts
to design and implement user interfaces. In what follows
we will discuss the origins of these motivations.

Going back to the classification in [HUTC86], there
are two kinds of interactions betwcen humans and
computers: the ones based on the conversational model,
which correspond to the sequential (or synchronous,

-deterministic, with mode) dialogue, and the ones based on

the world modcl, which correspond to the asynchronous (or
non-deterministic, event-driven, modeless) dialogue.

For scquential dialogue, physical separation at design
time of dialogue-related and application software is fairly
straightforward. In the asynchronous case, dialogue
separation into components can be more difficult to achieve,
because the exccution of dialogue and application tasks
tends to be more cfosely interleaved, and the two
components often share a common data repiresentation of
both interface and application objects. Furthermore, in
modeless direct manipulation dialogues there is a need for
closeness of interface to application semantics, which works
against dialogue independence.

Dialogue independence is an approach (hardly
achieved. by most UIMS) in which design dccisions
affecting only the human-computer dialogue are isolated
from those affecting only application system structure
[HARTSE9].

Hill [HILL87]} examines three relevant UIMS based on
sequential dialogue [JACO85], [WASS82], [OLSES83].
They arc classilicd according to the type of dialogue
specification language that is used for the preparation of the
interface: recursive transition networks
[WASS82] and grammars [OLSE83]. A user interface

implementor working with transition - networks " thinks in

terms of states and transitions, while onc working with a
grammar-based system imnust think in terms of matching of
non-lerminals. In transition nctworks the state is explicit;
with grammars, there is no explicit notion of state.

[

DACO85], -

The three examples analyzed in [HILLS7] are thercby
named external control UIMS. External control UIMS (as
the control is external to the application) arc designed to
control -an interactive system and occasionally - call
application routines to do the work. This type of system can
easily support communication from the syntactic to the
semantic level through simple parameter passing.
Communication (particularly of arbitrary values) in the
reverse direction is more difficult to support. . The opposite
design approach is referred to as intemal control. In this
case, the application program occasionally calls UIMS
modules to collect and perform other tasks. Semantic to
syntactic communication is easily supported via paramecter
passing. .

External control UIMS are more popular. However,
using the external control model still results in a poor
compromise. An alternative model that can efficiently
support two-way communication is needed.

Event-based mechanisms are currently the primary
underlying control and communication techniques upon
which direct manipulation dialogues are constructed. User
actions are sensed. (usually in a combination of interrupts
and polling loops) and communicated to interface software
as events. The system can be clearly divided into
componenis, communication among components is done by
message passing, and the mechanism becomes quite general
by viewing each message within the system as an event.
For event-driven dialogues there are some difficult tradeoffs
in breaking the system into components. Figure 3 shows a
typical configuration for run-time control and
communication among components [HART89].

In Figure 3 the dialogue component is subdivided into
input dialogue and output dialogue. The input dialogue
component knows all the objects in the user interface and in
the application, and is sensitive to any ecvents affccting
objects as a result of user action. Secquential control
requires the top level of control logic to be expressed
explicitly by the dialogue developer. A similar top layer of
control logic is required to provide application-specific
sequencing., The asynchronous control mechanism works
because input events get queued in the event quene and
eventually handled by the proper objccts, and control is
yielded to those objects for processing. The dialogue
developer is thus afforded great freedom to isolate the
behavior of individual objects and actions within complex
asynchronous dialogues without concern for the
complicated network of control details in the high level part
of the structure.

It is the very fact that the dircct manipulation
interaction style brings the user cognitively closer to the
application semantics [HART89] that made us decide for a
User Interface Development System based on an object
oriented, event-driven direct manipulation UIMS. All the

Eoch und ser oction intemal represaitation

con chanpe application
otiect oy nted
Intemaly

Computation
(o.g. functional

Prosents changed objects
from intermal reprezantation

"

“ [Seoor
N l Davices

Figure 3 - Communkcction Among Run-Time Components

freedom that can be exerted in the design of event-driven
direct manipulation UIMS calls for a reference model. The
reference model allows us. to compare our work with

" existing products and ongoing projects, and to introduce the

architectural clements we used in the design of MIDAS.

2.3. A reference model of object-orlented UIMSs

Terminology for object oriented interface development
features and tools has not stabilized yet. For example, the
term tool is used to refer to anything from a complete
interface development environment to a library routine for a
single small interface feature.

Hayes and Bara [HAYES9] have recently classified the
features of what they called Graphical User Interfaces
(GUIs). Recognizing that there are some hybrids, they show
that most GUIs consist of three major components: a
windowing system, an imaging model and an application
program interface (API).

The windowing system is a set of programming tools
and commands for building the windows, menus and
dialogue boxes that appcar on the screen. The imaging
model defines how fonts and graphics are actually created
on the screen. The API is a sct of programming language
function calls that allow the interface designer to specify
which windows, menus, scroll bars, icons, etc. will appear
on the screen. On top of these three elements some systems
also have tools for creating interfaces and developing
integrated applications. In [HAYES9] the authors compare
twelve different systems supplied by different vendors or
organizations interested in standards. Although the paper

allows a comparison of different systems, the proposed
classification does not manage to provide any insight into
design principles to be followed by GUI designers. In fact,
the different systems are structurcd in distinct ways, what
makes, for instance, the windowing system level of their
classification correspond - to a different level in the model
presented in the sequel. Also, an object-oricnied UIMS is
not explicitly defincd in the paper.

In their User Interface Assessment Report {SMARS9],
the ECMA TC33 discussed the desirability of incorporating
into PCTE [BOUD89] a common user interface for the tools
to be developed for the platform. For that purpose they
proposed a User Interface Reference Model, shown in
Figure 4, to facilitate the discussion about features and tools
that constitute a UIMS. From our point of view this model
constitutes more than a mere classification of levcls and
mechanisms of a UIMS. In fact, with the minor adaptations
we have proposed, they achieve a precise definition of the
concept of a UIMS and have also proposed a design
approach to such systems (for instance, one that allows
interfacing under certain conditions, with existing GUIs)..
The model described in Section 4 utilizes the basic approach
taken by ECMA as described. :

In the sequel we describe “the various layers of the
model shown in Figure 4. We have adapted the definitions
to fit our interpretation -of the document and our point of
view about UIMS design.)

. Data Stream Encoding: similar to the X protocol in
: X Windows [SCHES86). Itis the layer which is
comnected to the X server. It includes the
implemeritation features of the screen and input
drivers.

. Base Window System Interface: offers a set of
primitives to manipulie windows and graphics. The
X library of the X Windows sysiem is at this level.

° Toolkit Intrinsics: provides the support for the
definition of user interface object types. It defines
the implementation paradigm for the implementation
of the toolkit layer. Itcan be, for instance, a C
language binding with objcct oriented flavor, generic
facilities for class manipulation.

. Toolkit: provides a sct of user interface object types
‘which have a defined behavior. It is structured in the
form of a library of classes containing a number of
resources (attributes) and operations (methods and
procedures). This level provides the binding with the
application. Both Motif {OSFM90] and Presentation
Manager [PETZ89] have this level clearly defined.

. Presentation: this level provides the means for the
organization of the instances of the toolkit object

End-Usor

|

x;
§-Application Loyer

Dglogue Layar

o Window
\ Nonoger

Prasertation Loyar

Toolkit Layer

Toolktt intrinsica

Base Window System interfaco Layer

Interacitive Data Streom Encoding Layer

Deiign
Toos

Inteffocs
Dasigner

Figuro 4 - The ECMA Model

types necded by an application. This level has an
associated structural model, or metaphor, of the
human-computer interface (forms, desktops, etc.)
that serve as framcworks for understanding the
elements of human:computer interfaces and for
guiding the development of the dialogue. The User
interface Language of Motif is at this level.-

° Dialogue: its pérpose is to handle the dialogue, i.e.,
the synchronization of the different possible
operations available to the user that should be done
in an application independent way.

° S-Application: .the Structured Application Layer
includes the application code organized in such a
way as to make it possible to communicate with the
user interface through appropriate mechanisms.

A UIMS interacts at the Dialogue and Presentation
layers in Figure 4. In other words, the interface designer
uses a set of interactive design tools grouped around
dialogue and presentation notations to define a specific
interface to an end-user. .

3. Relation to Other Object-Oriented UIMSs and
Prototype Development Systems

At this point we are ready to compare the MIDAS approach
with the ones taken by cxisting object oriented UIMSs and
prototyping environments. Surveying all the litcrature in
this arca is well beyond the scope of this paper. An
excellent survey has been recently published by Hartson and

Hix [HART89], which covers a number of those systems,
including some that use knowledge-based approaches.

In the arca of UIMS our work has been considerably
influenced by MacApp [SCHMS86], InterViews [LINTS9]
and GWUIMS (SIBEB6]. Although MacApp and
Interviews are often called toolkits, as opposed to UIMS, we
take the comparison as valid because they simplify the
creation of both the controlling elements of interfaces
(buttons, menus, etc.) and of the data to be manipulated.
They both overcome problems ususally associated with
"classical” UIMS, in the sense that they avoid relying on an
interpreted specification language, and are adequate for the
design and construction of event-driven interfaces.

- GWUIMS [SIBE86] was designed on the basis that a
strict logical separation between the lexical, syntactic and
semantic levels of the user interface (we will later refer to
this approach as the "language view of programs") is not
possible. The aduthors hold that it is not possible to build
systems which handle semantic errors and at the same time
give intelligent fecdback if a strict separation between the
lexical/syntactic domain and the semantic domain of the
application is maintained. In addition to the user interface
itself, GWUIMS consists of representaion objects
(R-objects), interaction objects (I-objects) and application
objects (A-objects). For example, a representation object
may only exchange messages with interaction objects and

. objects within the user interface. This design restriction on
message paths was used in GWUIMS as a means of
enforcing a logical separation between dilferent linguistic

levels within the UIMS. This approach, further improved in

[SZEK88], gives rise to the notion of structured application
that first appeared in this paper in connection with the
ECMA model. The structuring of the objects is captured in
MIDAS in the form of a prototyping-based life cycle which
drives the system.

Three recent doctoral theses, by Hill [HILL87],
Szekely [SZEK88] and Myers [MYERS89] have also
influenced our work in the MIDAS system. Hills’ work
stresses that the ease of use of a UIMS is irrclevant if the
UIMS cannot support the types of interfaces that are
desired. He concentrates on making major extensions to the
range of Ul styles that can be supported, on the assumption
that better interfaces will be different interfaces. His major
contributions are the solutions given to the problems of
specifying ' concurrent dialogues, and supporting
communichtiori‘ ‘and synchronization among ihe various
components of a UIMS. This support for communication
and synchronization influenced the design of MIDAS and,
in particular, we borrowed the expression User Interface
Development System, which better characterizes his and our
work, while contrasting with the concept of a UIMS.

The Peridot system [MYERS89] allows the interface
designer to design and implement asynchronous interfaces

in a direct manipulation manner. The designer does no
programming whatsoever in the conventional sense, since
all commands and actions ar¢ given visually, The designer
draws the screen display that the end-user will see, and then
performs actions just as the end-user would. 'The results are
immediately visible and executable on the screen, and can
be casily edited. The designer gives examples (hence the
term programming-by-example) of typical values for
parameters and actions, and Peridot automatically infers the
general case. Since we do not envisage "automatic
programming" in MIDAS (visual programming +
programming-by-example), and since the expected MIDAS
user is a systems designer following a prototyping oriented
life cycle, we see major differences between our work and
Myers’ [MYERS89). Nevertheless, we envisage the
possibility of generating end-user interfaces via MIDAS
which would be user-customizable in a style similar to
Peridot’s.

The work by Szekely [SZEK88] is based on the
language view of programs introduced by Foley [FOLES2],
Moran [MORAS81] and Newman [NEWM79]. In this view,
the language to communicate with a program has four
levels, called conceptual, semantic, syntactic and lexical,
respectively. The conceptual level describes the tasks' the
uscr is able accomplish by using the program, The semantic
level describes these operations and the objects they operate
on. The syntactic and lexical levels describe how the user
accesses the objects and operations using the input and
output devices. Szckely [SZEKS8] has introduced the
notion of "communication concepts” that can explain the
behavior of the interface featurcs of programs. They
capture the distinctions in semantics that are relevant to the
construction of graphical user interfaces. Each class of
communication concept captures a different semantic
distinction. Szckely -also shows how to decompose
intcractive programs into a functionality component and a
user interface componcent that communicate via program
abstractions rather than via user interface abstractions. The
program abstractions identificd by the author support a
variety of graphical user interfaces providing extensive
semantic fecdback, whose implementation traditionally
required violating the separation between functionality and
user interface. The author produces a catalog of
implementation techniques and an object-oriented UIMS
based on them, The language view of programs is an
integral part of the prototyping-oriented life cycle model
that drives the MIDAS environment.

The above comparisons take UIMSs as references,
with the granted excepiion of Hills’ UIDS. In all cases, the
described systems aim at synihesizing a UL In MIDAS, we'
arc interested in synthesizing a complete system, taking a
Ul-derived specification as a starting point. Recent
literature shows examples of other systems sharing the same
goals as MIDAS. Ongoing developments like TOPOS
[BISC89] and OSU [LEWIB9] are two good examples.

Both systems, like MIDAS, are prototyping-oriented
software development environments. TOFPOS includes tools
for requirements analysis and definition, for user interface
construction and for system testing, dealing with
componenis at up to three dilferent levels of completion at
the same time:

. components which consist of nothing more than a
defined interface and a description of the
functionality they should provide.

. components which are currently prototyped to make
sure they are feasible as planned.

. components that were parts of cxistin'g applications
and can be reused.

OSU [LEWI89] is a program for writing other
programs by a combination of user interface design with
sequencing of the user interface interactions and program
generation techniques. In object-oriented programming
terminology, the goal is to produce objects and
message-passing configurations automatically that
implement a specific application. The authors claim that
OSU will be able to prototype systems that can generate a
wide spectrum of applications by combining a number of
domain-specific tools.

As mentioned carlicr, MIDAS owes many of its design
principies to the technologics developed in the area of
UIMS, being itself a UIDS that shares a set of goals with
TOPOS and OSU. Nevertheless, there are a number of
differences between MIDAS and these last two. For the
moment we will stress one of them: MIDAS is driven by a
life cycle model that considers the joint development of uscr
interface and application. This life cycle model uses
concepts from the language view of programs and is stored
in MIDAS’ knowledge base.

4. The FIDAS Life Cycle Model

MIDAS is an environment whereby a set of tools support
complete requirements definition of the user application by
developing its interface. This prototyping-oriented life
cycle model is shown in Figure 5. It {its into the gencral
approach of expressing the software process through a serics
of small prototyping subprocesses first introduced in
[BOEHS6] with his spiral model of software dcvelopmcnt
and enhancement,

" The main results of the development of the user
mterface shown inside the dotted rectangle in Figure 5, are
a working user interface, the architecture of the application
program, an already “"bound" application component
prototype. As in [BISC89], our approach integrates
interface development with application development. The

rationale behind it is that the user interface implicitly
defines most of the functional requirements, exception
handling, and the majority of non-functional requirements.
For highly interactive applications, it is intuitive that by
specifying the user interface one often obtains an almost
complete systems specification, the complete development
of a user interface is the basis for the definition of
application requirements in the MIDAS environment,

The first five phases of the proposed life cycle are
highly integrated. From an informal description of the user
needs, embodied in the requircments analysis, the interface
designer starts to identify the application objects. This is a
step in which his knowledge of the class library of the
application world is of utmost importance, because the moie
he knows about existing classes the more code may be
reused. In other words, identifying objects in the
application world will always include fitting them into the
application world class hierarchy (second phase). In order
1o further characterize the objects, the inteface/systems
designer (hercafter referred to as interface designer, to
emphasize the role of interfaces as specifications) identifics
(or dcsigns) the functionality of the objects in the
application. This is tantamount to spelling out the messages
understood by objects, their class and instance variables,
and any globals that the application might need. This is a
very critical point because the functionality of most
application objects is reflected at the user interface level
(the onc being designed) as .commands, presented to the
end-user in the chosen uscr interface display metaphor.

Even though uset interfaces vary greatly, they are
composed of just a few basic information display
metaphors, as shown in Table 1 [FISH88].

Just as there are sceveral ways to display a piece of
information on a compuler screen, so there are many ways
to inlecract with, or command, the application program.
Some current UIMSs make use of more than one command
interaction metaphor. . The more commonly emphasized are
command line interpreter, menus, and function/control keys,
One can also verify. that there is a strong trend towards
direct manipulation as a convenient and “"gestalt prone”
metaphor,

It is therefore in the third phase that application: objects
are further characterized by being assigned functionality
(materialized as messages that the object. undvrstands), and
part of that functionality surfaces at the user mlerface level
either as direct manipulation of ObJCClS m the screen or.as
selection of an item in a pop-up menu, and so forth,

Phase four represents the choice of command
interaction style. The interface (system) designer lays down
the "scenes” and sets the script of the dialogue in his visual
programuming interaction with MIDAS,

Requlrements Andalysls

Identification of
Application Objects,
Placement lin Class .
Hlerarchy N4
Identification of
Messages (Methods)
Understood by Appl.
Objects

o

- e Ma s s BR LB A4 e e s e W D6 e OB e Fe Re G AD M Te Ae T B R 6N 00 GB A6 OR K3 MR TN UE KD oW Ge We U C0 A% N e B e B b WP &

"User - Interface

Prototype

—Z]

Informal Dascription of User Needs

Class Hierarchy of Application Objects

User Interface Functlonality (Commands)

‘Binding® with
Application Methods, (Expert Asslistance Provided)

4 Application

interface - Archifecture

Development

Architecture & Component Protolypes
(With Specifications)

R E R LR Nkl

)
'
1
'
'
)
'
!
'
)
1
1
1
'
'
User Interface Scenes & Dialogues :
s
'
'
'
1
'
1
1
'
1
1
1
P

Program and

Application Componen
Documentation

Implementation & Test

Final

System Test Product

1 Operation and
Maintenance

¥ v

Time Axis

A4

Figure 5 - MIDAS Profotyping - Orlented Lifecycle Model

MIDAS produces modeless interfaces, according to an
end-user dialogue front-end template. Modelessness is
achieved because this template includes event-driven code,

ie., the end-user interface is built by adding
applxcaﬂon specxﬁc code to the existing expandable
template. - One can visnalize this mechamsm in the

pseudo codc shown in Table

Notice that this'body of code is fixed and (although not
induced by the syntax adopted here) implemented as object
oricnted software. Interrupt handlers enqueue all events,
packed with all necessary information to process them. An
asynchronous loop dequeues them and (as if in) a CASE
statement, each different class of event gets the appropriate
processing. This structure allows for non-deterministic

10

dialogues “to be designed, since the inner workings of the
end-user dialogue template does not impose any particular
sequencing of events on any dialogue. MacApp [SCHMS6],
for instance, also has a built-in event-driven loop. In order
to enforce the look and feel and everything else that defines
the Macintosh User Interface Standard, this loop has more
sequencing (and is more complex in nature) “hardwired"
within it, - MIDAS "mlcroorogmms these constraints on an
otherwise . free, nondeterministic, loop by means of rules
expressing interface design techniques in the knowledge
base.

The link between the user interface code and the
application code happens in the above pseudocode at each
tag of the CASE statement. MIDAS’ library of user

DISPLAY METAPHOR APPLICATIONS

Tables Fnancid spreadsheots

Relational dotabases
Remindet/oppointment schedilers
Disk chrectory stings

Database records
hdividud occount information
Oider enfry systems

" Configuration/setup cpplications

Text Objacts
(wards, parogrophs)

Werd processors

Page composition systerns
Ondine news retrieval systema
Onine holp facilities

Computer-aided design (CAD)
Grophics editing programs

Page composition systems

Project monagement/scheduling tools
Process control grophics

Business grophics display

Graphicd Objects
(boxas, Circlos)

Tabls 1 - User Interface Display Metaphors

interface building classes includes command objects and
view objects (in MacApp terminology) that do everything
related to the mechanics of interface dialogues (like sensing
mouse clicks, exhibiting menus and capturing user options,
dragging images, etc.). Itisleft to the interface designer the
task of providing the semantics of the application by
implementing the behavior of all application objects. It is
the very natre of object-oriented programming, in
particular inheritance and polymorphism, that makes it
possible to have such a layered architecture in which
application code is seamlessly incorporated into the
interface code which acts as "main program glue".

Not every = piece of application code is
interface-related, although it may now be clear enough how
intertwined are the choice of objects in the application
world, the resulting - functionality of the interface, and the
structure of the application code. There is still plenty of
space for architectural creativity at the designer’s disposal.
The exchange of messages among objects within the
application is totally free territory. For those application
objects that receive messages originated from an interface

interaction, MIDAS has all information necessary to
charactcnze that object’s (class) ‘ interface,” and a
"do»nothmg stub can ‘immediately be filled in for -

simulation purposes
phass.”
MIDAS provides an executable specification notation

[HOFEF88] that allows the systems designer to complete the
characterization of all application objects and simulate the

- The “internal stmcture "of . purely '
ap‘plxcauon code is left to lhe systéms desxgncr in this very -

11

BEGIN
ON event DO encusue (queued_svent);
REPEAT
WHILE NOT ermmply (queus) DO
BEGIN
dequeus (queuad_cvent);
CASE queued_event_closs OF
A process_A_event (queusd_event);
B: process_B_event (queued_event);
C: process_C_svent {queued_event);

Table 2- Pseudo-code for handling events

behavior of the final product. Since the interface (system)
designer has available the specifications of the already
existing (in the class library) application objects, MIDAS
provides mecthods for configuration management and
program validation [ALEN90]. It is worth noticing that, in
a prototyping-oriented environment, programming in the
large: [DERE75] 1is isomorphic to configuration
management.

All phases outside the dotted rectangle in Figure 4
follow current standard® software engineering techniques.
The lifecycle model presented in this section is rule-encoded
in MIDAS’ knowledge base. The interface designer is
guided by the interpretation of those rules. In other words,
the rules embody a software process, and MIDAS can be
seen as a process-driven user interface development system.,

5. Architecture

The architecture of MIDAS is shown in Figure 6. MIDAS
interacts with the interface designer via a meta interface, in
a direct-manipulation mode, thus instantiating all objects at
the Presentation level (the "scenes” the user will see) and
also the thread of control between these scenes (the-script”
for the intcraction), at the Dialogue lcvel. L

The design database contains the cla 'hbrmy of
interface objects, encompassing evcm hanglcre .command
objects, window managers, view présenters, eic. In other
words, these are the classes that actually carry out the
functionality of the event-handling loop in the end-user
dialogue front-end template, These classes are the actual
toolkit that an interface designer would use in an
environment without direct manipulation facilities in a meta
interface, expressing himself by writing actual source code.

M £ng-Usot
Intedoce 1 e Dinloguo
Desgrar Front-ond
t Tomplata
a
| X8 Procoss
intor 1 knowlodgo
n foce 8aso
t M uos -
L] Interface
v] Intar- Dasign
Knowlodga
' foce Boso
]
e DO8 Dasign
Intor- Datg
e tace Base

Figure 6 - The Architecture of MIDAS

Most of the "look" component of the "look and feel” of
user interfaces is contained there. Whenever a nove] family
of user interface objects becomes noteworthy, systems
programmers can produce the object classes templates that
instantiaie these new features on user interface screens and
include them in the DDB repository. The interface designer
browses the contents of the DDB via the meta interface and
the UIDS body.

The process knowledge base contains rules to support
the interface designer in following MIDAS’ software

lifecycle model. In other words, these rules are a formal |

expression of this lifecycle model. The UIDS body
manages the communication between the process
knowledge base and the meta interface, thus implementing
the behavior of a software process expert.

The software prccess is encoded as a collection of
rules, each rule having a precondition and an action. As in
[KAFE87], whenever the condition is true, the
corresponding action may be executed. Each activity in the
knowledge base corresponds to a tool that actually performs
it, taking into account a number of parameters for execution,
One such parameter iells, as an example, whether or not the
activity can be:fired automatically, without the intervention
of the user. ' Classical forward and backward chaining
interpretation: sirategies are:applied to the rules.. In forward
chaining; if'the. precondition ' ofan activity is: satisfied, it
may be triggered. - Backwadrd:chaining is applied when:the
user - invokes :an ‘activity whose precondition. is not..yet
satisfied. Given that the execution of an aclivity. gives rise
to a postcondition, the expert advisor always performs
backwards chaining in order to find activities it can perform
that contribute to the satisfaction of that precondition. In
case the precondition cannot be satisfied after all attempts
made by the expert advisor, the user is informed of this
situation, with appropriate context information. For

12

example, if the code for an application module is missing,
there is nothing MIDAS can do, except request the user (o
fill in the code or a stub thereof. In essence, the expert
advisor behaves opportunistically, that is, it keeps updating
postconditions and preconditions, and whenever an activity
can be triggered, it commands the machinery to do so. A
wise choice of automatically triggered activities is essential,
in order to disable those that might get performed at
undesired moments, getting in the way of the interface
designer.

The interface design knowledge base [GUARS9]
contains rules embodying knowledge of a different sont,
namely that of interface design techniques. Expert advice
on interaction techniques, on choice of screen objects that
better convey the desired functionality, window tiling,
superimposing colors, etc., are the kinds of functions carried
out by this architecture module, also with the intervention of
the UIDS body. Most of the "feel” in the "look and feel” of
any particular user intcrface generated ‘with the UIDS will
be the result of the interface designer’s intcraction with the
interface design knowledge base.

The UIDS body is the environment controller. As it
interactively helps build the end-user interface, it makes use
of a major piece of data (used as code in the end-user
interface), depicted in Figure 6 as “"end-user dialogue
front-end template”. This piece of code becomes part of the
gencrated end-user interface, as explained below,

The end-user interface architecture shown in Figure 7
is the picce of software that interacts with the user and has
all the functional "bindings" with the application software.
The dialogue front-end becomes the actual interface
between the application user and the application binding
code (which in turn links the dialogue front-end to the code
that implements the semantics of the application).

The actual connection between the dialogue front-end
and the application code is done by supplying methods that
implement (override) assumed behavior at high levels of the
class hicrarchy, and by supplying new classes of objects (for
instance, those that do not directly interact with' the end-user
interface objects) that produce’ transformations in the
"back-end" application objects. This diversity of ways to
attach application code to the dialogue front-end is
represcnted in Figure 7 as application-binding “code
architectural module, and the pure application code is shown'
as the archite¢tural modules within the dotted rectangle. - -/

Szckely’s communication concepts’” [SZEK88],
presenters and recognizers were designed to fulfill exactly
this role. Some of MacApp classes, such as TCommand
[SCHMS6], instantiatc command objects that exchange
messages with those in the application, to bring about the
changes needed to reflect menu, mouse and keyboard
commands. An illustrative example of how this layered

End o rciogue '_‘L M
L Manoger %
User e Application
Bndng
Coda

Oidogues Front-Envd

Eng-User Interfoce

Figure 7 - Tha End-User Interface Architsciure

object-oriented code merges with the application code is the
"undo" command. The Macintosh interface standard
strongly suggests that ¢very application object be able to
undo its previous transformation. The main body of
MacApp’s event-driven loop, upon receiving an "undo”
command from some end-user action, sends it to a command
object which, in its turn, sends it to the actual application
object. Again, although the message selector is always the
same ("undo"), each receiving object (be it a command
object or an application object) will react differently, due to
polymorphism and the natural overriding of message
seleciors provided by class hierarchy.

The dialogue front-end is composed of a dialogue
manager module, a control module and a modeling module.
The latter builds representation models. about the user,
which are used to adapt the interface dynamically to his
needs. The models are subject to constant modification,
resulting from interaction feedback. The resulting interface
is reached through an mtcraciwc and iterative process, as
shown in Figure 8.

A user stercotype [RICHS83] is initially arbitrated
(drawn from the end-user template), and the interface is
designed according to it, Upon using this interface, the user
gathers his mental model about the interface and the
application. On the other hand, the dialogue manager, in a
stepwise, manner, observes and analyzes the user’s behavior,
and buﬂdb a model of the user’s mental model. ~ The latter is
used to further adapt the interface, thus allowing the user to
(agam) update his own memal model and so forth.

Deciding, about how and when to adapt to the user are
critical, for they are dxrccﬂy related to the user’s confidence
in the system [MUIR87], which is sinonymous with the
confidence the user acquires about the predictability of the
interface’s behavior. Therefore it is of utmost importance

13

ineroco Hmmalmwl :

Medal of Mantal Model

-—-bi Usar Mode

Figure 8 - User Modeling

that adaptation to the user be done in a logically perceivable
way. For that, either the system informs the user about the
alterations that are about to happen, or adaptation is done
only in those funciions that do not jeopardize the user’s
confidence in the system.

The dialogue manager module is responsible for the
actval exchange of symbols (in the broad sense) between the
end-user and the application program. In this module one
encapsulates the various dialogue types available at the
interface and the knowledge-gathering code that allows the
inteface to know more about the user as the dialogue flows.

The control module manages the other two modules.
Its main task is to ensure that the dialoguve flows in a natural
and cooperative way. To that end, it incorporates an
inference mechanism that allows the dynamic adaptation of
the dialoguc to the user, depending upon the context of the
interaction. Besides that, the control module needs filtering
mechanisms that allow the gathering of information relevant
to the modeling module, i.e., the confrol module is the
means through which the interface is able to make decisions
based on the knowledge sources that it can access,

&. Conclusions

In this paper we have, described and justified the design
strategy adopted in the MIDAS User Interface Development
System:. MIDAS is actually an umbrella project, which
links together various ongoing research and development.
efforts carried out under the supervision of the authors.

As it stands, MIDAS rclies on an interface and:
development framework based on objects; which paraliels
ET++ [WEIN89]. The design and implemieniation work in.
the arcas of user modeling. and expert assistancesdn interface
design can be found in {CABR90) -and: {GUARS9). ‘The
specification -of ‘modules’ and vits: use .toimplement a
deductive configuration management-system:is-described in
{ALEN90Q}

A large number of existing softwarc systems have user
interfaces which are driven by menus and dialogues,
Another aspect of the MIDAS work is determining a design
discipline which will allow these existing systems to be

[LEWI8S]

[LINTS9]

[MORAS1]

[MUIRE7]

IMYERS9]

[NEWM79]

[OLSES3]

[OSFM90]

{PETZ89]

[RICHS83]

[SCHES6]

[SCHMS6]

"Schricker,

Conference (COMPCON), San Francisco,
CA, February 1987

Lewis, T.G.; Handloser III, F.; Bose, S.;
Yang, S.; "Prototypes from Standard User
Interface Management Systems”, IEEE
Computer, May 1989

Lininn, M.A. et al; "Composing User
Interfaces with Interviews", IEEE
Computer, February 1989

Moran, T.; "The Command Language

Grammar: a Representation for the User
Interface of Interactive Computer
Systems"”, International Journal of
Man-Machine Studies, 15:3-50, 1981

Muir, B.M.; "Trust Between Humans and
Machines, and the Design of . Decision
Aids", International Journal of
Man-Machine Studics, 27, 1987, 619-629 .

Myers, B.A.; Creating Uscr Interfaces by
Demonstration. University of Toronto,
Computer Systems Rescarch Institute,
Technical Report CSRI-196, May 1987

Newman, W.; Sproull, R.; Principles of
Interactive Computer Graphics.
McGraw-Hill, 1979

Olsen, D.R.Jr.; Dempsey, E.P.; "Syntax
Directed Graphical Interaction”,
SIGPLAN Notices 18.6, 1983

"OSF/MOTIF Programmer’s
Revision 1.0, Prentice Hall, 1990

Guide",

Petzold, C.; "Programming The OS/2
Presentation Manager”, Microsoft Press,

‘Redmond, Washington, USA, 1989

Rich, E.; "Users Are Individuals:
Individualizing User Models",
Intemational Journal of Man-Machine
Studies, 18, 1983, 199-214

Scheiffer, R.W.; Gettys, J; "The X

Window System", ACM Transactions on

Graphics, V.5, No.2, April 1986, 79-109

KJ,; Object-Oricented
Programming for the Macintosh,
Productivity Products International, Inc.,
1986

[SHNES3]

[SIBES6]

[SMARS9]

[SZEKS8]

[TANNSS]

[WASS82]

[WEINS9]

15

Shneiderman, B.; "Dircct Manipulation: a
Step Beyond Programming Languages”,
IEEE Computer, 16, August 1983, 57-69

Sibert, J.L.; Hurley, W.D. and Bleser,
T.W.; "An Object-Oriented User Interface
Management System", Computer
Graphics: SIGGRAPH’86 Conference

Proceedings. Vol. 20, No. 4, August
1986

Smart, J. et al; TC33 Technical
Assessment Ad-Hoc Group: User
Interfaces; "User Interface Technical

Assessment Report”, ECMA, March 1989

Szekely, P.; Separating the User Interface
from the Functionality of Application
Programs. PhD thesis, Carnegie-Mellon
University, January 1938

Tanner, P.P; Buxton, W.A.S.; "Some
Issues in Future User Interface
Management Systems Devclopment” in
Pfaff, G., Ed., IFIP WG 5.2 Workshop on
User Interface Management, 1985

Wassermari, A.l; Shewmake, D.T.;
"Rapid Prototyping of Interactive
Information Systems”, ACM Software

Engingering Notes 7.5, 1982

Weinand, A. et al; "Design and
Implementation of ET++, a Scamless
Object-Oriented Application Framework™,
Structured Programming 10/2, 1989

moved to differcnt user interfaces. Much of the work is
bascd on object-oriented techniques and language
specification of interface interactions [DURAS0]. The
" development of visual programming concepts and
supporting tools is at a fairly early stage.

The key new ideas communicated in this paper are the
notions of a prototype-oriented lifecycle model for object
oricnted UIDS, and its associated architecture. In particular,
the notion of an object oriented process-driven UIDS has no
parallel in the literature. 'The implementation process being
adopted follows the proposed lifecycle model, i.e., the next
resultls we want to achieve are the UIDS’ interface
gencration via a sequence of prototypes together with a
complete, formal version of the lifecycle model. '

Acknowledgements

Cabral, Campos and Lucena want to thank the Computer
Systems Group of the University of Waterlco for the
enjoyable working atmosphere provided during their stay
from January to March 1990.

7. References

Alencar, P.; Lucena, C.; "A Logical
Approach for Evolving Software
Systems"”, to appear

»

[ALEN90]

[BISC89]
the Software Life Cycle by Prototyping”,
Structured Programming, 1:47-59, 1989

Bochm, B.; "A Spiral Model of Software
Development and Enhancement”, ACM
Software Engineering Notes, Vol.11,
No.4, August 1936

[BOEHS6]

[BOUD89] " Boudier, G. et al; "An Overview of PCTE
and PCTE+", SIGPLAN Notices, Vol.24,

No.2, 1989

~ Cabral, R.H.B.; "Intelligent Interfaces:
Conceptualization, Taxonomy and
Support Architectures”, (in Portuguese) to
appear

[CABRY0]

[DERETS] DeRemer, F.; Kron,
"Programming-in-the-Large versus
Programming-in-the-Small", 1IEEE
Transactions on Software Engineering, V.

SE-2,No.2, June 1976

HH,;

[DURA90] Durance, Carl M.; "An Approach to

Application Software Mobility Across

Rischofberger, W.; Keller, R.; "Enhancing -

14

[FISH88]
[FOLES2]

[GUARS9]

[HART89]

[HAYES9]

[HILL87]

[HOFX¥F88]

[HUTCE6]

[JACO85]

[KAFES7]

User Interface Toolkits". M. Math,
Thesis, Computer Science Department,
University of Waterloo, Canada, 1990,

Fisher, A.S., "CASE: Using Software
Development Tools", Jobn Wiley & Sons,
Inc., 1988

Foley, J.; van Dam, A.; Fundamentals of
Interactive Computer Graphics,
Addison-Wesley, 1982

P.; Lucena, C.; "PUC: A
Knowledge Based Environment for
Planned User Communication”,
Proceedings of the Computer Software
and Applications Conference (IEEE,

Guaranys,

COMPSAC 89), 1989
Hartson, HR,;. Hix, D.
"Humar-Computer Interface

" Development: Concepts and Systems for

its Management”, ACM Computing
Surveys, Vol.21, No.1, 1989

Hayes, F.; Baran, N.; "A Guide to GUIs",
BYTE, July 1989

Hill, R.D;; "Supporting Concurrency,
Communication and Synchronization in
Human-Computer Interaction”, University
of Toronto, Computer System Research
Institute, Technical Report CSKI-197,
1987

Hoffman, D, "Practical Interface
Specification”, Software - Practice and
Experience, Vol.19(2), February 1989

Hutchins et al; "Direct Manipulation
Interfaces in User Centered System
Design”, in D.A. Norman and S.W.
Drapers, Eds. Lawrence Erlbaum Assoc.,
Hillsdale N.J., 1986

Jacob, RJK; "An Executable
Specification Technique for Describing |

.Human-Computer Interaction” in Hartson,
' HR., Ed., Advances in Human-Computer
InteraGtion, = Vol1, - Ablex Publishing
. Corp,, Norwood, N.J., 1985 C e

Kaiser, G.E.; Feiler, P.H.; "Intelligent
Assistance without Artificial Intclligence”,
Proceedings of Thirty-Second IEEE
Computer Society International

