series: Monografias em Ciéncia da Computardo,
Niva 17790

MICRO-ETHOS: AN EXFERIMEMTAL METHOD-BASED
ENVIRONMENT GENERATOR

Armando M. Hasberer Jorge L. Boyia
Aol Fo M. Hermdrm Cobo

Oaniel B, ; Luile £, _ &
HGarmdan A, Montejano Silvio B.Grilo

Edson 6. Schubert

Departamento de Informdticas

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 — CEP-22453
RIO DE JANEIRO - BRASIL

Responsével por publicacfes:

Rozene Teles Lins Castilbho

Ascsesscria de Bibliotecsa, Documenteclo & Informacdc
FUC RIG, Depertamento de Informdtica

Rua Margquée ce EEoc Vicente, 223 - Gavea

22457 - Rip de Janeiro, RJ

BRASIL

Tel.n (021)E25-518a

EITNET: iserrtlcllnce.bitnet

TELERIZIOTE X (DT

PUC Rio -~ Departamento de Informatica

Series: Monografias em Ciéncia da Computagéo, Ne 17/90
Editor: Paulo A. S. Veloso November, 1990

MICRO-ETHOS: AN EXPERIMENTAIL METHOD-BASED
ENVIRONMENT GENERATOR

Armando A. Haebherer Jorge L. Boria

Adolfo M. Kvitca Hernan Cobo

Daniel E. Riesco - Luis E. Roqué

German A. Montejano Silvio B. Grilo
EDson G. Schubert

This work has' been partially sponsored hy FINEP

L-ETHOS
AN EXPERIMENTAL METHOD-BASED ENVIRONMENT GENERATOR.#

Armando M. Haeberer!, Jorge L. BoriaZ , Adolfo M. Kvitca3 , Herndn Cobo? , Daniel E. Riesco2,
Luis E. Roqué?, German A. Montejano?, Silvio B. Grilo®, Edson G. Schubert5,

Abstract

We describe p-ETHOS, an experimental environment generator which supports the
specification of method-based environments. We provide the definitions for the different
methods' parameters such as the external syntax of tools, their inter-relationships and the
rules governing the heuristic of their application to an specific problem domain. The
kernel of p-ETHOS is a graphical editor for graphs which allows for the definition of a
semantic network for the instantiation of editors. This is achieved through changes in
definitions, including those that support the relationships between tools. It is shown in
this paper that many interesting method-based environments can be produced through the
process embodied in u-ETHOS. In particular the following environments are built: data-
flow diagrams, data-flow diagrams with abstractions, control-flow diagrams, entity-
relationship diagrams, state-transition diagrams, office-automation semantic network,
Petri-nets, text editors, execution graphs, symbolic data-flow diagram processors,
symbolic Petri-nets processors, and a data-flow virtual machine for matrix calculus.

1. Introduction

The u-ETHOS project was a spin off of the ETHOS [TLHS9] project, a part of the Argentina-
Brazil Program for Research and Advanced Studies in Computer Sciences. It started in May 1987
and ended in February 1989, with a final report [Bor89]. Using a contemporary classification of
software engineering environment architectures [Pen88] as a guidance p-ETHOS can be seen as
an attempt to support many methods by providing a consistent user interface to these methods
while adopting a unifying software development model that covers most of the phases of the
software development process. It can both be used as an open and as a closed architecture. Figure
1.1 shows the architecture of p-ETHOS in the style proposed in [Pen88].

The software development process model used in U-ETHOS involves four main activities: the
real problem extension; the requirements specification (the informal description of the problem
requirements); the formal specification (their formal description; and the program as the final
product of the process. The development process divides the path from verbalization to program

implementation into two "legs", called abstraction and reification, réspectively in [Leh84].

In the context of the previously defined development process W-ETHOS is concerned with
methods supporting requirements specification. H-ETHOS is therefore a tool for the generation
of method-based environments. It is neither a method nor is it committed to a given method.
Nevertheless, a bias introduced by some of the design choices, i.e. the kernel, allows certain
methods to be more easily defined than others by the system tools.

The implementation approach taken in pu-ETHOS was object oriented [Ste85]. Its kernel is a
graph editor, which constitutes the class of primitive editors. Why graphs? Because inheritance
trees, semantic networks [Sow84], viewpoint abstraction trees, relationships between tools, and

¥ This project was supported by the Argentine-Brazilian Program of Research and Advanced
Studies in Informatics (PABI).

1 Depto. de Informartica, Pontificia Ubiversidade Catélica do Rio de Janeiro. Rua Marqués de
Sdo Vicente 225, 22453, Rio de Janeiro-Brasil.

2 Depto. de Computacion y Sistemas, Universidad Nacional del Centro de la Provincia de
Buenos Aires. Chacabuco 399, 7000 Tandil, Argentina.

3 Depto. de Computacién, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires. Pabellon 1, Ciudad Universitaria, Buenos Aires, Argentina.

4 Universidad Nacional de San Luis. Chacabuco y Pedernera, 5700, San Luis.

5 Pro-Retoria de Pesquisa, Universudade Estadual de Campinas. Caixa Postal 6001, 13 100,
Campinas, Sao Paulo, Brasil

6 Universidad Federal de Rio Grande do Sul. Caixa Postal 1501, 90001, Porto Alegre, Brasil.

even end-user documents in many methods, can be modelled as graphs, and all of them are
important concepts in this context.

The central architectural idea is conceptual integrity. The kernel of pu-ETHOS allows for the
development of a meta-tool known as the basic environment. With it, the environment designer
develops a CASE tool. With the CASE tool the software engineer designs the systems requirement
specifications.

From the environment designer's viewpoint, all tools are developed by specifying ~:ir
properties in the form of a semantic network. When networks are not sufficient the designe aay
resort to rules [Fro86]. This approach rests upon the execution of an (overloaded) instance : © an
editor. The semantic actions in all levels are expressed as operations on the editor whict are
syntactically similar. The semantic differences depend upon the particular instance of the - :itor
in use.

To investigate the potential of the above proposal, the following environments were de: .oped
using the basic facilities:

* editors for tools such as data flow diagrams, entity-relationship diagrams, P ' -nets,

state-transition diagrams, and for cliche-based text;

* symbolic processors for documents used in some of the above methods;

» integrated methods involving editors and symbolic execution processing facilities.

The particular implementation of u-ETHOS described in this paper runs on a u-VAX Al work-
station with VMS and those (primitive) software constructs defined without the support of
semantic network were written in CommonLISP, extended with our own version of objects and a
Prolog inference engine!.

SUPPORT TO
CONFIGURATION DESIGN SUPPORT TOOLS LAYER
"N Semantic rone SUPPORT TO
Clichés networks| Clichés CONFIGURATION
Editor Objects| Clichés Objects AND DESIGN
X Clichés SUPPORT TOOLS
Graphical ules . .
Graph Editor Graphical Editor
[SNRE | [DEVELOPMENT GRAPH | [RULES, PROPERTY LISTS TOOL/CAPABILITY
OBJECTS + RULES ENVIRONMENT
VMS + LISP + GKS SUPPORT
VMS HARDWARE AND
VAX-Al-Work Station NATIVEO.S.

Figure 1.1- The u-ETHOS SEE architecture.

In the next section the p-ETHOS Basic Environment's components are presented, section 3
shows some examples of their use and section 4 shows how a given target environment is used .

2. The p-ETHOS Basic Environment.

The basic environment's kernel was generated from the set of components of a graphical graph
editor organized as an object hierarchy, Egg for short (figure 2.1.1) which was, in turn, used for
defining the semantic network and rules editor (SA/RE). Both of them where not written with the
support of the semantic network. SANRE was then used to enrich Egy by adding a new relationship
(part-of) to turn the object Graph into a full fledge graph editor. Graph constitutes the kernel of -
ETHOS' environment and it is but the name of the super-class whose semantic is inherited by all
objects related to Graphthrough the relationship is-a in a semantic network.

1 The main difference with LOOPS [] is the way the rules are expressed externally, see figure
3.3 for an example of the rules in u-ETHOS.

Together with the class Graph there is another primitive class called Cliché. A cliché is a frame-
like object also written without the kernel support. This class is used for two purposes. On the one
hand, the capability for generating graphs oriented editors is complemented by a capability for
generating text editors, albeit quite simple ones. These are needed because some information
related to nodes and arcs is better expressed by text. On the other hand, we needed the capability to
relate actions to elements of a graph.

Although these tools do not constitute all the components of the the basic environment, they
are already sufficient to support conceptual integrity. To justify this statement it suffices to point
out that the remaining element of the basic environment, an Abstraction-graph editor (4graph) ,

was built from SARE by extending the definition of Graph in the basic environment's semantic
network.

In summary, the basic environment is made of SNRE and a semantic network together with a
set of rules defining the classes Graph, Clichéand Agraph.

2.1. The Graphical Graph Editor Component Set, Egg. %4y is the set of software components

that was used for the construction of the graphical graph editor and then reused in the basic
environment.We shall describe the way these parts behave in terms of the operations supported
by the elementary editor defined with gy, and their effects upon the objects it defines. The editor
has six windows, each with a different purpose (see figure 3.2). The main window shows the object
to be edited, a top command window lists the accessible commands, in between a pop-up window
sends comments from the editor to its user. To the right the icon window displays the figures that
can be pasted on the main window. A global window shows the coverage of the main window with
respect to the total figure, and on top of it a tiny window shows the file name being dealt with and
the ratio of the size of the icons on the main window to a standard size.

The basic commands are CREATE, MOVE, DELETE, EXIT, PROPERTIES. When an editor is
instantiated, the list can be extended to suit the new needs without re-programming. The
semantic of all but the last commands is the usual one. PROPERTIES will be explained later in
this paper.

The editor has two icons: a circle for nodes and an arrow for oriented arcs. In fact “circle” and
"arrow" are reasonable choices since they suggest the underlying graph-theoretic concepts. Since
nodes and arcs are implemented as objects, their corresponding icons are treated as properties in
the property list of the object.

The editor expects the object being defined to be a well formed graph, and signals any attempt
to save an object that violates that rule. In this context, graph stands for polygraph, that is, more
than one arc connecting the same two nodes are allowed provided they have different labels. This
kind of graph is required for the specification of many methods and tools.

The hierarchy of objects in Egg is shown in figure 2.1.1, it constitutes the basis for the
semantic network that lies at the heart of the SARE.

|

& @ e

B o Db S &

Figure 2.1.1- Egg object hierarchy.

2.2. The Components of SA'RE Editor: Semantic Networks and Rules. As it has been said

before SARE is also a software artifact not generated by using semantic networks.The semantic
networks editor and the rules editor, were written directly as programs in extended CommonLISP

using ZEgy for both graph-theoretic typing and interactive support. In this sense SNRE is an
extension of the elementary editor built from Egy.
In fact, SARE is an editor for semantic networks extended by rules. The networks are

themselves well-formed graphs -hence the relationship to Egg- where each node is associated to
a meta-class in the objects' hierarchy. Creating a node implies the creation of a class or reuse of
an existing class. Creating an arc represents the establishment of relationships between nodes
restricted to part-of and is-a. There is, in fact, a third relationship that is not implemented by
means of the graphic capabilities of SARE, but that is achieved through the property list of each
object created which is accessible from the PROPERTIES command. This design decision was
taken so as to free the semantic network graph from having to handle visual complexities of tie
objects.

JThe objects in the property list (target objects) of another object (origin) share methods that
are invoked from the origin when the corresponding message is received. The property list is a
"mailing list" {from the origin to the target objects. Typically, an object that can be shown has a
figure in its property list.

Figure 2.2.1- The semantic network of DFD.

The relationship is-a expresses simple inheritance. Actually, the same simple inheritance of
the underlying object paradigm. When an object is created in a semantic network, SNRE assumes
that an is-a relationship must be defined, and demands from the user the super-class to which the
new object is to be linked. Therefore, the is-a relationship cannot be chosen from the icon palette
(moreover, only under special circumstances can the is-a relationship be reassigned). Once an

object is created, properties can be assigned to it in a property list. For example, a common
property of most objects is the way in which they are to be shown on the screen.

The relationship part-of signifies that a given subclass is a component of other classes. For
example, process ,entity and storage are subclasses of node (i.e., each «is-a node »), whereas «DFD
is-a Graph», and process ,entity and storage are «part-of DFD ». As it can be seen in figure 2.2.1, the
part-of and is-a relationships must be consistently used to avoid definition of an ill-formed
object, with no semantic meaning.. For that reason SARE prevents such type of definitions.

In a sense, definitions of objects with the is-a relationship describes their primitive behavior,
yet this potential is only fully realized when the part-of relationship links the components to the
whole. It is then that the objects can be edited.

Entities created by means of semantic networks inherit the well-formed properties of their
super-class, but this could prove not to be enough. Rules are introduced to deal with new
restrictions which are imposed to to make the entities well-formed. For instance, since «DFD is-a
Graph», DFD inherits the graph-theoretic well-formedness of Graph, that is, its arcs join its nodes
(figure 2.2.1). Flows are DFD ‘ s arcs, and processes ,entities and storages are also DFD ' s nodes.

Nevertheless, graph-theoretic well-formedness allows for a flow linking a storage to a storage ,
and that should not hold. Se, a rule must be introduced in this case to prevent it.

A rule should be "understandable” both by the user and by the environment. Hence, a rule is a
syntactic structure with direct meaning in the particular domain the system is dealing with and
whose semantic in the environment is the intended restriction over the inherited criteria of well-
formedness.

To be able to have direct meaning in a particular application domain a rule must be expressed
in a natural-language-like syntax and be expressed in terms meaningful in the domain. To allow
the interpretation of a rule as a restriction on a pre-existing well-formedness criterion we
provide a Prolog-executable grammar for that syntax. Its terminal symbols are meaningful in the
domain either defined as part of a semantic network or by synonyms introduced through some
rule.

2.8. Graph. So far, SNRE has been described as a general semantic networks and rules editor.
But, since we are involved with the construction of the basic environment of a Method-based
Environments Generator the accessible roots of all definable semantic networks should share a

conceptual structure, whose underlying semantics is akin to the primitive editor built from Eg4.
In other words, SARE by itself is not an environment generator, but SNRE plus the class Graph (to

be used as the original super-class) is the Graph-oriented Editor Generator that comprise in the
Basic Environment.

Since the relationship is-aat the SARE level is the same as the one used at the programming
language level, the user of the basic environment can access through it all the objects of the Egg
hierarchy. However, many of these objects have no interest to the typical user.

At the SARE level a semantic network must be defined (figure 2.3.1), relating Graph to its
components, both in Egg's object hierarchy.

To define a new editor, a user needs only to name it as an object and name Graph (or an object
that -transitively- is-a Grapf) as its super-class.

S Tmey
“’“’/’ ; \’a\”\‘\~ ~~~~~~~~
.«-/"ﬂ/ o S N
Wi Wl B Wit we
o ~. ~
e . ,l.“ . \‘w—.w
(X 3. 7R\) (™ @ Vi,
N ~ pareof o
3 5 \-\“
. - 22 i*: partof . ne “
R . A
{Yz:,s:s:.«‘:ﬁ:} 1 ea ”{
v e’ f‘

5
isa isa [CNY) B
LoD
G G @
EDGE SRR CIRANE J v L20TANG
CORMSGRACOR

Figure 2.3.1- Graph's semantic network in the Egqg object hierarchy.

2.4. The abstraction graph 4graph. Organized collections of documents, in which some are
defined by others, should be related by an abstraction structure which allows them to be
traversed, even though each individual instance of a document is an independent object produced
by an editor.

In this context, abstraction denotes a process by which a single entity replaces, denotes or
names a collection (equivalence class) of entities. Therefore, when applied to graphs we can think
of it as a pair of homomorphisms (one for nodes and one for arcs) in which each node in the
domain has its corresponding abstraction in the range and each arc in the domain has a
corresponding arc in the range iff the nodes that the arc connects in the domain are in different
equivalence classes.

Since we allow for multiple arcs with different labels between the same two nodes, the
definition must be rephrased as: an abstraction is a composition of two homomorphisms.

The innermost homomorphism (node abstraction) is, therefore, defined as:

each abstraction equivalence class of nodes in the domain has a node as its image in
the range, and

each arc in the domain has an image in the range iff it connects nodes in different
equivalence classes, and the homomorphism preserves arc labels.

The outermost homomorphism (arc abstraction) is defined as:

the nodes in the range are exactly the nodes in the domain, and

each abstraction equivalence class of arcs in the domain has an arc as its image;
obviously, two arcs can belong to the same abstraction equivalence class only if they

join the same pair of nodes and in the same direction.
Notice that this particular definition of abstraction allows us to deduce the innermost
homomorphism from the domain and range of the composition and also the outermost
homomorphism. In fact, this was used in the development of a minimum implementation for

Agraph.

Agraph is-a Graph whose nodes are objects of the class Anode which is-a Node having Graph in its
property list. Agraph's arcs are abstractions, thus, any two nodes connected by an arc of
Agraph are the domain and range of an abstraction homomorphism.

By including Graph in its property list, each instantiation of Anode forces the creation of an
element of the class Graph (this is a main difference between the property list and the part-of
relationship). This brings about an interesting effect. Once the Agrapk environment is
operational, the selection of an Anode icon creates a node of the class, that accepts EDIT

commands, in the sense it accepts an EDIT message from the environment. Upon receiving one
message it is propagated to its property list (the extended CommonLISP environment does this).

Since Graph is in its property list, an instance of it also receives the message. As a result, the
environment to edit Graphs is called and becomes operational. In this manner the definition of
Agraphlinks two editors: when called to edit an Agraph the editor defines a graph in whose nodes

graphs can be edited.

As shown in figure 2.1.1, an arc is implemented as an object in the hierarchy of objects defined
in Egg. Its list of properties includes the implementation of the arc abstraction homomorphism
(i.e., the outermost homomorphism of the composition), simply by including the labels of the pre-
images of the given arc.

Notice that Agraph is but an environment defined by means of SARE and the class Graph. The
METHOS basic environment provides through Agraph the facilities to manipulate abstractions, by
allowing the navigation through the different levels by traversing Agraph and relating

viewpoints by reconstructing the composite homomorphism, as explained above and as shown in
figure 2.4.1.

A simple
instance of

Agraph

Figure 2.4.1- An instance of 4graph.

2.5. (liché. As Graph, Clichéis a primitive super-class. It is a frame-like structure with four

components: a fixed part, a dynamic part (roles), a value part, and a condition/completion part
[Fro86].
The fixed part expresses the cliché's outward appearance.

The dynamic part consists of a chain of "slots", each one a terminal value or itself a Cliché
giving rise to a complex structure, which is richer than plain text!.

The value part contains formulae relating constituents of the different parts. These formulae
are evaluated upon insertion of values into referred constituents.

The condition/completion part is the set of rules related to a given instance of Cfiché as an
object. In this context some of these rules define the precondition of a particular cliché, i.e., the
condition that must hold for the cliché to be executed. Others can be used either to check the
condition that must hold after cliché execution (valid termination or post-condition} or to
accomplish any required action at completion level. All executions required by clichés are
performed by the Prolog engine.

Notice that text editors are easily built from instances of the class Cliché, by combining the
inherent interactive character of the class with the possibility of linking together many objects
in the dynamic part, and the definition of grammars through the rules in the
condition/completion part.

3. Using the Basic Environment.

Lucena [Luc87] introduced the term “"target environment" to denote the environment to be
produced by the generator. The basic environment is the development tool of a target
environment.

Figure 3.1 depicts the process of generating successive environments to achieve the target
environment. Three different roles are recognized in the chain of users. The LETHOS design team,
who builds the basic environment from CommonLISP and GKS upwards; the environments
designers, who build the target environments; and the "end users", who use them. .

As an example we shall develop in the remainder of this section the construction of an
environment for editing of DFDs with abstractions, in section 4 will show how such an
environment is used. g

WETHOS VMS + The choice of the environment for
@é’l‘::mm g‘ﬁg*%é editing of DFDs with abstractions

[DeM78; War84, 85] as an example is
:\ @gnv}ronment justified because of the popularity of the
esigner
Qg
User

technique and the fact that the meaning

of abstraction in the context of DFDs is

simple and requires no further

explanation. DFDs are extremely popular

diagrams that model the behavior of

é Clchs @é systems through external entities that act
as sources/sinks of data, processes that

transform data, storages that hold data

for indefinite periods, and flows that join

Agraph @é DFD @@ showing how data circulate in the system.
As seen in figure 2.2.1, only flows are

arcs, whereas external entities, processes

and storages are nodes. Figure 3.2 shows

@ how the basic environment looks when

4

Graph

all of the preceding elements pairwise,

ADFD é, used to define the semantic network that

describes a DFD with abstractions.
The basic environment provides the
\ semantic network that defines Agraph as
mentioned in section 2,4. The user (who at
this level is the environment designer)
Payroll @é Loans dyé Acounting é@ brings the network to the SANRE window
and adds the nodes DFD, ENTITY, and

) _ _ FLOW,
Figure 3.1- Generating environments

The designer then further refines ENTITY and FLOW to show that ENTITies are either

PROCESSes, STORAGEs or EXTERNAL entities, and that FLOWs are DATAFLOWSs. (This
apparently useless refinement is justified because some other tools use control flows, also known

1 A future version of HETHOS should implement this feature using Hypertext.

as event flows, and our designer is aware of that fact). When the new objects are introduced, the
environment allows for the designer to change (override) the definitions inherited from the
super-class. For example, the class Node has the object CIRCLE as Figure in its prot - =y list.
Unless otherwise stated, any descendent class will inherit a CIRCLE as its Figure. Th: .signer
therefore redefines the property list for STORAGEs and EXTERNAL entities, since the.: sutside
appearance is not circular, but leaves PROCESSes' property list untouched.The des: - 'r now

links PROCESS, STORAGE, EXTERNAL (entity) and DATAFLOW to DFD withk park-
of relationship, thus completing the semantic network definition.

[o]] |[e]
I

12| o«

/
rd
_ part of

Im—DFD I M IOk I 1.345]

Figure 3.2- The SNRE screen when defining ADFD.

As far as the external interface goes, that's all it takes. Selecting from a list the recently

defined environment will now instantiate an editor that will generate graphical documents with
the adequate disposition. Moreover, since the editor inherits capabilities from the Agraph editor,
abstraction-handling is automatic, and the environment's user can create individual DFDs on
nodes of the abstraction graph, visit each DFD by selecting a node of the abstraction graph, or see
the way the abstraction holds pairwise between two DFDs by selecting an arc of the abstraction
graph. The following section will deal with the way the environment behaves.
However, certain properties of DFDs are not captured by the semantic network as we have so far
explained it. The designer can refine the behavior of the environment by adding rules to the
RULE-LIST selecting it from the Properties Menu. An example set of rules for DFDs is shown in
figure 3.3.

The environment produces natural DFDs, with no reference to Data Dictionaries, a common
partner to them. To introduce such links, the designer can use the definition of clichés to
implement windows. The procedure is as usual: the Clicfé object must be included in the property

list of the objects that are «part-of DFD». In fact, this is the way the environment provides for
symbolic execution of DFDs. Each component of a DFD has an associated cliché (and, therefore,
possibly a tree of associated clichés). The behavior of the DFD is described Through the
associated clichés and, when invoked, executed!.

4. Using a Target Environment.

Once the target environment has been created, it is ready to produce the desired documents. As
an example, an application of the environment for DFDs with abstractions will be discussed.

In figure 3.1 the sequence of environments leading to a target environment was shown. The
last line of that figure showed three end users developing documents for Payroll, Loans and
Accounting applications on top of the DFD with the abstractions environment, described in
section 3.

1 The reader can infer the implementation of symbolic executors from the description made
of the object Cliché in section 2.5.

The user sees in the screen an interface that is similar to the ones used by all previous levels of
users. In this case, the icons shown are two: one stands for the nodes of the abstraction graph
representing the tree of DFDs and the other represents an arc that stands for the abstraction
homomorphism between pairs of DFDs.

Upon entering the environment, the user generates a node. This will stand for its first DFD.
Immediately, the user can EDIT the node and construct the DFD with all the tools from the
previously defined DFD environment. Returning to the abstraction environment, the user can
create another node and EDIT it, representing a different abstraction level of the previous DFD.
To complete this portion of the abstraction graph, the user must define an abstraction arc that
will hold the set of correspondences between arcs in the two DFDs. As it was explained in section
2.4, this information together with the labeling on both levels is sufficient to reconstruct the
complete abstraction homomorphism. If EDIT-ing an abstraction node provokes changes to a
DFD that renders the homomorphism no longer valid, the environment signals the error to the
user and explains its reason.

RULE LIST (DFDs)

LANGUAGE DEFINITIONS:

An entity X receives data from an entity Y if

entity Y is the source of some flow and

the same flow has destination in entity X
An entity receives data if

there is a flow that has the entity as destination
An entity X produces data for an entity Y if

entity X is the source of some flow and

the same flow has destination in entity Y
An entity produces data if

there is a flow that has the entity as source
A process consults a storage if

the process receives data from the storage
A storage is consulted by a process if

the process consults the storage
A storage is consulted if

there is a process that consults the storage
A process updates the storage if

the process produces data for the storage
A storage is updated by a process if

the process updates the storage
A storage is updated if

there is a process that updates the storage

ERROR DEFINITIONS:

To create a flow is an error when
there is an error (2) of importance in the flow

To create a flow with source entity X and destination entity Y is an error when
there is an error (3) of importance in the flow with source entity X and
destination entity Y

There is an error (2) of importance in the flow if
there is no process

There is an error (3) of importance in the flow with source entity X and
destination entity Y if
none of the entities is a process (X Y)

Figure 3.3. Sample of Rules from the Rule List of DFDs.

It should be noticed that all environments constructed with the u-ETHOS Basic Environment,
behave in a cooperative manner, i.e. the inference engine handles the rules both forward and
backwards, so that it can explain the reasons for an error in a language that is accessible to the
user.

Engine

w-ETHOS
Inference — ™ lwiNDOW -

Rules

T T2

Document
DFD E‘fl’f being
Semantic Object created
Network Hierarchy
Figure 4.1

To achieve this, the disposition of components acting in the u-ETHOS environment is as
shown in figure 4.1. The Graphics Graph Editor, depicted there as an empty screen (it will always
hold the adequate icons and set of commands) , is governed in its behavior by the objects already
defined in Egg (section 2.1). Since this is but the external interface, the inference engine is
invoked to support every interaction with the user. The inference engine "feeds" the semantic
network and the rules defined by the environment designer, and precludes any action that could
end in an ill-defined object. The same rules are used to explain the actions of the engine to the
user (see figure 3.3).

5. Conclusions.

The u-ETHOS Environment Generator is a fully operational experimental prototype. It is
concerned with method-based environments. Any method that can be modelled by a graph (in the
graph-theoretic sense)! or clichés, or a combination of both, can be easily represented in u-
ETHOS. It covers as many methods as the designer can express through graphs and rules. We have
experience building environments for many simple tools (DFDs, ERDs, STDs, Petri nets {DeM78;
Che76; Pet81]) and some methods (ASML, Gane and Sarson's Structured Analysis, Jackson's
SDM [DeM78; Jac83]). Some other methods can also be handled by the environment generator,
such methods include Elmendorff's Cause-Effect Graphs [Elm73] or -Nassi-Schneidermann
Diagrams [Nas73]. The ease and speed that characterize the use of the environment generator can
be illustrated by the fact that the Petri Nets environment was designed and built in a day.

Some features of the Environment Generator are interesting extensions of traditional
Software Engineering Workstations. In particular, the symbolic processing capabilities supplied
allow the users to execute, albeit primitively, documents generated by those environments. For
example, this is a distinguished feature for Petri Nets.

u-ETHOS provides a consistent user interface from one environment to another. Moreover, it
provides a consistent interface throughout all levels of users, so that the basic interface is used by
the u-ETHOS designers, the environment designers and the end-users.

Underlying p-ETHOS there is a powerful multiparadigmatic set of tools. They are embroidered
into a coherent, uniform interface in which each component is easily identified and set in
context.

The design team for p-ETHOS expects its users to interact with p-ETHOS as a closed
environment. However, there is a trapdoor left open that allows the interested user to enter the
CommonLISP environment without leaving p-ETHOS. This makes up-ETHOS an open
environment, if one is willing to program in it.

Upgrades of the current version should begin by migrating to more friendly operational
environment.

1 1t should be stressed that the environment is independent of any particular graphical
representation of graphs, nevertheless, the canonical representation of manv graph-like
objects are graph-like diagrams.

10

6. Acknowledgements.

The authors are thankful to the authorities of the PABI that throughout the period of
development consistently helped them in so many ways that makes it hard to mention them all.
In meetings organized by that institution in both countries, Viviana Rubinstein, Leo Pini
Magalhaes, Maria Laura, Olga, Paulina and Emilio provided transportation, accommodation
and, in general, all kind of support to make each occasion profitable.

Professor Pereira de Lucena was a perpetual source of inspiration and enthusiasm. Gabriel
Baum helped throughout the work with support in formal aspects. The ESLAI housed the project
during part of the work, and its members and Professors should be also thanked. Last, but not
least, this paper would not have been possible without the funding provided by PUCRJ in a hectic
week in March.

References

[Che76] P. P. S. Chen, "The Entity-Relationship Model - Towards a Unified View of Data",
ACMTrans. on Database Systems, 1, 1, (1976).

[DeM78] T. De Marco, "Structured Analysis and System Specification”, Englewood Cliffs, (New
Jersey, 1978).

[EIm73] W. R. Elmendorff, "Cause Effect Graphs In Functional Testing”, IBM Technical Report
TR-00.2487, (Poughkeepsie, 1973).

[Fro86] R. Frost, "Introduction to Knowledge Base Systems", Macmillan; (New York, 1986).

[Leh84] M. Lehman, "A Further Model of Coherent Programming Process", IEEE Proceedings of
Software Process Workshop, UK Feb 1984, (IEEE C. S.,1984).

[Loo86] IEEE Software , Special Issue, January 1986.

[Jac83] M. Jackson, "System Development”, Englewood Cliffs, (New Jersey, 1983).

[Luc87] C. J. Pereira de Lucena, "Inteligéncia Artificial e Engenharia de Software", Zahar
Editores, (Brazil, 1987).

[Ste85] L. Nassi, B. Shneidermann, "Flowchart Techniques for Structured Programming"
SIGPLAN Notices, ACM, August 1973,

[Pen88] M. H. Penedo, W. E. Riddle, "Software Engineering Environment Architectures" IEEE
Trans. on Software Engineering, 14, 6, (1988). .

[Pet81] L. J. Peters, "Software Design: Methods and Techniques”, Yourdon Press, (New York,
1981).

[Sow84] J. J. Sowa, "Conceptual Structures: Information Processing in Mind and Machine",
Addison-Wesley, (Wokingham, 1984).

[Ste85] M. Stejik, D. G. Bobrow, "Object Oriented Programming, Themes and Variations"
Artificial Intelligence Magazine, Fall 1985.

[TLH89] Takahashi, E. T., Lucena, C. J., Haeberer, A. M., "The ETHOS Project: An Introductory
View". Information Technology for Development 4, 1, Oxford University Press, (Oxford,
1989).

[War84] P. T. Ward, "Systems Development Without Pain", Prentice-Hall-Yourdon-Press, (New
York, 1984).

[War84] P. T. Ward, "Structured System Development for Real-Time Systems", Prentice-Hall-
Yourdon-Press, (New York, 1985).

