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Abstract ﬁ

A framework for specifying, and reasoning about, problems and programs is presented. This
framework is based on partial binary relations (relations together with two carriers sets) and
underlies the semantics of any formalism for reasoning about programs together with
preconditions. An algebraic calculus is developed and argued to be adequate for program
derivation by means of formal manipulation of expressions. Its expressive power is shown to
encompass that of first-order logic, thereby solving Tarski's problem on the expressiveness of
his calculus of binary relations. Although our problem-theoretic formalism is based on partial

binary relations, our considerations are perfectly general.

1. INTRODUCTION

This paper presents a framework, based on partial binary relations (relations together with
two carriers sets), for specifying, and reasoning about, problems and programs. This
framework underlies the semantics of any formalism for reasoning about programs together
with preconditions. Based on our formalism we develop a calculus and we argue that its
algebraic flavor is adequate for program derivation by means of formal manipulation of
expressions. Furthermore, we prove that its expressive power encompasses that of first-order



ON THE REPRESENTABILITY OF THE V-ABSTRACT RELATIONAL ALGEBRA
G. BAUM - A. M. HAEBERER - P. A. S. VELOSO

The V-Abstract Relational Algebra [Hae91, Vel91] is an abstract relational algebra

A=(R,+,0,°0,;,1, V} [J6n52] (where 0 and o as the extremes of the Boolean reduct and I

denoting the identity relation) extended by the operation V which can be defined informally in terms
of its correspondent proper relational algebra as: given relations r and s, if xry (meaning the par

(x,y) €r) and xsy then xrVs[x,y]. Where the pair [x,y] belongs to the free grupoid (V, [ ]), since
V is not associative.

The goal of such extension is to achieve the expressing power of firs-order calssical logic in order
to obtain an appropriate tool for formal program construction.

As we know [J6n52] an abstract relational algebra is not representable, i.e., not all its models are
isomorphous with a proper relational algebra (i.e. considering relations as being subsets of Vx V. In
the sequel we will denote by & the relation 1.

Defining II, = 1Ve and I1, = V1 (notice that 1 Veo denotes de converse of 1 Veo), the
following properties of V can be taken as some of the axioms defining it in the V-Abstract Relational
Algebra, 1) tchs—S(t;l‘I1 crat;,cs), 2) (rVs);|tVg =(r;f)e(s;7) and then
(rVs);| TVI |=res,3).r;(sVE) < (r;s)V(r;t) and 4) (r c0) A(s cw) - (rVs) < (0 Vw).

It is well known [J6n52] that an abstract relational is representable iff all its atoms are functional.
Let us prove that if t20AtcrVs — (Fo)Fw)v0rw#0ArvVwct) holds, the
V—-Abstract Relational Algebra is representable by proving that the former condition implies the

functionality of the atoms.

Proposition a. If o is an atom then oV« is an atom.
Proof Take 0 #BcoaVao. Sincet #0AtcrVs — (Fu)Fw)v#0rw#0ArvVwct)
holds, there exists B’ # 0 and B” # 0 such that B’VB” < B.
Then, 'VR"cBcaVa ()
By ; monotonicity we have,
(B'Vp”); I, B0, c(aVa);I, and (B'VR”);II, <B; 11, c(aVa);Il,
but, by (1) is (OCVOC) ;II, c o and (OCVOC) ;II, Ca and since o is an atom and
(aVa);IL, #0 and (wVa);I, # 0, both equals o.
Then, (8'VB”);I1, =o and (§'VB”); I, = 0. Hence,
(BVP”);TL, =(BVP"); 1 Vo =P ¢(B”;00)=  and
(B'VR”);I, =(B'VB"); VI = (B ;) 0B =t
By intersecting both sides of the above equalities we have,
Be(B" ) e (B =)o B =0 So, p'ep’ =0t (i)
But B’ eB” cp’ and B’ ef” < B”, then, by V monotonicity (4) and recalling (i) is
(B eB”)V(B’'ep”)=P’'VB” =P caVa, then, by (ii) we have,
aVacpP VR cBcaVa,hence, B=aVa
Then, oV a is an atom since any relation included in it is either 0 or oV o.



Proposition b. If 7 is an atom then (r;p) or=(

Proof. From (2) we can deduce that (r;g)er=(rVr);| g VI
By subdistributivity of ; with respect to V (3), we have r;(1VI) < rVr. But since by
Proposition a 7V is an atom, we have 7;(1V1)=rVr (since 7;(1V1) cannot be 0 ).
Then (r;p)er=r;(1V1); (W) = r;((go Vi) (“1’“\'77)) which by (2) equals
r;(@ . 1), then (r;p) or=(.

Proposition c¢. If 7 is an atom then (F ;r) op=0

Proof We know that (r;s)et= (r;((?;t) . s)) et (exercise 2.3.11 [Sch89] then we have
(Fsr)o o = (F;((r;p) o r)) ¢ (. But by Proposition b we know that if r is an atom then
(r;0)er =0 thus (F;r)e g =0.

But (7;r)e =0 means that (7;7) < I which is equivalent to state that 7 is functional [J6n52].
Then we have proved that whenever 7 is an atom r is functional.
Thus, the V—Abstract Relational Algebra is representable.
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framework underlies the semantics of any formalism for reasoning about programs together
with preconditions. Based on our formalism we develop a calculus and we argue that its
algebraic flavor is adequate for program derivation by means of formal manipulation of
expressions. Furthermore, we prove that its expressive power encompasses that of first-order



logic, thereby solving the problem posed by Tarski on the expressiveness of his calculus
[Tar41] by extending it.

Backhouse et al. [Bac90] advocate the use of a relational calculus for program derivation, on
the basis of arguments such as the relational nature, shown by de Moor, of optimization
problems without unique optima. Other relational approaches are the calculus for recursive
program schemes of de Bakker and de Roever [deB72], as well as the weakest prespecification
calculus of Hoare and Jifeng [Hoa86]. Another motivation for a relational approach stems from
the formalization by means of partial relations by P. Veloso, S. Veloso, Haeberer, Baum and
Elustondo [Vel81, 84; Hae87, 89, 90a] of some of Polya's ideas on problems and problem-
solving [Pol57]. A relational approach to programming is employed also by D. Smith [Smig&3].
Furthermore, we should mention that the extra flexibility afforded by relations, in contrast to
functions, can be very helpful in specifying problems and problem-solving strategies, as well as
in manipulating them.

Thus, we have two relational approaches to program derivation. One is based on Tarski's
theory of binary relations, whereas the intuitive motivation for the other one comes from both
Polya's and Tarski's views. Since we wish to compare them, we start by reviewing Tarski's
elementary theory and calculus of binary relations in Section 2, where we also examine the
algebraic structure of relational algebras.

In attempting to express something as simple as the palindrome problem, we feel the need to
enrich Tarski's repertoire of operations on relations. Further extensions are needed in order to
derive a program for this problem. In Section 3 we illustrate how programs for this problem can
be derived in our extended formalism. We also illustrate the use of the formalism for expressing
eurekas, as well as derivation strategies, such as divide-and-conquer and Dijkstra's
decomposition induced by preconditions.

In Section 4 we analyze some implications of our extension to Tarski's calculus. We now
have partial relations, in that we can incorporate preconditions into them. We prove that the
relational semantics underlying any calculus rich enough for associating preconditions to
relations must go beyond Tarski's relations, by involving partial relations.

The main lines of the set-theoretical development of the algebraic theory of problems, which
underlies our formalism, are presented in Section 5, where we actually take into account the
partiality of the relations.

Implications of our enrichment of Tarski's calculus are examined in Section 6. We begin by
discussing the problem posed by Tarski on the expressiveness of his calculus with respect to his
elementary theory of relations [Tar41]. We then prove that the expressive power of our calculus
encompasses that of first-order logic, by showing how to construct a problem-theoretic version

of Tarski's definition of satisfaction.



In Section 7 we establish monotonicity and continuity of our algorithmic operations with
respect to the relation of subproblem and present conditions for the monotonicity with respect to
refinement.

Section 8 examines some aspects of our problem-theoretic formalism for specifying and
constructing problems and programs. In particular, we discuss the meaning of recursive
expressions and indicate how to express and manipulate strategies (including their termination
conditions) as well as design decisions.

The central results are in Sections 4 and 6 (Theorems 4.4, 4.7, 6.3 and 6.4), whereas
Sections 3 and 8 address methodological issues in program derivation.

2. TARSKI'S THEORIES OF RELATIONS

In this Section we will introduce Tarski's Elementary Theory of Binary Relations and
Calculus of Binary Relations [Tar41], analyzing then the algebraic structure of the latter .

2. 1. The Elementary Theory of Relations )

Tarski develops this theory as an extension of first-order logic by introducing variables
ranging over two sorts, i.e., individuals, which will be denoted here by x, vy, z, ... , and
relations, which will be denoted by italic letters 7, s, ¢, .... The atomic sentences are of the form
(X, y) (or x ry -we will use both notations indistinctly - meaning "X is in relation r with y")
and r= s (where the symbol = denotes equality on relations). As usual, the compound
sentences are obtained from atomic ones by means of logical conne;ctives A, V, &, =, 4, and
the quantifiers V and 3. |

The symbols introduced by Tarski are, in our notation, o (for the universal relation), O (for
the null relation), 1 (for the identity relation) and § (for the diversity relation), as relational
constants, together with the following operations on relations ~ (complement), ~ (converse), +
(sum), ® (intersection), @ (relative sum), and ; (relative product). The symbols oo, 0, ~, + and
e are called absolute or Boolean, whereas 1, £, ", ® and ;, are called relative or Peircean
(because Peirce developed an early theory of relations, later systematized and extended by
Schréder [Sch95]).

Finally, Tarski takes as extralogical axioms:

At 1.1 (Vx)(Vy)(eo(x, y))
At 1.2 (YY) (= 0(x, y))



At 1.3 (Vx)(1(x, x))

At 1.4 (VO YIV2)((r(x, y) A 1(y, 2) = (X, 2)))

At 1.5 (YWY P (x,y) & = 1(x,y))

At 1.6 (Y)VY)F(x,y) & — r(x,y))

At 1.7 (V)VYFX, y) & r(y, x))

At 1.8 (VXI(Vy)(r+ s(x, y) & (r(x,y) v s(x,y))

At 1.9 (YX)(Vy)(re s(x,y) & (r(x, y) A s(x, y))

At 1.10 (V))(VY)(r® s(x, y) & (V2)(r(x, z) v s(z,y)))
At 1.11 (YX)(Vy)(r;s(x, y) & 3z)(r(x, 2) A s(z,y)))
At 1.12 r=s5¢ (VO y) © s(x, ¥))

2. 2. The Calculus of Binary Relations
To develop this calculus Tarski derives from the axioms of the Elementary Theory of Binary
Relations an appropriate set of theorems whose variables are exclusively relationalones. Then,
he takes these theorems as the axioms of his Calculus of Binary Relations. His extralogical
axioms can be divided into-three groups:
Axioms of the absolute or Boolean symbols:
At2.1 r+s=s+r
At2.2 re s=gseor
At23 (r+s)et=(ret)+ (set)
At2.4 (res)+t=(r+t)e(s+t)
At25 r+0=r
At2.6 reoc =71
At27 r+T1=00
At28 rer=20
At29 oo =0
Axioms of the relative or Peircean symbols:

~

At2.10 T=r1

At2.11 77s=5;T

At2.12 r;(s;t)=(r ;8) ;¢

At2.13 r; 1 =71

Axioms relating absolute and relative symbols:
At 2.14% 1 ;o0 =00 v oo ; T=o00
At2.15 (r;s)et=0—> (s, t)er=20
At2.16 o =1



At2.17 r® s=T7;5

Shorter axiomatizations have been provided, for instance, by Jénsson and Tarski [J6n52]
and Chin and Tarski [Chi50]. We adopt the above one in view of our interest in expressiveness
(see Section 6). Some of these results (marked with *) were later found too restrictive - in that
they hold only for special classes of structures - and then dropped. This is the case of At 2.14%,
as well as of Theorem 2.14* below. Our development will not rely on them.

The following are examples of the theorems of the Calculus of Binary Relations derived by
Tarski: '
Theorem 2.1 ((r;s) e t= 0iff (s;£) e 7=0) and

((ris)et=0iff (£;7) ¢ 5=0)

Theorem 2.2 If res=(0thenre 5= 0
Theorem 2.3 r+ s=3s
Theorem 2.4 0= 0and
Theorem 2.5 If sef=0then (r;s)er; t=0
Theorem 2.6 1;(s+ t) =(r;s)+ (r;t)
Theorem 2.7 r;0=20
Theorem 2.8 If res=0then (r;t)es; t=0
Theorem 2.9 (r+ s) ;t=(r;t)+ (s;t)
Theorem 2.10 0 ; r= 0
Theorem 2.11 I = 1
Theorem 2.12 1 ; r=r
Theorem 2.13 If (o0;s) @ t= 0 then (o0; t) ¢ s = 0
Theorem 2.14*% If r# oo then (o0 ;7) ;00 = o0

2. 3. The Algebraic Structure of the Algebra of Binary Relations

The intended standard models of Tarski's calculus consist of binary relations over a universe
U. Let us consider such a set Rq; of binary relations and analyze its algebraic structure under
the relation C (where, as usual, r S smeans 7+ s=s).

It is easy to observe that:
i. <isapartial order,ie., Rqis a poset,
ii. for every pair of relations rand sin Rqy, the relation r+ s (respectively re s) is the

least upper bound (respectively greatest lower bound) of rand s.

Hence, (Rqy, ) is a lattice [Bur80, Gri71]. Thus, both + and e are associative, idempotent

and satisfy the absorption laws r=r+ (se t) and 7= re (s+ t). It is also easy to



notice that oo = [ub(Re) and 0 = 4 [KR¢). In addition, for every A € Ry,
(ub(A) e Rq and glE(A) € Ry, hence (Rqy, ) is a complete lattice. :

From axioms At 2.3 and At 2.4 the lattice (R q, C) is distributive. Then, by a well known
theorem of lattice theory [Gri71], if there exists a comp[ement, it will be unique. Now, since
(R ¢, ) is a distributive lattice, axioms At 2.5 through At 2.8 imply that (Rqz, ) is a
Boolean Algebra.

It is quite clear that the relations of the form a = {(x, y)} are the atoms, i.e., the only
elements 7€ Rq that satisfy 7 C aare 0and a. Hence, (R, ) is a Complete Atomistic
Boolean Algebra [McK40], in that for every r# 0 there exists an atom asuch that 7S 4.

3. PROGRAM DERIVATION WITH BINARY RELATIONS

In this Section we will extend Tarski's Calculus of Binary Relations by means of some new
operations and constants required to obtain an appropriate relational calculus for program
construction. We will do this in an informal and naive way while deriving a well-known
programming problem, namely the Palindrome problem. The Palindrome problem is the
problem of checking whether a given sequence is a palindrome, i.e. whether it reads the same
forward and backward [Par90]. This problem can be expressed by the relation
pal={(x,y):y=T e x= x~}, where x~ denotes the reversal of x.

Since our problem is about lists, let us structure the domain of lists of elements from a given
set C. If we denote by A.the null list, we can denote the domain of lists by L* :ieLI\)ILi’ where
the Li's are the sets of all lists of length i and L9 = {A}.

Now, we will try to express the palindrome problem by means of a term of Tarski's Calculus
of Binary Relations. By its very definition, the problem can be restated as:

to check whether a given sequence equals its reversal. ©)

Unfortunately, at this point we already see that the language of Tarski's Calculus of Binary
Relations does not seem to suffice to capture our specification. Because, since it does not have
individual variables, we simply cannot make two copies of a list, which is what appears to be
needed to express restatement (0) of the problem.

Hence, we introduce two new operations on relations, namely fork and direct product. For
the sake of clarity, let us do it informally.

We call fork of relations pand g the relation:

pV g={{x,y xz):{x,y) € pAaix,z)e ¢}



Notice that the definition of fork involves a new symbol, namely the operation *. This
operation indicates pair formation: X * y = [X, y]. The introduction of this pair-constructing
operation has some important consequences. We started with a base set B = Cu L*,
consisting of elements (atoms) and lists. We now close this set under the operation #, by
including trees of elements of B. This gives us our universe U. More precisely, the universe U
= B* is the free groupoid generated by the base set B = Cu L* ( its operation being denoted
by *). Notice that operation * is non-associative ( that is why we talk of trees, rather than
strings ). In this sense, we now have a structured universe, rather than a mere set of points.

In particular, recalling that I is the identity on U, welet 2=1V 1,3=1V 2,
4=1V 3, and so forth. So, 2 is the relation {(u,u * u):ue€ U} and
3={{u,u*x(u=*u)):ue U}.

We define the direct product of relations pand qas:

pxg={{x*y,zxt):(x,2)e paly. the q}

where * is the above structuring operation on the universe U = B*.

In order to simplify the notation, we employ p x ¢ X rfor p X (g X r) and similarly for
fork.

Now, we are able to express (0) as follows:

pal=2;(1x rev) ; eql ¢h)

where rev = {(x,y):xe L*Ay=x~} is the reversal relation on lists and
eql={(x*y,z):xe L*Aye L*Az=T < x =y} is the Boolean equality on
lists. Notice that these expressions are not within our calculus.

One way to see that (1) actually expresses (0) is by means of the annotated Begriffsschrift-
like diagram in figure 3.1 below:

preserve one copy

o1 =
lists =2 eql

Z NN

produce two copies of the list \/_/ compare the original list with its reversal

true or false

reverse one copy

Figure. 3.1 - Annotated Begriffsschrift-like diagram for the palindrome problem



We should express rev, eql, and also pal, not only within our calculus, but also in terms of
basic operations on lists.
So, let us also present in a relational manner some usual operations on lists usually built into

a programming language

Ad= {{x,c):xe L*-LOAce CArc=headX)}
tl={(x,y):xe L*- LOAy = tail(x)}

cens = {{[c,x],z):ce Can xe L*Az=cons(c,X)}
init={(x,y):xe L"- LOAy =initial(x)}
[st={(x,c):xe L*-LOAce CAc=1last(x)}

app = {{[x,cl,y):xe L*A ce Cary=append(x,c)}
(hd = {(x,y):xe L= LI Ay =cons(head(x), A)}

(st ={(x,y):xe L*- LAy =cons(last(x), A)}
md=(x,y):xe L*-"L1 Ay =initial(tail(x))}

Let us now derive an expression for the relation rev (the reversal). Clearly, the reversal of a
list of length O (i.e., the empty list) or 1 is the list itself. So, we may consider decomposing rev
into two cases by partitioning its domain into £! and L" - L1. If we succeed in doing this, then
a relational sum of both cases will give us rev. Unfortunately, such domain partitioning is not
expressible in Tarski's Calculus of Binary Relations, even with the extensions we have just
introduced. '

So, we extend the theory even further. In Tarski's Calculus, we have the constant I for the
identity relation on U. Let us denote the restriction of this identity to set £* by 1/ and similarly
for 1.+ We should stress that this is not a mere notational trick; it does increase the
expressiveness of Tarski's Calculus, since we can now name a set by means of a special
relation. What we are introducing here is relativization. Note that 1.+ ; rev = rev because
Dom(rev) = 1z but Irn; rev# rev. By the definition of ;, 1.0 ; rev means the
restriction of rev to Irn, i.e., 1zn ; rev < rev, with Dom(1 s ; rev) = L0, In Section 4
we will take a closer look at this extension. A

So, the decomposition of rev into two cases by partitioning its domain into £! and L* - Ll

can be expressed by the equation:

Ip*;rev=1g1;rev+ 1ot ) Tev 2)



This corresponds to the usual derivation heuristics of trivialization. The rationale for this
decomposition was the realization of the fact that the reversal of any empty or unitary list is the

list itself. This is expressed as 1,1 ; rev= 11, Thus:
rev= 114+ 1p* 1 ;1ev0 3)

So, we are left with the problem of reversing a non-trivial list, that is revy = Iz 11 ; rev.
Now, this is probably a good point to introduce a eureka. We can try to take advantage of the
inductive structure of the domain L*. But, instead of tackling an inductive solution in a divide-
and-conquer fashion, we can actually derive it by reasoning as follows.

We can imagine the last "step" of our program as a sort of join, such as the concatenation of
the [Ad, the middle part and the [t of a decomposed list whose reversed parts we already have.
What we have in mind here is a recursive solution, since fhd and [[st are lists of length 1, which
are palindromes by definition, and the middle part is shorter than the original list. So the eureka
should be something like:

erk= 3 ; ([hd x md x [lst) @)
Hence, we can write the following equation:
X ;erk=revy (5)

The idea behind (5) is that we are looking for a value of x which, multiplied on its right by
erk , yields revz. Now, by multiplying both sides of (5) by the converse of erk,, we have:

x ;erk ; erk = revy; erk , (6)

Since Ran(erk) = Domerk) and erk. is functional, we have erk ; erk = 1p om(erk)-
Then, x = revy; ZFK is a solution for (5), which, in view of (4), we can write as:

x= 1z*.p1;rev; 3 ;(Lhd x md x [lst) 7

At this point, we can apply a property of forks: ¢t ;n=mn ; t*? (here " means the n-
fold direct product of tby itself, and n is the nth fork) whenever t;£; t = t (which is an
algebraic way of stating that t is deterministic, i.e., functional ). Thus, we can replace in (7),
rev; 3by 3 ;(revx revX rev), to obtain:

x=1g71;3;(revx revx rev) ; ([hd x md x [[st) (8)

By applying a distributivity result on (8), we have:



x=1r71;3; ((rev; [Ad) X (rev; md) x (rev ; llst)) . )

But we have rev ; (Ad = [[st and rev ; [[st = [hd, as well as rev ; md = md ; rev.
So, we can rewrite (9) as:

x=1rr1;3;(stx (md; rev) x (hd)
By unfolding into (5), we have:

revyi= 11 ;3 ; ([stx (md ; rev) x [hd) ; erk (10)
Finally, by unfolding (10) into (3), we obtain:

rev= 11+ 1p*. 71 ;3 ; ([[stx (md ; rev) x [hd) ; erk (1D

This is a final expression for rev.
Now, by definition, whenever x € £Lr*] with n > 1:
if (x,z) e mdthen; z € L*! c Ln,
if (x,z) e (hdthen, ze L < L", and
if (x,z) e lstthen, ze Ll c LM,
Thus, equation (11), together with the fact that successive applications of md eventually
reduce any list to one with length at most 1, expresses in our formalism the following inductive
argument:

Basis:

If x € L1 then the reversal of x is x itself,

Inductive step:
If x e £p*]1 | with n 2 1, then we have two possible cases:
i)  x e L7, then, the problem is solved by inductive hypothesis,
ii) x e LR, then, we can:
decompose x into three lists: cons(head(x), A),

cons(last(x), A), initial(tail(x)), each of which belonging

to LR, obtain their reversals (by inductive hypothesis) and join
appropriately these lists.

We still have some further comments about the derivation we have developed. After
introducing the eureka, the whole derivation of a term for rev is mere calculation. Also, the

10



requirement of equality in equation (5) is usually too strong. What we should require is that
x ; erk.c revy and Dom(x ; erk) = Dom(revy). This relation will be denoted by ¢«e and
will be discused formally later on. Here, it suffices to point out that one solution of the equation
X ; erk <e revy, turns out to be the weakest pre-specification introduced by Hoare and Jifeng
[Hoa86]. Our solution for x ; erk = revz amounts to their strongest pre-specification.

The Begriffsschrift-like diagram for (11) appears in figure 2.

1n
+
(st IFd
/_- X X K
1.+ 4 3 md; re md 3
X X
(hd [Ist
~—
erk.

Figure 3.2 - Begriffsschrift-like diagram for rev

Notice that the rightmost part of the preceding diagram, i.e. erk, can be detached when rev
is used, as in this case, as part of a larger algorithm.
Now, notice that2 = {((u * v,u):ue Uave Uau=v)} So, by letting

true={(u,b):ue UAb=T}
false={(u,b):ue UArb=F}

we can express the specification for equality of lists as
eql=(1g*x 1) ; G ; true+2=;faﬁse)

From it, and by similar calculations we can derive an expression for eq[ of the form:

eql= trivial+ (10X 1p*-10) ; (12)
2;((hdx Ad) x (tLx tD) ; (smex eql) ; and

where:
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trivial= (1o x 1.0); true+ (Lo X 1+ r0) ; false+ (1p- o x 120) ; false (13)
smc={{c*d,b):ce CAde CAb=T e c=d}
and={(b' *b" ,b):b'e Boolab"e€ BoolAb=b"ADb"}

Note that the use of trivial is an example of filtering and smc is the Boolean equality
between elements of C. Also, true and false are constant relations (in that each one of them
relates any object of the universe to a fixed Boolean value), whereas andis simply the relational
counterpart of the conjunction operation on the sort Bool = {T, F}.

Now, equations (1), (11), (4), (12) and (13) form a kind of equation system, which
characterizes the algorithm we are deriving

pal=2;(1x rev) ;eql
rev= 11+ Ip*-z1 ;3 ; ([stx (md ; rev) x [Ad) ; erk
erk= 3 ; ([hd x md x [lst)
eql= trivial+ (1= 0 X 17 10) ;
2;((hdx id) x (tLx tD)) ; (smc x eqD) ; and
trivial= (1o x 170); true+ (1o X 1p* r0) ;fa[ge+ (1r*-r0 X 170) ;fa[se

This means that, at the appropriate level of abstraction, this algorithm will

i) solve the palindrome problem by making a copy of the list, reversing it, and comparing it
with the original list (1);

if) reverse the list by, first, splitting it into its head, its middle part and its last, and then
interchanging its head and last and recursively reversing its middle part (11);

iii) compare the reversed copy with the original list by recursively splitting both lists into their
heads and tails, and comparing, within a kind of join process, their heads as atoms (12).

Note that, if we unfold (4) into (11), (13) into (12), then (1),’(11) and (12) give an algorithm
that solves the palindrome problem. But for the sake of efficiency and elegance, and because
our goal is to explain how we derive programs by means of this calculus of relations, we will
continue with our derivation.

We could directly unfold (11) into (1). But , in order to simplify the algebraic
manipulations, we may try to reuse some decisions used in the derivation of rev. In this case,
we decide to apply trivialization to pal So,

pal=171;2;(1X rev) ;eql+ 1p=p1;2;(1xrev);eql

12



By distributing,

I1p1;2;(I1xrev)=2;(1prx 1p1);(1X rev) =
=2; (11 ;1)x(Ipr;rew)) =2; (1 x (1p1;rev))

The trivialization of rev gives 1,1 ; rev= 1. Finally,
1p1;2;(Ixrev)y=2;(1lprx 1p1)=171;2

Similar manipulations on the second summand yield
Igs-pr;2;(Ixrev)=2;(1g-pr X (1ps-prjrev))
where we can directly unfold (10). Thus we obtain

pal=171;2; eql+ (14)
Ip-p1;2;{1x 3; (stx (md ;rev) x [hd) ; erk} ; eql

It is easy to observe that the first summand of (14) can be straightforwardly transformed into
171 ; true, which means (Vx)(x € 11 — "X is a palindrome"). Further manipulations on
the second summand, which we will call (b), can begin with an unfolding of eqf according to
(12), and then proceed by simple manipulations, to obtain:

(b) = Ip=~r1; (15)
2:{1x 3;([stx (md;rev)x [hd) ; erk} ;
2;((hdx hd) x (t[x tD) ; (smc X eql) ; and

We have introduced forks as a way of producing copies of individuals, and then direct
products to deal with the objects created by forks. We now introduce projections to decompose
such objects into its components. They are convenient shorthand for some special relations, in
that they can be defined as follows [T = 1V oo and [Ip =00 V 1

As usual, projections are also useful to rearrange expressions involving direct products and
forks. For instance, ((p X @) x (rx 8)) ; t=(px 1) x (X s), where t is the term
(IT1 ;11 VIIp ;I17) V (I11 ; 12 V I12 ; [17). This illustrates the terms, built with
projections, forks and direct products, often used in taking care of the so-called formal noise

(an expression apparently coined by P. Pepper).
A rearrangement of (15) yields
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(b)= 1p=r1;2; (16)
{(2;(hd x [st) ; sme) X '
(2;(tlx (2 ;((md ; rev) x hd) ; app)) ; eqD)} ; and

The derivation can now proceed in this manner, namely by algebraic manipulations, without
any kind of eureka beyond algebraic gestalt. These manipulations employ algebraic properties of
the various operations, as well as properties of individuals, expressed algebraically. For
instance, the property of lists: for all a;,az € CAxy,xp€ L

X1 eql Xy A ay smc az & cons(ay, x1) = cons(az, Xz)
can be written as:
(smex eql) ;and =2 ;t;(cnsx cns) ; eql

where tis the term for taking care of formal noise introduced above.
In this manner, one can obtain the expression:

pal=1p1; true+ (17)
Ipr1;2;(2;(hdx [st) x md) ; (smcx pal) ; and

Program (17) can be transformed by simple algebraic manipulations, yielding:
pal= 1p1; true+
1501522 (Adx [st) ; sme) x md} ; (Ifp x 1) ;11 +
Ir 1 ; 2;:{(Q2; (Ad x [st) j sme) x md} ; (It x 1) ;112 ; pal

(18)

which is a clearer instance of the iterative unary divide-and-conquer scheme p=t+ ¢ ; p.
Notice that I It

Both (17) and (18) express executable specifications, i.e. programs. They are executable
because they involve only directly executable list operations and algorithmic constructs on
relations.

To complete the discussion of the use of the present extension of Tarski's calculus of
relations in deriving programs from specifications, we will point out some derivation
alternatives.

For instance, in deriving an expression for rev, we have resorted to a kind of biased weakest
precondition strategy by means of the introduction of erk as a eureka and the equation
X ; erk= 171 ; rev. We may instead follow a somewhat more classical divide-and-
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conquer strategy, introducing erk as the eureka, and then solving the equation
erk;y = 1p*- 11 ; rev.

Also, we have first derived expression (11) for rev and then used it in deriving expression
(17) for pal We can instead derive (17) directly from (1) by means of properties of rev and
eql- Such a derivation starts by applying the heuristics of trivialization directly to (1) to obtain

pa[ =11 true+ 1o+ g1 ;pa[

Then, for 1+ s ; pal we apply the eureka that any such list can be decomposed into three
parts, from which the original list can be recovered. This is expressed by

I = demp ; remb with demp = 3 ; (lhd x md x ([st)
Thus,
g1 pal=demp ;remb; 2 ; (1% rev) ; eql.

Now, by applying the distributive property of forks t;n =mn ; % and properties of
rev, we obtain for I, 1 ; pa[ the expression

demp 3 25 {remb x (X2 ;T2) V ((I12 ;1) ; rev) V I11) ; remb} ; eql.

If we apply properties of egl together with the distributive property of forks and rearrange,

we can transform this expression into
2;{(2;(hd x [st) ; smc) x 2 ;(mdx (md ;rev)) ;eql} ; and
Now fork distributivity will give

2;{(2;(hd x [st) ;smc) x (md;2;(1x rev) ;eql)}; and

whereupon folding of pa[ according to (1) will yield (17).

Section 8 presents some further remarks on these derivations, as well as on derivation

strategies in general.
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4. TERMINATION AND PARTIALITY

The preceding Section indicates how Tarski's calculus of binary relations can be extended so
as to deal with some program derivation needs. The question we start examining in this Section
is: do our extensions actually provide a calculus for program derivation?

Let us begin by noticing that the introduction of relativized identities enables us to express,
and reason about, partial correctness. Indeed, consider a program denoting relation p and a
specification denoted by a relation gand a set ‘7. We can express the partial correctness of the
former with respect to the latter by Iy ; pC 4.

But, notice that we are dealing with relations over the universe U, thus, they are partial, in
the sense of not being defined outside their domains. This means that the corresponding
programs fail to terminate outside their domains. We can easily express the domain of a relation
rby its identity 1pom(s) = (r;7) o 1. But, we cannot so easily calculate with this
expression. Also, even if relation ris decidable, its domain may fail to be so, being only
partially decidable. These are some of the reasons for using preconditions for specifying
decidable subdomains. Several authors, like Dijkstra and Hoare, consider the programmer
responsible for providing an adequate precondition.

For a simple-minded example, consider the case of a program whose behavior is the relation
y 23 over the reals. Clearly, no one would feed x = 0 into this program. So, an appropriate
precondition would be, say, x > 0. If we cal W1 ={x:x >0} and
n={xy):y= a;}, then the semantics of the preconditioned program will be the pair
(WA, ), termination being expressed by Wy € Dom(ry).

Generally, one gives a program together with a set of values & over which it will terminate;
such a set is usually described by a precondition. In our extended version of Tarski's calculus,
such a set R can be referred to by means of its identity 1g. Clearly, any Boolean Algebra
&= (4, U, N of sets over U gives rise to an isomorphic Boolean Algebra (3g,+, ®) of
relations, where Jgis the set of all the identity relations on sets of A We can restrict a relation r
to a precondition describing a set Wby means of the relative product 19y ; rin view of the
following simple Lemma.

Lemma 4.1  The restriction of a given relation rto a given set Wequals 1qy); 1.
Proof Since 1gy; r< 1, it suffices to prove

Dom(ly ; =W Dom(r) @)
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In view of the Boolean Algebra isomorphism between sets and their identities,
(i) is equivalent ©0 IDom(1qy ; 1) = 1WA Dom(r) = 1W * 1Dom(r)-
But 1pom(1qy ;1) = 1Dom(1qy) 7 1Dom(r) = 1w ; 1Dom(s)-
We should note, now, that I1gy e 1pom(r) = 1w i 1Domr).

QE.D.

This is not the only way of associating a precondition to a relation. Hoare and Jifeng
[Hoa86] represent a set Wby a special relation cq), which they call a condition. A condition
cw has Dom(cqy) = W and Ran(ew) = U, i. e, ¢y = cq ;. (Such conditions,
under the name of vectors, are also used by Schmidt and Strohlein [Sch85] for obtaining
representations for relation algebras.) Thus, the restriction of relation rto set W is represented
by cqy e r. The connection between these two natural ways of representing sets by binary
relations is straightforward, since cq = 19700 and I = cp/ ® 1.

So, the effect of imposing a precondition denoting X to the program that computes the
relation 1can be expressed by means of the relative product 1g ; r. The fact that this program
terminates over R is expressed by R < Dom(r) (or, to express it in the calculus of relations
and not in the elementary theory of relations, 1g © r; . So, we should associate to each
relation re Rq aset R, so that the pair (R, 7) satisfies the termination condition
T: RS Dom(n).

The above considerations suggest that we can express the effect of adding a precondition to a
program with our notation. But, is this enough for a program derivation calculus? Assume that
we already have a program (W1, r1) as above, as well as a program with
rm={(xy):y<(y<-bx?-cx3-dx2-ex +f} with Wp={x:0<x<h} as
its precondition, and that we wish to derive from these a program to find solutions for the
system of inequalities

0
a (€)

X
x <h

-bx4 - cx3-dx2-ex + f

< O < =
AN in IV v

We now have the situation depicted in Figure 4.1.

Simple inspection of the this diagram indicates that set W3 = Wp N Wh does not satisfy
the termination condition W3 < Dom(ry ® m), call it ®. In order to obtain a reasonable
precondition Wfor this program we must determine Dom(r ® r); in this case, this amounts
to finding points x1 and xp in Figure 4.1. Thus, we have to determine solutions x1 and x2 of the

system of equations
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a
Y=x
y =-b

x4 -cx3-dx2-ex + f

Now, we wish to calculate such a precondition W from (W}, r1) and (‘Wh, m). So, we
need an algebraic expression for x; and x7 in terms of the coefficients of the two equations
above. But, this is tantamount to having an algebraic expression for the roots of the fifth-degree
polynomial -bx5 - cx4 - dx3 - ex? + fx - a. The latter is known to be impossible since
Galois.

(—— W, ={x>0}

( Wy Wy ={0<xsh} —

7‘10 r2

——— W)= (€ x <h)

Figure 4.1

The point of the above example is twofold. On the one hand, it illustrates that the intersection
of preconditions for rj and m may fail to be a precondition for r1 ® 7. On the other hand, it
indicates that we cannot rely on a calculus of preconditions.

The first point is a consequence of the known property of relations, which is the gist of
remark 4.2 below. We have the algebras /= (A4, U, Nn), of preconditions, and
K =(Rq, +, ¢)), of binary relations. In order to associate to each relation rin Rq a
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precondition Rin A, we perform the direct product of both algebras, which yields a new
Algebra srx %, where each element is an ordered pair (&, 7). But what is the effect of
restricting these pairs to satisfy the termination condition ©? Is the resulting structure still a
Boolean Algebra? Unfortunately, as will be seen shortly, the answer is no. Let
E={(R, e AXRy: Rc Dom(n}.

Remark 4.2  The set € of pairs that satisfy the termination condition T is not necessarily

closed under o.

Proof Given pairs (R, 7 and (S, s) in &, we have, by definition:
(R, e (S, 9)=(R N S, 19 5).
If(RN S, res)e F,then R nSS Dom(res) )
But, by assumption,
R < Dom(r) and S < Dom(s) (i)
In particular, (ii) will hold with:
R=Dom(r) and § = Dom(s) (iii)
Replacing (iii) in (i), we have:
Dom(r) N Dom(s) < Dom(re s) (iv)
But, by a well known theorem of the theory of relations [Sup60] :
Dom(re s)  Dom(r) N Domls) » v)

Thus, (iv) can hold only when Dom(r) N Dom(s) = Dom(re s).
QE.D.

In fact, there is a simple necessary and sufficient condition for the glb of two terminating
preconditioned programs be again so.

Lemma 4.3 Given (R, r) and (S, s) in €, (R, r) ¢ (S, s)e & iff
Dom(1lg ;D N Dom(ls;s)=Dom((Ige 15) ;(res)).

Proof By assumption,
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Dom(1lg ;) =R and Dom(ls;s) =S . @)
We have, by definition:
(R, ) o (S, 5)=(Rn S, 19 3).
Thus,
(R, e(S,s)e € iff RN S=Dom((Ign s);(res))
The latter, by (i), is equivalent to
Dom(lg ;1) N Domls;s) = Dom((Ig e 1s) ; (re )
Q.E.D.

Let us now address the second point illustrated by our example, namely that we cannot rely
on a calculus of preconditions. Such a calculus should enable us to derive an appropriate
precondition for 71 ® m from preconditions WA for i and Wh for m, without relying on r
and m, in particular without computing Dom(ry ® ).

What Remark 4.2 states is that € does not form a sublattice of (4, U, N) X (Rqy,+, ).
But, it might very well be a lattice with its own g/b. When can we determine this g/b in a
componentwise manner? In fact, does there exist a pair of operations enabling the
componentwise calculus? Only in trivial cases in the following sense. Call € non-trivial if it has
two  pairs that fail to satisfy the condition in Lemma 4.3:
Dom(1g ; ) N Dom(ls ;s) = Dom((Ig e 1s) ; (1 3)).

Theorem 4.4 If € is non-trivial, then there exists no pair of binary operations é on A4, and
g, on Ry, such that (AR, 5), g(r, ) = gI6UR, 1), (S, s)}, for every
(R, r) and (S, s) in € .

Proof Pick (R, ) and (S5, s) in & such that

Dom(lg ;1) N Dom(ls;s) # Dom((Ig e 1s) ; (re 5).
On the one hand, notice that
(D, D and (D, s) are in € and glo{(D, 1), (D, )} = (D, re s).

Thus, g(r, ) =T s
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On the other hand, consider

R and Sin 4 and notice that (R, oo) and (S, oo) are in € and

GIB{(R, ), (S, )} = (RN S, o).
Thus,/(ﬂ{,, SH=RnNS.

Therefore ({(R, S5), g(r, ) =(R N S, re5) ¢ €.
QE.D.

Notice that naming % non-trivial if the equality Dom(Ig ;) N Dom(ls; s) =
Dom((1g ® 1) ; (re s)) fails to hold is not a misnomer because enforcing such condition
indeed trivializes the structure. Sufficient conditions for non-triviality are, for instance, (i) the
existence of two total relations with disjoint ranges, or (ii) A being rich enough so as to contain
the domains of the relations in R ¢;. Notice that (i) is illustrated by relations such as true and
false of Section 3. On the other hand, the non satisfaction of (ii) would preclude those
algorithms that fit their preconditions like a glove. Thus, any structure € appropriate for
program derivation will indeed be non-trivial. :

Theorem 4.4 shows that there is no componentwise manner of determining the g/b of
terminating preconditioned programs which gives as a result a preconditioned terminating
program. In a sense this is due to the behavior of the domain of the g/b of relations, as noticed
in remark 4.3. A refinement of these ideas indicates that the situation is even worse. If all one
knows is Dom(r) and Dom(s), then Dom(re s) may be just about anything that can be
expected, i. e., within Dom(r) N Domls). This is the content of the next remark.

Remark 4.5 Given any relations rand s and an arbitrary set ‘W < Dom(r) N Dom(s),
letr’ =r;o0 ;1gand s'= 1gp ;s;00 ; Igw+ ITqp; s ;00 ; Iy,
Then, Dom(r’) = Dom(r) and Dom(s’) = Dom(s); but
Dom(r e s)=W.

Proof Letsi=1g;s;00 ;1lgand so= Iqg;s ;00 ; Iy
Then s'=s1+ 9, and s1 € 1g ;00 ; Iy and sp € Iqy; 00 ; Iy
Similarly, with 71 = Igp ;7,00 ; Igpand m= I9p; 7700 ; Loy, we

haver=ri+ m,and 11 C Igp ;00 ; Igpand m S Igp ;o0 ; 1qy.
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So, e sp S (o0 ;Igy) e (o0 ;1) S oo j(Igye Iq) = 0.
Similarly, m e 51 S (I e 1qy) ;o0 = 0 and ri e 50 = 0.
Thus, 7" e s’=r11 @ s1 = 1q ;[(r;o00 ) e (s;00 )], 1Iy.
Now, we have

Dom(s’) = Domfs’; o) =

= Dom(ly ;js;oo+ Iap;s;o) =

= Dom(s ;o) = Dom(s).

Similarly, Dom(r’) = Dom(r’; ) = Dom(r).

Finally, Dom(r’ e s’) = Dom(lgy ;[(r;00 ) e (5,00 )]) = W.
QE.D. '

In the preceding remark we obtained the new relation s’ from the given sin a manner akin
to the strategy of case division. Thus, if we have relations rand sin a derivation, we may very
well obtain a relation like 7 o s’, whose domain bears very little relationship to the domains of
rand s.

The preceding results provide an adequate framework for the analysis of the general situation
illustrated by our preceding examples. For this purpose, consider Figure 4.2.

The left and right top lattices represent cases as in the example. The left top lattice, Ty ,
depicts the pairs (R, 7 such that R & Dom(r), which represent all terminating, hence in €,
preconditioned programs with behavior r. So, our first program is represented by such a point
(R, 7. Similarly, the top right lattice,T,, represents all terminating preconditioned programs
with behavior s. So, our second program is represented by such a point (S, s). The bottom
lattice % represents the g[lbh's of elements of T, and T,. So,
F={(Rne(S s)e AxRy (R nNe TyarlS s)e T,}; now, in X X,
we have (R, ) ¢ (S, s) =(R N S, res). As such, F° is in one-to-one correspondence
with the powerset of Dom(re s). This lattice .9°, which represents preconditioned programs
with behavior re s, has two interesting parts. The bottom one, T, represents terminating
preconditioned programs with behavior re s, whereas the top one, €, represents programs
with behavior re s whose precondition may be too big in the sense of including Dom(re s).
This is to be expected, even though both Ty € € and T, C €, in view of remark 4.2.
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( Dom () N Dom(s), res)
(Dom(n, r) (Dom(s), s)

(RNS,res)

(Dom(res), resy

O
(D, res)

Figure 4.2

Now, we would like to have (R, ) @ (S, s) in the bottom part T. Theorem 4.4 states that
we cannot calculate a precondition for re s solely from & and S. Now, consider point
(Domre s), re s). Remark 4.5 tells us that this point may be anywhere within 2°. Thus,
we cannot actually pin down its position, and hence do not know the boundary between T and
%. Thus, concerning (R, 1) ¢ (S, s), we do not know whether it is inside T, neither do we
know how far it is from T.

One might say that the culprit is the operation of g/b on relations. In fact, some authors
[Hoa86] suggest eliminating it (just like the goto) from the programming language, at least. But
this suggestion has some undesirable consequences. For, V and e are intimately connected, as
indicated in the next lemma.

Lemma 4.6 Given relations rand s, we have

@ xrVswiff (Qy)@z)(w =y *zZAXTY A X §2),
for all x, w e U,

(b) res=(rvVs);2 and
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© 1V s=(rVoo)e(eoV s)=(r; 1l1) e (s; 1Ip).

Proof Immediate from the definitions.
QE.D.

Equation (b) in lemma 4.6 implies that any set of binary relations that is closed under V and ;
and includes the filter-like equality 2 (which it will if it is closed under converse) must be closed
under o, as well. Thus, eliminating intersection entails eliminating fork as well. The previous
section suggests that fork is a useful tool for expressing programs, in that it enables one to
produce copies. (In section 7 we will prove that with fork we have the expressive power of
first-order logic, which makes our extension adequate for expressing specifications as well.) On
the other hand, part (a) of lemma 4.6 shows that fork can be defined in terms of existential
quantifiers and conjunctions. Thus, by eliminating fork, our expressive power will fall short
from first-order logic, which will have deleterious effects for a derivation calculus.

Summing up our discussion so far, we can say that there is no calculus of preconditions
adequate for program derivation. The only information we can give for such termination
condition is an upper bound for it. If we notice that Dom(r e s) is the largest set that can be
involved in a termination condition with r e s, then it is evident that
(Vx)(x € (Dom(r) N Dom(s) — Dom(re s)) — (re $)T (i.e., there will be no pair
in re s whose first element is x). This suggests reversing the inclusion sign in the termination
condition, i. e., replacing it by R o Dom(r). Let us see what we can expect to gain form this
suggestion.

Let us examine again the objects (R, r) of the algebra s/x % with respect to the
termination condition. The termination condition characterizes two interesting subsets of the
algebra X %, namely the subset T of terminating preconditioned programs, and the
subset D= {(R, 1 : R 2 Dom(n)}. We already know that T is not closed under the g/b
of &% Z . But, it is easy to see that 9 is a better behaved subset of /X % .

Theorem 4.7 The subset &= {(R, 1) : R 2 Dom(r) } forms a sublattice of 2% .
Proof | Given pairs (R,  and (S, s) in &, we have, by definition:

(R, D+(5,8)=(R U S,r+s) and

(R, e(S,)=(R NS, ,res).

Since R. 2 Dom(r) and § 2 Dom(s), we have
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RUS 2 Dom(n)u Dom(s) = Dom(r+ s) and
R NS 2 Dom(n)n Dom(s) 2 Dom(res)
QE.D.

But, we gain more than simple closure by considering & instead of T. This will become
clearer from an analysis of Figure 4.3.

Each lattice in Figure 4.3 is similar to the bottom lattice in Figure 4.2, but for the fact that
now the top element consists of a relation and a set including its domain. For a given such pair
(R, » with R 2 Dom(7), the left top lattice depicts all pairs (X, 7), with the given relation
with X< R, Thus, it represents all preconditioned programs with behavior rand precondition
included in R, Similarly to Figure 4.2, the totally correct ones form the bottom part Ty, whereas
those with termination domain including Dom(r) form the top part 9, . Likewise, the right top
lattice depicts all pairs (9, s), representing preconditioned programs with behavior s whose

precondition is upper-bounded by 5, and analogously for its parts T, and .@'p.

(R, 1)

(RN S, res) (5,57

(Dom(n, r) { Dom(s), s)

(Dom () N Dom(s), res) (Dom(re s), res)

(D, res)

Figure 4.3

The bottom lattice represents the glb's of elements of the top two lattices. As such, it
represents the preconditioned programs with behavior to 7e s whose preconditions are
included in RN S. This bottom lattice has two interesting, but unfortunately hard to pin down,
points, marked as ? in Figure 4.3. The upper ? represents (Dom(R) N Dom(S ), re s) and
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separates the part &' = ((X N Y, res): X2 Dom(r) A Y2 Dom(s)} from the
bottom lattice Z°of Figure 4.3. The lower ? divides Z’into two parts T and &, as before. Now,
we already know that, for (X, ) e &, and (Y, s) € F, (X, 1) » (7, 5) may be just
about anywhere within %% On the other hand, for (X, r) € T, and (9, s) € Ts, we do have
{X, r) e (Y, s)in D, in view of Theorem 4.7.

Let us now interpret the above remarks in the context of program derivation. The reason for
marking some points with ? is the fact that in general we cannot calculate the domain of a
relation, thus we have some uncertainty about it. One way to get around this is by means of
preconditions, which means that our uncertainty is some lattice like one of the top T's in Figure
4.3. But then, when continue as in our example towards r e s, this information, which was
partial, is lost, for our uncertainty is now °. On the other hand, if we work with upper bounds
for the domains, our uncertainty is some lattice as one of the &'s in Figure 4.3. Then, it is
preserved, in that the uncertainty with respect to r e sis the sublattice & of the bottom lattice in
Figure 4.3.

This discussion clarifies the role of the upper bound on the domain of a relations. If all that
one wishes is to reverse the inclusion in the termination condition, one might as well employ a
very loose upper bound, say the universe U. We clearly have Dom(r) € U, but then we lose
information. For Dom(r) € R gives some information concerning non-termination, namely
outside K we know that ris not defined. In terms of Figure 4.3, the use of U instead of a
tighter upper bound for the domain, would increase the sizes of the lattices &'s , and hence the
uncertainty concerning termination domains. Notice that using the universal upper bound U is
equivalent to totalizing all relations by the addition of a bottom element L.

The net product of our development so far is the conclusion that a Calculus of Binary
Relations appears to be appropriate for program derivation, but only as a first approximation,
since one needs to associate sets to such relations in order to take into account the question of
termination.

We wish to develop a Programming Calculus based on a Calculus of Binary Relations. This
calculus will deal with elements of %X . Let us call [P the set of such objects. If we whish to
derive as in Section 3, we should make P closed under converse. By this we mean that, if we
have in [P an object representing a partial relation ron R, i.e., R 2> Domlr), then we should
also have in IP an object corresponding to a partial relation ¥ on some R*, i.e., R* D Dom(r
). So, the information we should give about our partial relations can be presented as a 3-tuple
(R, R*, 1) subject to the restrictions R 2 Dom(r) and R* o Dom(r ). It easy to see that
both conditions can be expressed together as r< R X R*. Such objects will be called
problems, since their structure resembles the notion of problem introduced by G. Polya
[Pol57]. Polya suggested three questions in approaching a problem: what are the data? what are
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the results ? and what is the problem condition ? The answers to these questions [Vel84] yield
the same structure (X, K*, r) we have arrived at.

5. THE ALGEBRAIC THEORY OF PROBLEMS

We shall now start the development of an Algebraic Theory of Problems appropriate for
program derivation. First of all, we should precisely define our universe. Let S be a class of
basic sorts. We will consider each basic sort "I/ﬁ described by a unary relativization predicate o
and denote by B the closure of S under U and M. Now, the universe U= B* is the free
groupoid generated by the base set B.

Definition 5.1. A problem over S is a 3-tuple P = (Dp, Rp, p) where Dp and Rp are
subsets of U and p< Dp X Rp.

We will refer to the set Dp as the data carrier, to the set Rp as the result carrier and to the
relation p as the condition, of the problem P. '

We will denote by 1 the problem (U, U, 1). We have ’W] ={u:ue UA u)j(x)},
then we define the problem 1y = (Wj, wj, lrwj).

From above discussion the natural ordering on Pq; is "being a subproblem", which is

defined as follows:

Definition 5.2. Pc Qo (DpcDgARpPESRogApS 9

Definition 5.3. P=Q < (Dp=DgARp=RgAap=¢

For some developments it is clearer to present a problem P as a'3-tuple (PT, P1, p) where
PT = Rp - Ran(p) and Pt = Dp - Dom(p), whence P+ N Dom(p) = PT A Ran(p) =
. We will use the notation:

which displays a problem by means of its condition together with two sets Pt (data indefinition
set) and PT (non-reachable result set ).

Recalling the discussion in the previous Section, the relationship between Dom(p) (or
Ran(p)) and Dp (or Rp) defines some special classes of problems. We will say that problem P
is viable [Vel84] (which will be denoted Vib(P)) if its condition is total over Dp. We can
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express formally this definition as Vib(P) iff (Vd)(de Dp ->@r)(reRp A p(d, 1)), or,
in a relational manner as, Vi6(P) iff IDp € p ; P . Using the alternative representation:

VibP) & P = p|2

T (19)

A surjective problem will be one whose condition exhausts its result carrier. Formally,
Sur(P) iff (Vr)(re Rp »(3d)(de Dp A p(d, r))), ie. IDp S P ; p. Or, equivalently

Sur(P) < P = p‘ o . (20)

%)
Clearly, Tarski's axioms hold for the viable-surjective problems, which will be called
Tarskian problems, or simply T-problems. Formally, Tar(P) <> Sur(P) A Vib(P), ie.,

Tar(P) & P=p 2

— 21
> 21)

Similarly, we call P injective if its condition is injective, i.e., InfP) iff p; p < 1, which
obviously can be expressed as Inj(P)iff p ; p ; p =P

We call P deterministic if its condition is functional, i.e., Det(P) iffp ; p < 1, or
Det(P) iff p;p; p= p.

5. 1. The Algebraic Structure of (P¢;, &)
It is easy to see that C is a partial ordering. A very important property of any algebraic

structure is the existence of a [ub and a glb for each pair of elements in it. Given problems
Pand Q in Pqr:

[ub{P,Q} =(Dpu Dg, Rp U Rg, pu 9g),

(P U Dom(p)) N (Qr v Dom(q))) - Domlp e q)
(PT U Ran(p)) N (QT U Ran(g))) - Ranlp ¢ )

glb{P,Ql =pe g

We present glf{P, Q} in the alternative notation to clarify the connection with the discussion
in Section 4.

Thus, (Pqj, ) is a lattice, so we define addition of two problems as their (ub, and
intersection as their glb; i.e. P+ Q = (ub{P, Q} and P @ Q = 4/b{P, Q}. Hence,
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~
i

P+Q¢o (DR=DpuUDgARR =RpURgAT=p+¢g).
R=Pe Q& (DR=DpN DgARR =RpN RgAar=pe .

Therefore, + and @ are associative, commutative, idempotent, and satisfy the absorption
property, i.e., P=P+ (Pe Q)and P=P e (P + Q).
We can extend the concepts of addition and intersection from binary to infinitary operations:

given ACPyq,let YP=lubAand® P=glbA.
PeA
Other properties of the lattice (Pqj, <) are:

i. itis complete,

ii. problem o= (U, U, Ux U is its lub and problem 0 ={(J, &, 0) is its glbh,

iiih,. P+0=P and Pe « =P,

iv. itis a distributive lattice,ie., P+ (Q@®@ R) = (P + Q) @ (P + R), and
Pe (Q+R)=(Pe Q)+ (PeR).

5. 2. The Algebraic Structure of the Tarskian Problems of P

Let us call Tq; < Pqj the set of the T-problems over U. Clearly, (R ¢, <) is isomorphic to
(Tq, €). Thus, (Rqz, S) is a Complete Boolean Algebra, but (Tqj, S) is not a sublattice of
(Pq, ©), as we shall see. The next Theorem is related to the discussion in Section 4, in
particular to Remark 4.2 and Lemma 4.3.

Theorem 5.1 The intersection P ® Q of T-problems P and Q is a T-problem iff
Domp) N Dom(q) = Dom(p e g).

Proof By definition:
PeQ =peg ((PTTU Dom(p)) N (Q1 U Dom(q))) - Dom(p e q) @
(PT U Ran(p)) 0 (Q" v Ran(q))) - Ran(p * q)
But, since P and Q are Z-problems, (i) becomes
(Domp) N Dom(q)) - Dom(p * q) (ii)

P = ™
*Q=v q‘ (Rarp) A Ran(q)) - Ran(p o 4)

Now, P @ Q is a Z-problem iff
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(Dom(p) N Dom(q)) - Dom(pe q) = and
(Ran(p) N Ran(q)) - Ran(p e q) =&

QE.D.

From this Theorem it is clear that T¢;is not closed under intersection of problems. Although
(Tq1, <), being isomorphic to (R ¢y, ), is a complete atomic Boolean algebra, it is not so
with respect to the subproblem ordering (i.e., the operations + and @). Furthermore, in view of
Theorem 4.4, there is no componentwise manner of determining the g/b operation induced by
the above isomorphism. Notice that the intersection P @ Q of I-problems P and Qisa‘-
problem if Inj(P @ Q).

It should be also noted that the wb{P, Q} =P + Q of any two I-problems is always a ‘-
problem. Hence, ( Ty, g} is an upper subsemilattice of (P qj, <).

5.3. Special Problems: Atoms and Zero-like Problems

For every x and y in U, let us denote by O, the set of the problems 0x = ({x}, &, 0) , by
0° the set of the problems 0* = (J, {x}, 0), and by 0. the set of the problems
0y {x}.{y}, 0) It is not difficult to see that 0, L 0° is the set of atoms of (P gy, &).

Notice thatP = {Py X,y € U}, with Py {x3 {y} {{x b, 1s the set of atoms
of the upper semilattice (T qz, ). Nevertheless, the problems Py € IP are not atoms of
(Pq, ), since PY @ P~ =0y, if y #z, and P e P)=0Y if x#z.

Consider now the subset O of P¢; consisting of the problems of the form Op = (D, &, 0),

=(J, R, 0) or OR 0p + 0R It is easy to see that (0, C) is a sublattice of (Pq, <)

whose glb is 0, and whose lub is 0

5.4. Complements and Difference of Problems

Recall the concept of pseudocomplemented lattice: (Pq, C) is pseudocomplemented iff for
every problem P there exists P’ = max{Q e Py:Pe Q =0} in (Pq, <); in such case
P’ is called a pseudocomplement of P.

Theorem 5.2. The problems of (Pqj, C) that have pseudocomplements are exactly the 7-

problems.

Proof Given P=(D,R,p), let Q ={Q € Py :P ® Q =0} and
P’ = maxQ, say P’ =(D’R’,p’).
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First, notice that Q is nonempty, for 0 € Q.

Given an arbitrary triple Q =(S, T, q) , we have Q € Q iff the following
four conditions hold

@) qSSxT
@ DnNnS=0
Gi) RAT =0
vy png=60.

Given Q =(S5, T, g) e Q, let Qp =(Dom(p), T, ¢). Notice that
Qp € Q, because, since p S D xR,

gSSxTcDxXTg Dom(p)xT, by (i) and (ii),

DN Dom(p)cDND =g
RNnT=0
pn qg=0.

In view of the maximality of P’, we must have Qp < P’;
hence Dom(p) < D’.

Since Dom(p) < D, we have D € Dom(p)< D’ < D.

Hence, D = Dom(p)and D = Dom(p).
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A similar argument with QR = (S, Ran(p), ¢) gives Ran(p) S R,
whence R = Ran(p).
This shows that P is a T-problem.Then, clearly p’ = p

QE.D.

Corollary 5.3. The lattice (Pqy, S) is not pseudocomplemented.

Definition 5.4. Given problems P and Q we define their difference P — Q by

P-Q=406{S:S+(PeQ)=P} (22)
Thus: b
(P+-Q1) - Dom(q)
P-Q=yp- 23
B TP RTIN  Ranty) @)
Definition 5.5.  Given problem P, its co-pseudocomplement is the problem
P=c-P.
Thus:
_ (& -Pp)-Dom(p) _ |
_ 2 om(p) _ =32 24)
(& -P") - Ran(p) %

ie., P =(Domp), Ran(p), p), which is always a T-problem. For a T-problem P, P is its
pseudocomplement P’.

Notice that Tarski's axioms At 2.7 and At 2.8 no longer hold on the lattice (P qq, C) and
have to be modified. The revised version of At 2.8 isPe P = 0P .The revision of At 2.7
amounts to P + P = o (which replaces complement by co pseudocomplement). Similarly,
Tarski's At 2.9 holds for co-pseudocomplement : s = 0.

5.5. Complete Subproblems

The notion of complete subproblem over Pq; was introduced informally in Section 3. We
shall say that P is a complete subproblem of Q iff P is a subproblem of Q and every Skolem
function of (Vd)(de Dp - (3r)(reRp A p(d, r))) is total over D om(q) [Hae87].
Formally:

Definition 5.6 Pce Q> PSQADom(p)=Dom(q).
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Definition 5.6 states that every data-result pair in P is in Q as well and every data
connected to some result in Q is likewise in P. If we regard P and Q as models of
specifications, then Q is weaker (more general) than P.

Consider now the set P.q of all complete subproblems of a given problem P. The glb of any
two complete subproblems Q and R of P is a complete subproblem of P iff
Dom(g N 1) = Dom(q) = Dom(r). So, Pe is not closed under intersection. On the
other hand, the [ub of any two complete subproblems Q and R of P is always a complete
subproblem of P. Thus, for any problem P , (P, <®) is an upper semilattice.

Denoting by P+ the set of subproblems of P, (P4, C) is a complete lattice. Moreover,
(Pee, <®) is an upper subsemilattice of ( P+, C).

Notice that P.e and P+ are not closed under difference.

5.6 Converse and Relative Product
The converse of the problem P = (Dp, Rp, p) is the problem P =(Rp, Dp, P

Definition 5.7 The relative product of problems P and Q is the problem
P;Q=(Dp,Rq,pi9q)

Thus:
(Pr v Dom(p)) - Dom(p ; q)
Q" U Ran(9)) - Ranlp ; q)
It is interesting to observe that Tarski's axioms At 2.11 and 2.12, as well as Theorems 2.6,
2.8, and 2.9 hold in our theory, while the equivalent of At 2.13 should state P; 1P = P
(where 1P is another way of denoting 1Rp , i.¢., the identity on Rp; we will also use 1p instead
of 1Dp). Axiom At 2.14 holds for simple relation algebras [Sch85], which in general is not the
case with program derivation, since our base set amounts to the union of the various sorts of a

P;Q=1p;q (25)

given many-sorted algebra ( cf. the reduction of many-sorted logic to one-sorted logic [End72].
Of course, one way of fixing it is by relativizing it to appropriate domains and ranges.
The equivalents, in our theory, of Tarski's Theorems 2.7, 2.10, 2.12, and 2.13, are:

P;0=0Dp
0;P=0RP
1p; P =P

(o0;P)e Qe 00— (0o;Q)ePec O
Finally, we denote by P/T' the product of P by itself n times, i.e. P;0 = 1P and
P;n+l = P ; PN, and by Pi* the closure 3 PiT.
ne N
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5.7 Direct Product, Fork and Projections
The direct product of problems is analogous to the equivalent operation on relations,
introduced informally in Section 3. The formal definition is as follows.

Definition 5.8 We define the direct product of problems P and Q as the problem P X Q
whose components are Dpx g =DpxDg,Rpx g =RpxRg and
its condition qpx @ = p X% ¢ (where p X gqis the operation on relations
defined in Section 3).

The direct product distributes over sum on both sides, i.e.,
PX(Q+R)=PXQ+PXRand (Q+R)XP=QXP+RXP.

Moreover, PX0=0XP =0, and P X 0Dp, Rp = 0Dp, Rp X P both being the
problem 0Dp x Dp, Rp x Rp-

Finally, a kind of distributivity property over ;is (P ;Q) X (R ; S) =
(P x R); (Q X S). This is an example of a property that hinges on the non-associativity of
the universe structuring operation * (with associative * we would have just an inclusion).

As in the case of relations, a normal form for P X Q X R is P X (Q X R). So, P*I!
will be a notation for the Direct Product of P by itself n times. Finally, we define
PX* = EPXII.

ne N
Definition 5.9 We define the fork of problems P and Q as the problem P V Q the

components of which are Dpy g =Dp N Dg,Rpv g =Rp X Ro
and qpv g =pV ¢ (where pV gis the operation on relations defined
in Section 3).

As in the case of relations, for the special case of P=Q =1, we introduce 2=1V 1,
3=1V2,4=1V3,etc. So, 3 =(U, Ux(Ux W, {(u,(ux (u=*u))}.

By the first-projection [11 we mean the problem with data carrier UX U, result carrier U,
and whose condition is the first-projection relation introduced in Section 3. Similarly, we
define [[p =V 1

We should notice that the distributive properties introduced in Section 3 for forks, direct

products and projections over relations will also hold when appropriately expressed for

problems.

5.8 Why Problems?
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We shall now give some justification for the use of problems, by reviewing the discussion in
Section 4 motivating their introduction, and indicating some reasons for defining the operations
on them as done in the preceding parts of this Section.

Let us start from the discussion in Section 4. One can say that it forced the evolution of the
idea of the behavior of a program (and of a specification, as well), from a simple binary relation
p, via a preconditioned relation (a pair (W, p)), to a partial relation, i. e. a problem
P = (Dp, Rp, p). In this sense we have gone from Tarski's binary relations to partial binary
relations.

But we can always go back to the original binary relations. If we call problems P and Q
relationally equivalent iff they have the same condition, it is clear that this partitions Pq; into
equivalence classes, each one of them consisting of the problems with the same condition.
Thus, the quotient structure will be in one-to-one correspondence with R ¢;. Now, we can
express relational equ1va1ence w1th1n our calculus because ¢ < p if and only if
Q+oDP P+0 %ie Q+0y P+0

Now, recall that P4 is the sublatuce of the subproblems of P and T is the upper
semilattice of the Tarskian problems, so that P4 M Tqyis the upper semilattice of the Tarskian
subproblems of P. Let P be the largest T-subproblem of P. This provides us with a
particularly simple algebraic description for the class of problems relatioha.lly equivalent to P,
namely P+0 RD : 01{2) € 0}. This description clarifies why the effect of identifying
relationally equivalent problems leads us to the Tarskian problems, for then 0 becomes the class
of problems with condition 0.

It is now easy to see how we can express with our problem-theoretic notation, some basic
concepts of correctness. Consider a specification with behavior P and a program with behavior
Q as well as a set W/, Then, we can express

e partial correctness of the program with respect the specification by

1Dp; Q € P + 0RQ;

e termination of the program over Wby 1< P ;P;

e total correctness of the program with respect the specification by

1Dp; Q «o P + 0RQ,
Now, consider specifications, denoting problems R and S. As in our example in Section
4., let P =R @ S =(Dp, Rp, p). Our considerations can be summarized in Figure 5.1.
The ideal program, fitting P like a glove, would have behavior P = (D om( p), Ran(p), p).
Notice that the Tarskian subproblems of P form the upper subsemilattice
Pr Ty =P+ Tq. Also, if a program has its behavior

e in P4 then it is partially correct with respect to P and has data indefinition set upper-

bounded by Dp = Dgr N Dg;
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e in P4+ n Ty then it is partially correct with respect to P and terminates over its
precondition;

e in P then it is totally correct with respect to P;

e in D then it is partially correct with respect to P and is of the form
P+ 01; : OIE € 0%44

° u
Also, (U, Up)=P+ 0 q7 1 the lub of the behaviors of the programs partially correct
with respect to P.

o
O(U U p)=P + 0

ia_,{

|
Greatest Z-subproblem of P,
ie.P=(Dom(p), Ran(p), p).

‘i)+ﬁ T{u=P+('\ Tu

Figure 5.1

Finally, notice that we can give problem-theoretic characterization for several concepts
introduced in this section. For instance. '

P is viable iff 1p € P ; P.

P is deterministic iff P=P ;P ; P.

PCcQiff P+ Q =0Q.

P«oeQ iff PCc Qand Q ;0 C P;oo.

6. EXPRESSIVENESS

In this Section we shall examine the expressiveness of our Language of Problems. The
importance of this question stems from the following fact. A problem P is a triple
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P =(Dp, Rp, p), where the carriers Dp and Rp are sets and the condition p < Dp X Rp is
a binary relation. One often specifies the problem condition by means of a logical formula
describing how input data are connected to output results. During the derivation process we
would like to manipulate the problem as an single entity by means of our operations. The
question is then whether we can do this all along the process, or whether we will have, from
time to time, to examine its components, especially the formula describing its condition. The
latter would be undesirable, since it amounts to shifting between levels. This undesirable detour
would be avoided if we could express our problem, from the very start, entirely within our
language, in terms of some given basic problems. So, the question we wish to address here is :
"can we express any condition defined by a first-order formula in our problem-theoretic
language ?".

At first sight, the answer would appear to be negative. The reason for this suspicion is as
follows. Tarski has examined the question of the expressiveness of his relational calculus
[Tar41]. He asked whether every property of relations, relation among relations, etc., that can
be defined in his Elementary Theory of Relations, can be expressed in his Calculus of Relations.
Tarski's answer to this question is no. According to him, even simple expressions like :

(Vx)Vy)X(V2)Eu)(r(x, u) A r(y, u) A r(z, u)) : (26)

@Ay)32)@u)(r(x, y) A 17(x, z) A 1(x, u) A 7(y, 2) A 17(y, u) A r(z,u)) (27)

cannot be expressed within his relational calculus. For instance, no sentence of his Calculus of
Relations is satisfied by exactly the same relations that satisfy expression (26).

Let us see how we can express (26) within our language. In fact, we will show two
alternative ways to express (26).

One way to proceed is as follows. First, notice that (26) is equivalent to

(VxXVy)V2)Quw@EV)AwWX(r(x, u) A 7y, V) AT(z, W) Au=vaAau=w)

Now, u=v Au=w is equivalent to u3ux(vxw) , ie., u*(v*w)gu (recall
that we are using either r(x, y) or x 7y to express the fact (x, y) € 7).
Thus, 7(x, u) A r(y,v) A r(z,w) Au=v Au=w is equivalent to

x#(y*z) (rx rx ) ux(viw) A ux(vew) 3 u

Therefore, (26) is equivalent to the totality of the relation g=(rx rx n; 3, which
can be expressed by I1X IX 1< q; {.
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For another way of expressing (26), we start by noticing that r(x, u) A r(y, u) A
r(z, u) is equivalent to x rTu A u 7y Aurz. Thus, (26) amounts to
(Vx)(Vy)(Vz)(x py*z), where pis the relation 1;2; (r x 7). So, all we have to say is
that relation p is universal over the appropriate data and result carriers, namely, p=o0 V oo,
i.e, p=2; (o0 Xo00),

A similar reasoning could be applied to (27) to provide an expression for it within our
problem-theoretic formalism. It may be instructive to examine why we have succeeded in
expressing (26) within our formalism and how we have overcome the difficulties encountered in
trying to express it in Tarski's relational calculus. First, notice that there is no difficulty in
expressing a simpler version of (26), like

Vx)(Vy)@uwX(r(x, u) A r(y, u))

Since this is equivalent to

(V)Vy)EW(x, u) A Tu, y))

it can be expressed by r; 7= oo. The key idea here is the fact that the existential quantifier
(3u) can be simulated by the relative product. If we try to apply this simple idea to (26), we
would be led to something like

(Vx)(Vy)(VZ)Au)(r(x, u) A T(u, y) A 7(u, 2))

This is equivalent to (26), but we cannot simulate the effect of (3u) by the relative product.
The reason for this is the fact that variable u now occurs three times in the matrix of the
formula. Tarski's relational calculus has no variables over individuals, and the relative product
r; T"consumes", so to speak, variable u. We circumvent this difficulty by making copies of
it, by means of the special relation 2, and then using the two copies distinctly, which we can do
by means of the direct product of relations. Finally, the I's are handy to express that the relation
obtained is universal over a certain domain. Thus, we see that the addition of extra operations
and constants strictly increases the expressiveness of the language of relations.

Encouraged by these positive results, one is tempted to conjecture that any problem that can
be described within first-order logic has an equivalent problem-theoretic formulation. We will
show that indeed this is so. This will be done by means of two reductions: the first one will
show that we do not have to worry about the structure of inputs and outputs, and the second
one will enable us to handle inputs and outputs in the same manner.

First, we should clarify what we mean by a problem described within a first-order language
L. The central component in a problem is its condition, which can be naturally defined by a
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first-order formula @ of £, describing how input and output values are to be related. But, one
also has to describe the data and result carriers; this can be done by giving the structure of their
elements in terms of their components. These ideas are embodied in the concept of problem
presentation. A problem presentation is a triple P describing the three components of a problem

as follows

input : s(x1, ..., Xk ), withxj : Wj;
output : t(y1, ... yn, withyj: W’
condition : @(X1,...,Xk,YV1,... YD;

where s(x1, ..., Xk ) and t(y1,..., y1) are terms constructed from these variables by
means of the universe structuring operation *, Wj and W’j are basic sorts, and the condition is
given by a formula of L.

Of course, the idea is that such a presentation describes a problem on a structure for the
language. Given a structure 3 for £ with domain B, we have W® < B and W’jﬁ c B. The
problem defined by the presentation P on 3B is the problem P® = ( Dp®, Rp®, pB ), where
the data carrier Dp® = {sB(d1, .. ., di) : xie W;B}, and similarly for the result carrier
Rp®; and its condition p® consists of the input-output pairs such that- B k ¢[dy, . . ., dy,
r1,... ry}. Here, B £ @[ by, ..., by ] means that structure B satisfies formula @
under the assignment of by, . . ., by, respectively, to the variables v1, ..., vim [Ebb8O,
End72]. Thus, up to internal structuring, p® can be regarded as 0B = {{(dq, .. ., dy),
@1, .. o)) :(dq,. ... dy 1, .. 1) € 0B}, where ¢® is the (k+l)-ary relation
defined by formula ¢ on structure 7B.

We are now ready for our fist reduction. As hinted at above, it amounts to putting the input

and output into "normal forms", thereby getting rid of the above terms s and t.

Lemma 6.1  Given problem presentations P with
input : s(xi, ..., Xk ), withxj : Wj;
output : t(y1, ..., yD, withyj: W’;;
condition : @(X1,...,Xk,Y1,.-- YD;

and No with

input @ xq * (... (XK1 * XK) .- )5

output : y1* (... (Y1 *yp..-)s

condition : @(X1, ..., Xk, ,¥Y1,.-- Y1)
there exist problem-theoretic terms 1, S, T and 1g, such that
P= 1@;~S~; No ;T; 1g.
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Proof idea Terms 1, S, T and 14 are easily constructed by means of projections, forks
and the identities on the basic sorts, by taking into account that, for instance, T is to convert an
object of the form yq * (... (yj-1 *yp...) into t(y1, ..., yD.

QE.D.

Our second reduction will show that any such "normalized" problem can be reduced (by
reducing @ to @) to a special kind of problem, which essentially checks whether a data-result
combination is acceptable, and is thus called a characteristic problem. By a characteristic
problem we mean a problem with Dp = Rp = U whose condition is a filter (i. e., an identity
relation) over a subset of U, where, as before, U= B* is the free groupoid generated by the
base set B.

Lemma 6.2  Given a problem presentations Ny with

input :xq * (... (XK1 * XK) - - )
output :yq* (... (Y-1*ypD...)s
condition: @( X1, .. ., Xk, Y1, - - . Y1);

input: xq * (... (X1 % (X * (yp* Con (V-1 * YD --)) <)
output: Xq * (... (X1 * X * (y1* oo (Y11 # VD --2)) )
condition: @( X1, ..., Xk, V1, ... YD;

there exist problem-theoretic terms A and £ such that Ny = A X Q.
Proof idea Terms A and Q are easily constructed by means of projections and forks
and the identities on the basic sorts, by taking into account that, for instance, €2 is to convert
X1 # (oo (Xgep * (X * (y1 % Coo (Va1 *#yD -2 )y * (G (Y- * yD --0)
into t(yq * (... (Yi-1 * YD --.)-
QE.D.

We are now ready for our main expressiveness result. In view of the above Lemmas, it
suffices to consider characteristic problems. The next Theorem will show that every
characteristic problem whose condition is expressed by a first-order formula ¢ can be denoted
by a term Z (@) on problems, provided that we have a constant for each basic predicate symbol.
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formula term
¢ = —Z(9)
B B
Y l
o™ - B (Z)
characteristic problem denoted
problem

Theorem 6.3

Proof outline

Given any characteristic problem P whose condition is expressed by a formula
¢ of a first-order language L, if for every basic predicate occurring in ¢ we
have a constant on problems, then P can be expressed by a term on problems.

We will construct, by induction on the structure of formula @, a problem-
theoretic term E (¢) such B[E (¢)] = x¢®.

For the sake of clarity, we shall indicate the main argument line, without
worrying too much about the variables. These details amount to an exercise in
dealing with projections and permutations.

Basis (atomic formulas): Let us distinguish two cases.
Case pis x=y: E(x=y):= 2;2
b b
1 —\ 1
5 —by=b— 2{

o N,

Casepis p(v1,.. vn). .
By assumption we have a constant problem Z(p) for each basic predicate p.

Inductive step

Case ¢ is — O: E@):=2(6)e1

Case @is y v O: E(yvo):

Case 0is Jy 8(x,y): EQ@y 0(x,y)) := Ti;E 0); 1
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/b1 b, N
Ny, L,

Notice that the above expression is of the form generate and test, where

[1]

generate is [T1=1V e and testis =9, [11 being the extraction function.
The general case follows the above idea. The rearrangement of variables can
be expressed by a suitable combination of projections and direct products
(formal noise again).

QE.D.

The above Theorem shows that we can express the effect of connectives and quantifiers
within our problem-theoretic language. Similarly to the cases of disjunction , we have:

E(ya0,n)=E(y,n® 5@ n)

Much as the relative product is central in expressing the effect of existential quantification,
the relative sum is used for the universal quantifier.

Notice that our Theorem 6.3 suggests that we have a new candidate for an algebra of first-
order logic, akin to cylindric and polyadic algebras. It presents, however, the advantage of
being a finite extension of Tarski's algebras of binary relations. Further details can be found in
[Vel90].

By putting together the two Lemmas and the preceding Theorem, we immediate conclude that
the language of problem presentations can be interpreted into our language of problem theoretic
terms.

Theorem 6.4 Let L be a first-order language and assume that for each basic predicate p of L
we have a term for the corresponding characteristic problem yp. Then, for
every problem presentation P there exist a problem-theoretic term T(P)
denoting the same problem, in the sense that for every structure P for L:
PE = B (T(P)).
In fact, our argument indicates the construction of the interpretation T.
As a simple example, 2 ; 2 is an equality filter over the entire universe L If one needs an
equality filter for, say, lists, as in the palindrome problem, it suffices to restrict it to the sort of
lists, thereby obtaining (1o*X 1r*); 2 ;2 ;1
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7. MONOTONICITY AND CONTINUITY

Operations +, @, X, V, " and ; are monotonic and continuous with respect to the
ordering < over P¢;. Hence we call these operations algorithmic.

For any P € [Pqj, + and X are monotonic, and ; is right monotonic over (Pce, <®). As one
might suspect, the left monotonicity of ; over (P.o, <®) cannot be taken for granted. Given any

three problems P, Q, and R, with conditions p, q and r, respectively; then:
IfP <o Q thenP;R «o Q ;R iff Dom(q; < Domp ;1) (28)

Evidently, in view of the result of Theorem 6.3 above, we should express this condition
entirely within the Algebraic Theory of Problems. Indeed, we can write:

If P<e Q then P; R «e Q ;R iff
(Q;R;(Q;R)e1 < (P;R;(P;R))e1

which, by applying axiom At 2.11, turn to be:

IfP <o Q then P; R <o Q ;R iff
(Q;R;K;ﬁ)ol;(P;R;ﬁ;F)ol

A somewhat more compact way of expressing (28) may be:
IfP¢ceQ thenP; R« Q ;Riff Q ;R;oCP;R ;=
These expressions for the condition Dom(q ; 1)  Domp ; 1) are equivalent, because

(Q;R;R;0e1c(P;R;R;Plel,
Q;R;0CcP;

’
c R ; .

Conditions for the monotonicity of the other algorithmic operations can be obtained in a

similar manner.

8. SPECIFICATIONS, PROGRAMS AND DERIVATION

Let us recapitulate the main lines of our development so far. We have indicated, in Section
3, how Tarski's calculus of binary relations can be extended by new operations on a structured
universe so as to become appropriate for program derivation. Then, we have shown, in Section
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4, that the association of a precondition to a binary relation forces the calculus to deal with
partial relations. Such partial relations are basically what we call problems, whose theory has
been partly presented in Section 5. Section 6 has reassured us that we do not have to worry
about the expressiveness of our problem-theoretic language: it is at least as expressive as first-
order logic. On the other hand, in Section 7, we have examined monotonicity and continuity of
our operations on problems, which will be useful now in guaranteeing that recursive
expressions have fixpoints, thereby ensuring that programs written in our language will have
computational meaning.

In this Section we shall examine some aspects of using our problem-theoretic language and
calculus for specifying and constructing programs. We start with some considerations on
specification and programming languages. Then, we examine some issues concerning the use of
our problem-theoretic language as a specification language and as a programming language, as
well the use of our problem-theoretic calculus for program derivation. We should, however,
stress that our problem-theoretic concepts provide not "yet another specification / programming
language or derivation calculus”. What they do provide is rather a framework for expressing,
and reasoning about, the semantics of specification and programming languages. In this sense,
our considerations will be perfectly general.

8.1. Programming and Specification Languages

The first question that arises is "Why does one derive?" A first answer to this question
might be simply "Because the specification and programming languages are different”. But,
consider again our palindrome problem in Section 3. Why do we not use as a program the very
term (1) defining our problem at the beginning of the derivation process? An answer is that we
must eliminate from such a term those operations on problems that are not algorithmic. For
instance, if we recall the definition P~ Q = g(p{S : S + (P @ Q) = P}, it should be
clear that difference does not deserve to be called algorithmic. But, the first term in the
derivation of the palindrome problem, namely, Pal =2 ; (1 X Rev) ; Eql does not contain
any non-algorithmic operation. In this case there is another reason for deriving.

Let us compare the first and last expressions of the derivation of Section 3, written now as

terms over problems, namely

Pal =2;(1 X Rev); Eql (29)

Pal=1,1; True + (30)
1, -71;2;(2;(Hd X Lst) Xx Md) ; (Smc X Pal); And
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where, Pal, Rev, Eql, True, Hd, Lst, Md, Smc and And, are problems whose conditions
are the relations pal, rev, eql, true, id, [st, md, smc and and, respectively.

Analyzing (29) we realize that, even though ; and X are algorithmic operations, we cannot,
except in special cases of software reusing, hope that Rev and Eql will have meaning in our
target language. By rarget language we mean the language that our rarget machine (the piece of
hardware and software at our disposal) will directly interpret. On the other hand, expression
(30) involves only problems such as True, Hd, Lst, Md, Smc, etc., which we assume our
target machine will directly interpret.

So, aside from complexity issues, the purpose of deriving is twofold. The goal of a
derivation is a term on problems whose operations are algorithmic and whose symbols have
direct meaning for the target machine. The set of symbols on problems with meaning depends
on the target machine at hand. (One can imagine that in some software engineering environment,
i.e., target machine, Rev and Eql may have meaning, and so, no derivation is needed.) Thus,
this set, called the set of easy problems, depends on the target machine - as well as, perhaps,
some other considerations - and defines the goal set of a derivation.

The preceding discussion has paved the way for some general remarks concerning
specification and programming languages. A programming language is required to be
executable, preferably in an efficient manner. This is why non-algorithmic operations like
difference are not expected to be part of such a language. Also, Hoare and Jifeng [Hoa86]
exclude intersection from their programming language mainly for reasons of efficiency. On the
other hand, a specification language is not required to be executable. Its prime features should
rather be expressiveness and ease of expression. Roughly speaking, the more restricted (but still
universal) a programming language is, the more likely it is to attain its goals; whereas a very
broad specification language (say, in the spirit of CIP's wide-spectrum language) is more likely
to achieve its goals.

Some reasonable candidates for derivation languages are Horn clauses and Martin-Lof's
Intuitionistic Type Theory, but both fail to be completely adequate, not from the programing
viewpoint but from the specification standpoint. The former falls short of first-order logic as far
as expressiveness is concerned. In using the latter to describe problems, one ends up specifying
their solutions in an algorithmic manner [Haeu88].

In our case, the specification language is the language of problem-theoretic terms, whereas
the programming language is its sub-language consisting only of terms without any non-
algorithmic operations. So, our framework, based on the single unifying concept of partial
binary relations, supports a truly coherent wide-spectrum language. Of course, each particular
application will have a set of primitive problems that do not require specification, thereby
defining the application specification language. This is similar to the characterization of the target

45



language by means of the problems that are directly executable by the target machine in

question.

8.2. Specification of Problems

Let us now briefly comment on and illustrate the use of our problem-theoretic language as a
language for specifying problems as well as programs.

First of all, notice that in view of Theorems 6.3 and 6.4 we have the full expressive power of
first-order logic at our disposal. Thus, we can describe by means of a problem-theoretic term
any problem originally given by a first-order presentation.

It should now be apparent that we can likewise specify properties of data types. For instance,
a simple property of lists is head (cons(c, x)) = c. One way to state this property within our
language is simply Cns ; Hd =[I;. This is not quite right (the correct equation should be
(12X 12*); Cns ; Hd =111 ; 1); butis already quite useful whenever we wish to use
the above property in the context of a given expression - for then the context will take care of the
identities corresponding to the carriers. In other words, properties of abstract data types are
expressed by equations with explicit carrier indication, but the latter is not necessary within a
context, when it becomes just "coupling" information and can be discarded.

Having settled the question of expressive power, the next natural question is " Is it easy to
express what one wishes? " As it might be expected, the answer depends on having a certain
knack and gestalt of the language at hand. The lack of variables may at first seem bothersome,
but it has its own features. For instance, let Un be the problem of obtaining the union of two
sets. We can express the commutativiy of union simply by

Un=(M2VIl);Un,
or, more conspicuously, by

(IM1 VII2);Un=(II2VIl1); Un.

8.3. Some Programming Aspects

Recall, from Section 6, that a structure 8 assigns to a variable-free problem-theoretic term T
the problem ZB[T] denoted by it. Now, a target machine can be regarded as a special structure,
in the sense that it is able to directly interpret the easy problems.

Indeed, consider a target machine H and let ¥ be a set of symbols corresponding to the
easy problems. Consider also a set ‘W of variables over problems . By an algorithmic term (for
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H) we mean a term built from F U % by means of the algorithmic operation symbols. Our
target programming language is the set of such algorithmic terms, i. e., the closure (W) of
F U Wunder the algorithmic operation symbols.

Now, we may consider a target machine H as a function H : F — Pq; assigning to each
symbol S € Fa problem H[S]. We can extend H to a function H: 4(@) - Pq, where
A[P] is defined by induction as:

FH[S] = H[S]ifS e ¥
AP + Q1= AIP] + RIQ]
ALP ; Q1= H[P]; AIQ]
AP x Q] = AIP] x A[Q]

....................

Thus, F|[P] is the machine interpretation of P for P € A(D).

Let us now examine the effect of introducing variables over problems. We may start by
extending H: F > Pqgto Hy: FuU W — Pq by assigning to each variable W € W
the problem 0. We can now extend Hqy to a function H:W: A(W) — Pq as above.

Consider the expression X = T(X), where T(X) € A(‘W) is an algorithmic term on
problems. We can regard, intuitively, such expression as defining a problem if, by successive
unfoldings, each data of its data carrier is connected to a result in its result carrier by a "chain"
of easy problems.

As usual, we may view unfoldings as iterated substitutions. For instance, for the expression
T(X), unfold(T(X)) = {T(X), T(X/T), TX/T(X/T)), T(X/T(X/T(X/T))),.}. Formally,
if 6 : X > T(X), is a substitution, unfold(c) = {6(X), 62(X), 63(X), ...}. We can
now further extend M 4yto assign a computational meaning to T(X) as follows

AwlTOOI = X {Hw(P]: P e unfold(X = T)} 31)

The justification for this relies on the fact that the algorithmic operations are monotonic (and
continuous) on (P¢;, &) and (Pq, <) is a complete lattice. Thus, from a well-known
theorem of Tarski's [Tar55], every expression of the form T(X) will have a fixpoint, and thus
a meaning. We should observe that (31) is just an expression for the least fixpoint because of
the continuity of the algorithmic operations with respect to € [Sco72].

On the other hand, once H has successfully assigned problem P to the symbol P, we may
consider a new virtual target machine (H | P) which extends H by assigning P to P.
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Another question that should be addressed is the termination of an expression of the form
X = T(X). For instance, when will expression (30) terminate?

We should recall that in Section 3 we claimed that expression (11) for the reversal of a list
captures part of the inductive argument displayed there; namely, that rev splits recursively a list
till decomposing it completely into elements of L1, i.e., simple data for the list reversal
problem. In reviewing this claim for expression (30), we should notice that the full expression
of this inductive argument consists of (30) together with the expression 1.*; Mdi* = 1 L%
the latter being a way of expressing termination in our calculus. It is very important to point out
that such expressions carry the inductive argument from the metalanguage into the calculus. In
fact, the termination condition for a simple divide-and-conquer schema like
P = 1g,sy, ; Easy + Split ; P ; Join is easily seen to be 1g,gy ; gﬁﬁf?* = 1p.

8.4. Program Derivation

We shall now give some indications concerning the appropriateness of our problem-theoretic
language and calculus for deriving and reasoning about programs. We shall concentrate our
remarks on the expression of strategies and design decisions, as well as their manipulations.

Typically, the specification of the input-output behavior of a program consists of a
precondition ¢(x) and a postcondition y(x, y), and the latter can always be written as
y(x, y) A g(y). Now, if 1, and 14 are terms denoting the identities over the sets defined by
¢(x) and g(y), respectively, then our programming problem can be described by the term
1,; ¥ ; 1y, where ¥ is a term denoting the problem whose condition is the relation defined
by w(x, y). This specification can be regarded as a generate-and-test procedure, where
1,; ‘¥ is generate and the filter 1g is test. In order to derive more reasonable algorithms, some
strategies are useful.

We have already seen some simple strategies in Section 3. The expression of some general
strategies in our problem-theoretic formalism can be as follows (some of the names are not
standard).

Case division : P=Q'+ Q"

Decomposition : P =Q' X Q"

Interpolation : P=Q"; Q"

Reduction : P=T;Q'; R

Reduction to decomposition: P=T; (Q'X Q"); R
n-ary Divide-and-Conquer: P=E + S ; (PX1') ; J.
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The derivation in Section 3 has started with the application of the strategies of case division
and trivialization. It then proceeded by the introduction of the eureka

Erk = 3; (Lhd X Md X Llst),

and the use of a reasoning akin to weakest prespecification to solve the equation
X; Erk = Revy.

At the end of Section 3 we indicated an alternative derivation for the palindrome problem,
namely by employing a strategy of a more algebraic flavor. It can be expressed as

1.+ =Dcmp ; Remb with Demp =3; (Lhd X Md X Llst).

From this we can derive within our calculus an expression for Remb, namely

Rcmb =3 ; (Lhd x Md x Llst).

This expression does not make explicit the deterministic nature of Rcmb. Nevertheless, by
making use of properties of lists, such as Cns = Hd V Llst, we can derive the explicitly
deterministic algorithm

Remb = ((IT1 VII2;11) VII2;1I2) ; (Cns; App).

As a matter of fact, our calculus allows one to take advantage of the flexibility afforded by
nondeterministic expressions. For instance, consider the following expression for the identity
over non-ordered lists:

1-.0rd = Rrng ; (App X Cns) ; Cnc; (1 X 1o X 12%) ;
; Rrng ; (App X Cns) ; Cnc

with the formal noise term Rrng = ({11 VII2;II:1; DV l2; 12V
17 ; I11)) taking care of the rearranging (necessary because of the non-associativity), where
1-, is the identity over pairs of elements not satisfying order o, whereas Cnc is the problem
corresponding to concatenation of lists. From this non-deterministic expression, one can derive
any sorting algorithm based on the sorting-by-inversion strategy. Indeed, particular

deterministic implementations of (App X Cns) ; Cnc , will yield shakersort and the various
versions of bubblesort.

9. CONCLUSIONS
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We have presented a formalism based on partial binary relations, rich enough to support a
calculus for program derivation. The algebraic flavor of the calculus is adequate for program
derivation because one can express specifications, programs, eurekas, strategies and local
decisions on the desired level of abstraction. It extends the calculi of Tarski and Hoare, and
hence, Dijkstra's weakest precondition approach [Dij76] as well as VDM. It is important to
notice that, since termination can be expressed and manipulated within the calculus, totally
correct programs can be derived by solving a system of algebraic equations as indicated in
Sections 3 and 8.

We have proved that the relational semantics of any program derivation calculus associating
preconditions to programs must go beyond Tarski's relations into the realm of partial relations
(Theorems 4.4 and 4.7). This corroborates some intuitive feelings about the oversimplification
forced by the confinement to total relations.

We have also proved that the expressive power of our calculus encompasses that of first-
order logic, by showing how it can express Tarski's definition of satisfaction (Theorem 6.2).
The finitary part of our calculus is, thus, equivalent to first-order logic. In particular, we have a
new candidate for an algebra of logic and complete axiomatizations for our calculus can be
constructed. By means of the closure operations we can express non-first-order properties, such
as termination.

Our framework is general enough to deal with problems on problems, general strategies,
such as reduction, etc. We do not run into circularity problems because we rely on our model-
theoretic development based on set theory (Section 5).

We employ operations on problems in order to have terms, that can be regarded as (possibly
nondeterministic) progrdams. Also, the nondeterminism within the derivation process appears in
the form of inequations, in addition to equations. This amounts to relations on problems.

The long-range goal of our present development is an algebraic calculus whose terms can
capture, not only effectiveness, but also complexity and testability. We also plan to extend our
problem-theoretic approach to cover the entire software process, from requirements to programs
[Hae89, 90b]. The relational approach seems adequate to capture ideas related to single-case
propensities [Han81] and modern theories of induction [Fri90] while program testing and
specification elicitation (like theory construction) are related to inductive inférence [Ang83].

Even though our problem-theoretic formalism is based on partial binary relations, it provides
not merely another specification/programming language or derivation calculus, but rather a
framework for expressing, and reasoning about, the semantics of specification and
programming languages. In this sense, our considerations are perfectly general.
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