A 2
B e
ooy
B
s i
T
.
¥)
L1
A3 '

S

L ki

Series: Mencgraficg em Ciéncia da Computacdo,

No.

£1/80

HYPERTEXT DEVELOPMENT USING A MODEL-BASED APPROACH

Daniel
Endrea
Franca

Paola

Departamento

e e T

FONTIFICIA UNIVERSIDADE CATOLICA DO RiID DE

Schwabe
Catoini
Garzotto
Paoglini

de Informédtica

B A R e

JANEIRO

AUA MARQUES DE SAQ VICENTE, 225 - CEP.22453

RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE !NFORMATIGA

21/30

Series: Monografias em Ciéncia da Comoutacdo, No.
December, 1881

Editor: Paulo A. S§. Veloso

HYPERTEXT DEVELOPMENT USING A MODEL-BASED APPROACH x

Daniel! Schwabe
Andrea Caloini %%
Franca Garzotto *%
Paoilo Paglini *X%

* This work has bheen partially gsponsared by the Brazil{an

Governmaent OQOffice of Science and Technology.

X% Politecnico di Mitano, Milanc, ltaly, where this wgﬁy:nas-«ayso
been pubiished, under series no. TR-90~-74, '

12

In charge of publicationss

Rosane Teles Ling Castilho

pussessoria de Biblioteca, Documentagio & Informagio
PUC Rio — Departamento de Informitica '
Rua Marqufs de 530 Vicente, 225 - Gfvewn

22453 - Rie de Janeiro, RJ '

Brasil

Tel. (212529~ 284 Telex:s31078 Faxi (0215415645
E-mailsrosaneldinf.puc-ric.br '

Abstract s

Mupertext drvplmpmént ia atill;"For_thQ -most part, at the
“handcralth ing” level, where cach hupertext document must be hand-

designed. We present = compiler which takeg hupﬂxdﬁcum€ﬁts
lesined using w1 nodel-based approach and crnrrxrv” ¢ "
executable in HyperCard. This compiler ig i mplemented in stan c!ar'd
BeL over a relational tabase representstion of a hyperdocument

designed wsing the Hypermedia Desian Model (HDMY, ‘The compiling

approach, even though P llustrated with HDOM, can be used with many
”structurﬁd” design methodology. :

Keuwords

Hypertexts, multinedia systems, cauthority models for hypertext,
compiling huypertext spocifications. '

Resumo:

0 dem@nvmlvimenfﬁ de hiﬁﬁrt&xtaﬁ esty, ainda. num estdgio
essencialment ”a"fazz =200 no qual cada hiperdocamento deve ser
projetado ”a mion’, ﬁrr@rcntummn um - comnpilador que processa
hiperdocunentos projetados utilizando-oe de umza abordagem hasends
em mod gerando “stacks” executdveis em Hupercard. C Este
compilsz & implensntado utilizando-se 5QL padrao MHAmER

2sentagio do hiperdocumento na forma de um banco de dados.
relacional; este hiperdocumento projetado utilizando-se do
“Hypermnedia Desiaon Model” (HDM). Esta abordagem de compilagfo,
embora Plustrada agui com MDM, pode ser utilizada com qualquer
metodologia “esty uturwdi' para projeto de hipertextos.

Keywords:

Hipertextos, sistenas multimidia, nodelos de autoria PRITR
hipertexto, compilagio de (SP”L!FIFG Ges de hipertextng. :

HYPERTEXT DEVELOPMENT USING A MQDEL-BASED APPROACH
| Daniel Schwabe® + §
: Andrea Caloini* |
Franca Garzotto"
Paolo Paolini * +

* Department of Electronics - Politecnico di Milano
Piazza Leonardo da Vinci 32 - 20133 Milano Italy
phone: +39-2-23993634 '
fax: +39-2-23993587; E-mail: relett34@imipoli.bitnet

+ ARG. - Applied Research Group o

Via Pio La Torre 14 - Vimodrone (Milano) Italy
phone: +39-2-2650072 .
fax:+39-2-2650693 ; E-mail: argboril@imiclvx.bitnet
(also schwabe@icil64.cilea.it)

§ On sabbaticai leave (until January 1991) from
Departamento de Informatica, =~

Pontificia Universidade Catélica do Rio de Janeiro,
R. M. de S. Vicente, 225 -

22453 Rio de Janeiro, Brasil.

phone: +55-21-274 4449 ' _
fax:+55-21-274 4546; E-mail: pucrjdi@brfapesp.bitnet
Partially supported by CNPq-Brasil. I

Abstract; -

Hypertext development is still, for the most part, at the “handcrafting” level,
where each hypertext document must be hand-designed. We present a compiler which
-takes hyperdocuments designed using a model-based approach and generates stacks
executable in HyperCard. This compiler is implemented in standard SQL over a
relational database representation of a hyperdocument designed using the Hypermedia
Design Model (HDM). The compiling approach, even though illustrated with HDM, can
be used with any “structured” design methodology. : ' :

1. Motivations

- This article presents a tool which takes hyperdocuments designed using a model-
based approach and generates stacks executable in HyperCard [Atkinson 87]. The model
we used as input to the compiler is HDM (Hypermedia Design Model) [Garzotto 90a,b],
but other models could have been used as well. The miain point being made here is that
hypertext development using this approach can be speeded up with relatively simple
tools. - . ' '

In this section we want to motivate the need of an application design model for
hypertextual applications. Following sections will discuss which kinds of decisions have
to be made to get a hypertext running under a commercial ‘environment starting from
the model specifications and how etraightforward it is. '

The major challenge facing the hypertext author is that of organizing complex
material in a suitable way. A systematic approach to hypertext structure is especially
important in the design of large hypertexts— documents that are significantly larger
than a conventional book. :

The use of a model will help to discipline the authoring activity, especially for
large and complex hypertexts! by encouraging the development of the hypertext in a
structured fashion, so that its structure is designed before the actual text is actually filled
into nodes. '

This is very similar to what happens when developing a strongly modularized
application: designing the topology and the interconnections among modules is
different than writing the code for the content of the modules themselves. Most
hypertext authors agree that hypertext developers face two different (but strongly
‘correlated) tasks: developing a network of nodes and links, and filling in the nodes’
content. By analogy with the Software Engineering field we use the terminology
authoring-in-the-large to refer to the development of the structure of the network and
authoring-in-the-small to refer to the development of the contents of the nodes.

Authoring in the large can exploit commonalities between applications o a given
domain, and it can be at soine extent independent from the medium - establishing a
connection between two nodes is somewhat independent from the representation of the
contents of the node?. In addition, it becomes very critical as soon as the size of the
hypertext exceed a manageable limit (which is quite arbitrary and dependent, among
other things, on the available technology)

Authoring-in-the-small is strongly dependent on the medium (filling in the text
in a node is much different than filling in an animation, a sound, or a picture).
Moreover, authoring-in-the-small is more dependent on specific application areas.

: In a complex hypertext, most of the “deeper” semantics lies in the connections
among the nodes, rather than in the contents of the nodes themselves, at least as far as
navigation is concerned. As a consequence, many critical design decisions are made at
the authoring-in-the-large level.

A model-based approach to authoring-in-the-large provides a predefined
vocabulary of concepts and primitives which can be used to specify hypertext
- applications, with little regard for the contents of the nodes.

1In this article we use the term hypertext to denote online documents made up of a network
of interconnected pieces of information (nodes).We will use the term hypertext system for software
tools used to create a hypertext. Notecards, KMS, Intermedia, Hypergate, Guide are examples of
hypertext systems. Note that a single hypertext might be published in several editions, each using
a different hypertext system.

2This last statement is perhaps less obvious for span-to-span links, that appear to connect
parts of nodes to other parts of nodes. ‘

3

Most of the existjng “models” for hypertext/hypermédia can be considered as
“systems models”, more appropriate to describe authoring-in-the-small activities. They
try to identify representation structures (such as nodes, links,-anchors, etc...) and
functionalities that are common to most existing hypermedia systems, and to provide a
common language in which to describe, compare and evaluate the various hypermedia
systems [Halasz 90][Furuta 90]. By analogy, hypermedia design models do the latter for
hypermedia applications, independently from the implementation environment in
- which they are developed. ' :

It is interesting to summarize the major advantages in having a design mode};
some are true of any kind of model, others are mostly true for hypertext design models.

Design models provide a language in which an application analyst can specify a
given application. Thus they facilitate the communication between the analyst and the
end user (i.e., the client, in most cases); between the analyst and system designer; and
between the system designer and implementor, when they are different persons. They
can be used to document the application. This provides support for users of the
application; it helps the maintenance of the system; and it serves as a common language
in which to compare applications when desired. At the very least, a basis for discussing
the similarities of applications exists. > :

An interesting related aspect, which has received little attention in the research
- literature, is the task of proof-reading a hypertext. It is clear that proof readers need to
check links as well as text, and that spurious or accidental links cari be as embarrassing
(or even damaging) as more conventional typographic errors. This task should be greatly -
helped by the availability of a specification language. - ‘

_ As a matter of fact; the availability of such a language paves the way for (partial)

-reuse the back-bone structure of applications, since these models capture the “essential
semantics” of applications, and can therefore be reused when the semantics of the two
applications are similar enough. ‘

Design models provide a framework in which the authors of hypermedia
applications can develop, analyse and compare design methodologies and rhetorical
styles of “hyperauthoring”, at a high level of abstraction. This analysis can be done
without having to resort to looking at ‘particular visualizations (screen formats and
appearances, button functicnalities and the such) or to the detailed contents of units of
information. At this level, it is possible to analyse the “conceptual” organization of the
- application domain knowledge represented, and examine its adequacy for the intended

uses. : -

Design models can be used by Design Tools, much in the same way as application
generators are based on languages to specify classes of applications, or as CASE tools
‘have specification languages to describe software (at various levels of abstraction). We -
will show later how our design model can be used to derive a HyperCard [Atkinson 87]
application. ' - . ' -

, An additional expectation is that applications developed according to a model
will result in a very predictable representation structure. As a consequence, navigation
environment for possible readers should also be predictable, thereby reducing the so-
called “disorientation/cognitive overhead” problem [Utting 90]. ‘

To be able to provide the advantages just described, a model clearly must be
expressive, allowing the description of concepts at the appropriate level; it must be
complete, in the sense that it captures the most frequently occurring structures; and it
must be simple, so that it can be easily used by authors.

The remainder of this article is organized as follows. Section 2 describes a design
model that addresses the issues discussed so far; section 3 describes a compiler for this
design model; and section 4 draws some conclusions.

Th rmedia ign Model 3

HDM is an hypertext application model developed at the Politecnico di Milano.
According to HDM, an application domain is seen as being composed of Entities, which
in turn are formed out of hierarchies of Components. Entities belong to a Type. Entities
can be connected to other-Entities or Components by Links which can be either
Structural or Application links. Structural links reflect the hierarchical structure of
entities; Application links connect Entities or Component to other Entities or
Components to reflect application domain relations. Components can be instantiated by
one or more Perspectives into Units.

We discuss each of these primitives in more detail in the next sub-sections.
2.1 HDM Primitives
2.1.1 Entities and Components

_ We refer to an Entity as a concrete or conceptual real world object.in the domain
that is relevant for the application. Typically, an entity will denote something quite
complex, whose internal structure may be further decomposed. An entity in its whole can
be represented through several individual, smaller-grained pieces of information, that
we call Components Examples of entities are “Law 19/8/89”, Dante’s “Divine Comedy”,
Gershwins’s “An American in Paris”.

A Compornent is a piece of information describing a part of an Entity.
. Components are grouped into an arbitrary, application dependent, hierarchy to form the
corresponding entity. All components of an entity are homogeneous.

Examples of possible components (with the corresponding entity from the
examples above) are “Article 1”7 (“Law 19/8/89”), “Paradise” (“Divine Comedy”), “First
Movement” (“An American in Paris”).

We have chosen hierarchies as the structure of Entities because they are a frequently
occurring structure, useful in specific contexts [Brown 87]. Many authors have observed
that hierarchies are very useful to help user orientation when navigating in
hyperdocuments [Acksyn 87, Brown 89]. HDM recognizes this via the notion of entities
made up of components organized into hierarchies, but leaves unspecified the criterion
to be used when breaking up an Entity into Components since it is very much
dependent on the specific application.

3 This section contains a summary of HDM, which is fully described in [Garzotto 90c].

(4 ; I

2.1.3 Perspectives and Units -

Components describe pieces of information. Due to the richness of most
hypertext reading environments, information may be presented in many different ways.
A natural abstraction that can be made in these situations is to allow an author to refer
(and think) about the concept that is being represented by a Component independently
~ from the way it is described. In other words, the concept can be thought of as having

several “perspectives”. ' R

HDM facilitates this abstraction by having Perspectives for Components. By the
term Perspective we mean the appearance of a piece of information. The description of a
component according to a given perspective is called a Unit, which has a bedy (the
information itself). HDM says nothing about bodies, as it is interested in talking about
hypertext structure. : ‘

A Component may have, therefore, one or more Units (corresponding to
- Perspectives). For example, we may say that each component of entity “An American in
Paris” has a “Textual” and a “Musical” perspective, corresponding respectively to the
musical score and a digital recording of the symphony. '

2.1.4 Entity Types

A common abstraction found in most data models is the notion of type. An
Entity Type groups entities having common properties. In HDM, the properties chosen
as relevant are “using the same set of perspectives”, “being broken into components
according to the same criteria”, and “being related to other entity types in the same way”.

Examples of entity types (with the corresponding entity from previous examples)
are “Law” (“Law 19/8/89”), “Poem”(“Divine Comedy”), “Symphony” (“An American in
Paris”). : '

In HDM the set of perspectives associated to an entity type is indicative only of
possible perspectives for its entities, so that it is necessary to have the notion of a Default
Perspective. The intended meaning of the default perspective is that all entities of this
type have af least this perspective; further significance of this concept will be shown
when we discuss the process of mapping into node-and-link structures.

2.1.5 Links and Link Types

The major advantage of the hypertext model is that one may organize an
information base in a non-linear fashion. This means, loosely speaking, that pieces of
information can be related to each other through links associated to them. The success
or failure of a given application using the hypertext paradigm is heavily dependent,
among other things, on the appropriate choice of links. The more the “meaning” of a
link approximates the relationships in the application domain, the more the user will be -
at ease in using the corresponding hyperdocument, since links will evoke familiar
associations. .- P '

HDM differentiates between three kinds of links, which we discuss next. HDM
Structural Links connect components belonging to the same hiera rchy. Since entities are
intended to provide a kind of “navigation context”, following hierarchical links has
- familiar meanings such as “Next”, “Previous”, “Up” (e.g., to move higher in abstraction
level), “Down” (e.g., to get more “details”), etc... The meaning of each of these relations

6

is dependent on the particular criterium chosen to organize the hierarchy,'but the
hierarchical relation should give the reader the “feeling” that she is moving “inside”
the particular entity in question.

The second class of links in HDM are the Application Links. Whereas structural
links capture rather “standard” semantics (structure), Application Links embody
semantic relationships in the domain. That is, they represent some (arbitrary)
relationship between entities that the author deems meaningful, in the sense that this
relationship evokes some association between concepts useful to the user of the
hyperdocument. By providing an application link, the author will be making it
“natural” to the user to access some information which is “related” to the information
being read at that point, by simply traversing that link.

The third type of link in HDM are the Perspective Links. Given that Components
stand for an abstraction of several Perspectives of the same subject, Perspective links
allow the reader to move between different Perspectives (i.e, Units) of the same
Component.

To be consistent with the notions of Entity and Entity Types, HDM also defines
Application Link Types as being a set of links instances whose source and destination
entities are of the same entity type, respectively.

For example, the author may specify that a link of type “Is-author-of” can connect
entities of type “Book” to entities of type “Person”: this means that in principle all
instances of “Book” (e.g., “Hamlet”, “Illiad”, etc...) may have a link to a corresponding
“Person” (e.g., “Shakespeare”, “Homer”) that is its author.

Up to now we have been describing links at a conceptual level, i.e., links between
entities, links between components, and links between entity and components. How
these links are actually perceived by the user will be discussed together with the
discussion on browsing semantics, in section 2.3.

2.1.6 Outlines

An important part of many applications is providing the initial access to the
hypertext, before the user starts navigating at all. More generally, it is useful to envisage
navigation patterns (including the starting points in the hypertext) which are
superimposed onto the hypertext itself.

HDM recognizes this need by allowing (and encouraging) the usage of Entities in
a special way, which we call Outline. An Outline is a special usage of types of entity (and
therefore Outline instances have hierarchical internal structure) whose instances have
leaf components which “point to” (are linked by application links to) nodes of the
hypertext proper; the contents of outline components is navigational information. A
typical example of an outline is a hierarchical index of the contents of a hypertext.

2.1.7 Derivation of Links

_ Having hierarchies as primitive concepts suggests that, at design level, an author
needs to specify only a minimal set of structural links - those necessary to define the
structure of an entity (“father” and “next brother ”) - from which a large number of
other implicit structural links (such as father-son, to-top, etc...) may be derived if desired.

~ Derivation rules can exist for application links too if we regard them as relations
between entities (components). Properties of these relations, such as symmetry and
~transitivity, when existing, can be used to derive other links. The reader should note
that link derivation becomes particularly powerful when used in conjunction with
‘composition of relations. '

As an example (see Fig. 1), assume that “Article 2” of a “Bank Regulation” (a
component of an entity of type “Regulation”) is connected to “Section 1” of a “Contract”
(a component of an entity of type “Legal Document”) by a link of type “Has Effects on”.
Then one might argue that that article of the bank regulation “Has Effects on” the whole
contract too. To represent this, the author would probably set a link of type “Has Effects
on” between the "Bank Regulation” and the root of “Section 1” ("Contract”). This link
however can be derived straightforwardly as simple composition of the link “Has Effects
on” between the two components and the structural link “to-top” between the second
component and the root of its entity. _ :

derived link

Bank \
Regulation 3

Has Effects on Contract

Section 1.7»

%.

application link

Has Effects-on

Figure 1- Example of derived link

It should be.observed that defining which links are actually derived, for a given
application, is a full fledged design step. The same schema can be reused by simply
specifying different derivation rules; this usually will take into account delivering the
same application to different kinds of users.

An important kind of derived structural link is the Presentation Link, which
- connects units of the same component. Presentation links allow the user to look at the
same object switching between perspectives. For example, switching to the “Text”
perspective of a procedure when looking at its “Graphic” perspective. '

So far, HDM does not itself include a language to specify such derivation rules.
Nevertheless, it is possible to have such a language in a formalism outside HDM, as will

8

be exemplified later. Given such a language, we will see that the use of HDM can
provide a great amount of conciseness to the model specification - the author needs to
provide a much smaller amount of links than the number of links that will actually be
present both at conceptual level and at concrete level.

2.3 Browsing Semantics

The actual appearance of a hypertext is largely defined by its browsing semantics
[Stotts 89]. In HDM browsing semantics will determine three further design choices for

‘authoring-in-the-large:

1) What are the objects for “human consumption”; in HDM terms, what can the
user perceive: Entities, Components, or Units?

.

2) What are the perceived links between objects; in HDM terms, which links are
visible? '

3) What is the behaviour when links are activated; in HDM terms, what happens
when one activates a one-to-many link?

_ HDM, as discussed so far, does not specify any particular browsing semantics for
hypertexts specified with it. Work on providing primitives for defining such browsing
semantics is at a preliminary stage, but simple browsing semantics can be specified with
formalisms such as Petri-Nets (see [Stotts 89]); [Garzotto 90c]. contains the formal
definition of the browsing semantics described in section 2.3.1 using a Petri-Net based
formalism.

Note also that other aspects of the browsing activity, such as the actual
appearance of screens, icons appearance and other authoring-in-the-small concerns, are
not discussed at all.

However, when actually compiling an HDM specification, on rmust choose a
particular browsing semantics, which must be compatible with the target hypertext
system. An important point to stress regarding the translation process is that it actually
introduces another design dimension. Each choice made when deciding how to translate
HDM links into concrete links affects the final hypertext the user will see. For this
reason, it is quite natural to think that these choices should be made according to certain
user profiles, therefore allowing the same hypertext design to be compiled for different
classes of users.

In the next section, we exemplify this discussion for a class of simple browsing
semantics, that one of plain node-and-links found in many hypertext systems, such as
HyperCard.

2.3.1 A simple browsing semantics compatible with HyperCard.

The class of browsing semantics discussed in this section will serve as a basis for
the compiler described in more detail in section 3.

In this class of browsing semantics, we assume that no abstract objects (entities
and components) are directly visible - only units (corresponding to the usual hypertext
notion of node) can be perceived by the readers as concrete objects. In consequence,
readers can see links only among units and so, in the end, actual connections must be

9

established among units. Furthermore, we also assume that onlv one node is active at.
any time, and only one link can be traversed at any time from an active node. We will
call concrete links the connections among units, as dlstmguxshed from abstract links,
which are defined among entities and/or components. It is necessary, therefore, to
specify how concrete links can be obtained from abstract links.

A rule for component-to-component structural link translation is the following:
if a component C1 has a structural link to a component C2, then, for each perspective P,
each unit of C1 having this perspective should be linked to the unit-of C2 having the
same perspective. This rule expresses a kind of stability criterion w.r.t. the use of
perspectives - if the reader is looking, say, at the “Text” perspective of an article of a law,
and follows the structural link “next article”, she will see its text perspectwe (as opposed,
say, to the “Graphic” perspective, which nught be the default.).

A simple choice to map abstract appIication links is the idea of having a default
representative for each abstract object (component or entity). The default representative
for a component is its unit in the default perspective of its type. The default
representative for an entity is the default representative of its root component. This
corresponds to saying that the root component of an entity (in its default perspective)

“stands” for that entity. Given this notion, entity-to-entity abstract links translate into
concrete links between their representatives. - »

A simple rule for translating component-to-component application links is one
in which each abstract link corresponds to a set of concrete links connecting each unit of
the source component to the default perspective unit of the target component

To illustrate this rule, consider the 51tuat10n (fig-2) in which there is a “Part of
Law” component (belonging to an entity .of type “Law’), linked to a “Step of a
Procedure” component (belonging to an entity of type “Procedure”), through an “Has
Effects on” application link. Consider further that the “Law” ‘entity type has perspective
types “Text” (corresponding to an informal commentary) and “Official Text”, and entity
type “Procedure” has “Text” and “Graphic” perspectives (the latter being a dataflow.
diagram for example), the “Text” one being the default for both entity types.

In this case, concrete links (corresponding to the link connecting the two -
components at the abstract level) will connect both the “Part of 2 Law:Text” and the “Part
of a Law:Official Text” units to the “Step of a Procedure:Text” unit (corresponding to the
default perspective).

10

Has Effects on

Applicationt Ink

5

Step of a

pPart of a Law Procedure

Concrete Links

Presentations

Components

Figure. 2 - Example of concrete link generation

It should be stressed that this is only one of the possible choices that can be made,
and HDM is not strictly prescriptive in this respect.

In hypertexts, connections among pieces of information are usually visualized
through “anchors” (or “buttons”). Anchors are well identifiable areas on the screen that
show the existence of a connection, and can be selected by the reader in order to get into
the link target(s). '

This approach suggests the need of a new primitive, which captures the notion of
“anchor type”. An anchor type specifies the properties of anchors that represent links of
the same type - or of a group of link types. It might be often the case that what the reader
actually “sees” in terms of anchors is a restricted set - the author may have chosen to
group links of some types under anchors of a single anchor type.

Consider for example, that entity “Procedure” have a link of type “Formal Legal
Justification” to a “Law” and a link of type “Informal Justification” to a an “Informal
Regulation”. The author might want to provide to the user a single reading link, maybe
labeled “Justification”, since the distinction might not be important for the reader. This
can be achieved by specifying the anchor type “Justification” to be the union of link types
“Formal Legal Justification” and “Informal Justification”. It should be noted that the
anchor mechanism also allows the author to selectively hide some links for some
perspectives.

Anchor types, therefore, provide a mechanism for the author to present groups
of link types together, also renaming or hiding them as well, as desired. By assigning a
- set of link types to each anchor type, the author can control link visibility. In this way,
the actual topology seen by the author may be much more complex than the one
presented to the reader.

11

From the previous discussion, it is clear that there are many situations in which
an anchor actually refers to several possible destination nodes. It must be defined,
therefore, what happens when the user activates one such anchor. Clearly, this is part of |
the particular browsing semantics being used, which in turn is partially dependent on
the particular system being used to implement the hypertext - if it supports multiple
active windows, for instance, a possible choice may simply be to show all destinations,
each in a separate window. This solution, however, is often not acceptable, and'
oftentunes not even possible in many systems.

One possible alternative approach that can be adopted to deal with this situation
is to introduce the notion of chooser. A chooser is-a mechanism associated with a single-
source-multiple-target anchor that allows the selection of one of the multiple targets of
the anchor. As such, choosers are implementation structures that can be generated
automatically from the specification of the hypertext, using any available mechanisms
present in the implementation environment {e.g., menus). :

3. Compiling HDM
3.1 The Structure of the Compilation Process

Given an HDM specification of a hypertext, we would like to translate it into an
actual runnable system, preferably using some already commercially available dehvery
platform.

A compilation scheme for HDM is given in Fig. 3. The ﬁrst step, Wthh strutly
speaking is not really compilation (smce it does not really change abstraction levels),
_implements the “link derivation engine”, i.e., explicates the derived links specified in
the schema instance. The second step implements most of the browsing semantics,
generating an Intermediate Model (IM) at the node-and-link level of abstraction. Finally,
-step three takes the IM and generates a running system, using a commercially available
system, HyperCard. ”

12

HDM Schema .
Instance : Expanded HDM Schema
Specification instance Specification
Link
Derivation >
Intermediate Model)
(Node and Link Level) J{
Compilation £ |
. =

HyperCard Stack Guide

SuperCard

S

HyperCard

Figure 3. Schema of HDM Compilation Process.

Step 1) Link Derivation

This step is responsible for explicating all links that were specified intensionally
in the schema. As said previously, this is not strictly a compilation step, in the sense that
its output is still an HDM schema instance (which we call the Expanded HDM Schema)
at the same level of abstraction. The only difference is that all links, structural and
application, are now explicitly included.

Once again, it should be remembered that this derivation may be done taking
into account specific classes of users and tasks. For example, it may be decided that next-
brother structural links are not interesting for this class of users; similarly, no
propagation of application links to the root component (as in example in fig. 1) may be
desirable.

Step 2) Translation into Node-and-Link Level -

Here the Expanded HDM Schema is actually compiled into a lower level
representation (which we call the Intermediate Model - IM). This step is the most
dependent on the particular browsing semantics chosen.

13

Typically, the level of the IM is at the node-and-links level, the same as that of
the Storage Layer of the Dexter Reference Model [Halasz 90] (indeed it can be shown that
IM is a subset of the Dexter Model). The main advantage of this choice for the IM is that
one can benefit from the fact of the IM being indendent of any particular hypertext
system, and thus being able to generate different versions of the same hypertext, using
diverse delivery environments. ' :

Step 3) Translation into the Delivery Environment

An IM instance is translated into a specific delivery environment. Here some
further design decisions are made, e.g., what is the mechanism used to implement
- choosers, how are anchors visualized, etc...

An important aspect to highlight is the compatibility between the particular
browsing semantics chosen and the delivery environment. For example, it is of little use
to have a browsing semantics in which multiple windows are allowed, and have
HyperCard as the delivery environment. Conversely, it may still be useful to have a
browsing semantics allowing only one window, and have Intermedia or SuperCard
(which allow multiple windows) as delivery environments.

3.2. The HF Compilér

In this section we present HF, a compiler for HDM, developed at the Politecnico
di Milano, based on a relational dabatase representation of the schema instance,
following the compilation schema of the previous sub-section. This means that this
implementation takes an HDM schema instance cast as a relational database (which we
call the HF Database), applies some derivations rules specified as relational database
" operations, compiles the schema instance into a node-and-links level description (IM .
description) and finally takes the IM and translates it into HyperCard. The compilation
we will illustrate refers to the simple browsing semantics discussed in section 2.3.

It should be observed that the database described here is not intended to support
development in HDM, but rather to support the compilation process; in other words,
the output of the development environment could be the HF database. There:are
several possible approaches to supporting the complete development cycle, and the
HYTEA Esprit II project [ARG 90] is focusing on providing an integrated environment in
which this could be done. ‘ '

3.2.1. The HF Data Base

This subsection shows in detail the relationships between the objects of HDM and
the schema of the relational database that models them; appendix I contains the SQL
- code for some of the steps of the compiler. Below we describe each table of the database
and its attributes. An attribute marked with an “*” indicates the primary key to the table;
names starting with “#” are identifiers of objects.. '

ENTITY (#Entity* ' unique identifier
Entity type '
Default perspective
):

Note that here we have incorporated entity type information into the entity
description, instead of having a separate table to describe entity types.

14

COMPONENT (#Component* unique identifier
#Father null for root components
#Entity null for non root components
Title short description of this Component
Order_number . ordering specification

ys

Order_number represents the next relation necessary to define an entity
instance.

UNIT (#Unit¥* unique identifier
#Component the Comp.this Unit belongs to
?erspective “style” of this Unit
Body - pointer to the Unit’s body
Template Information for the delivery environment

)

The #Component attribute specifies the component the Unit belongs to and
Perspective specifies which Perspective of #Component the unit implements. Since
the (set of) Perspectives are associated to Entities types, all the components of a given
entity will have the same number of Units (one for each perspective associated to the
entity’s type). The Body field contains a “pointer” (e.g. a filename) to the unformatted
information to be held by the unit. The body of the unit is stored in the Delivery
Environment, not in the HF database; Body ties the HF version and the Delivery
version. The Template attribute is not interpreted here, and is meant to describe how
the node should be processed in the Delivery Environment; it may have values such as
“HyperCard template card”, “a chooser template”, and so on.

APLINK (#Source Source component Id
#Target Target component Id
link_type describes link semantic

A .

)s

The APplicative LINKs table represent explicit connections between pairs of
components. Note that the database does not explicitly describe HDM structural links,
since they can be computed; the same is true for derived application links.

LINKAN (1link_type¥* This link type must be mapped
anchor_type into this anchor_type ‘
)z

The LINK and ANchors table groups many link types under the same anchor type;

a given 1link_type can be associated to one Anchor_type only.
ANPERSP (Anchor_ type

Perspective
)

The table ANchors and PERSPectives states which perspectives should have which
anchors, since some anchor types make sense only for certain perspectives and not for
others.

15

' 3.22.An application example

As an example?, suppose we are designing a hypertext that contains the
descriptions of loan procedures in a bank. Besides describing the procedures themselves
(which steps to follow, what forms to compile, etc...), the hypertext also represents all the
relevant regulations that determine why certain forms look the way they do, and why
certain steps must be taken instead of others.

The bank manipulates Documents according to Procedures. The reasons why
Documents and Procedures are the way they are can be explained by looking at Laws,
Regulations and Informal Norms.

Laws are issued by the state to discipline and control credit granting and taking
activity. Most of the times laws are too broad, and must be made more specific by
Regulations issued by some authority, on the basis of the text of the law. Finally, these
regulations are interpreted within an organization with the addition of Informal
Norms, which are of course valid only for that organization. '

The above state of affairs is captured in the schema described in Fig. 4., where
Entity Types and Application Link Types have been specified. Since in this case all
application links are by-directional (representing a relation and its inverse) - this is
frequently (but not necessarily) the case - we have drawn the links only once.

4This example is a subset of a larger prototype application (named Ex'pert' Dictionary)
+ [Garzotto 89] developed by ARG SpA and Politecnico di Milano within the european Esprit projects
INDOC and SUPERDOC. ' '

16

motivated by/

motivated by/ motivation for

motivation for

Cnformcl Norms)

A AR A] g
justified by/ justified by/
effects on ; effects on

justified by/
effects on

~| Documents B Procedures B

p 3

produced by/documents necessary for

Figure 4. Schema of Entity Types and Application Link Types

Each of these Entity Types has a set of Perspectives associated to it. We do not
enumerate all of them here, but simply mention that the default perspective for
“Regulations” is “Official Text” and for Procedures is “Description”.

Let us look now at a small part of an instance of the schema above, depicted in
Figure 5. In the figure, shaded areas denote entity instances whose internal structure has
been further detailed. We have simplified links and perspectives, keeping only what is
essential to illustrate the compilation process. Note that the boxes representing the
components of entity “Mortgage Loan Procedure” have a dark gray shadow, to indicate
they have two perspectives.

There is an entity of type “Procedure” named “Mortgage Loan Procedure”, which
is made up of several steps. One of the intermediate steps is named “Request Acceptance
and Entry”. This step is, in its turn, also made of several steps, the third being named
“Request Data Entry”. As we can see, the “Mortgage Loan Procedure” is really a hierarchy
of sub-procedures, each represented by a component. '

The entity “Circular HyperBank 21/10/89" represents some internal bank norm;
some of its parts are shown as nodes attached to the root. Between the components of
these two entities there are two application links, “Has Effects on” and ”Motxvated by”;
the structural links inside each of the entities are represented in gray.

: . - Perspeciive: Desc:iptz’onv
Perspeciive: Offcal Text ‘ - Xf Perspective: Code
o _ Fog

Has Efecs on s : | ,

Figure 5 - An example hypertext fragment. Grayed nodes are shown to give an idea of an
overall meaning of the components actually included in the example.

3.2.3 An example of HF Data Base

The HF database instance given below represents the hypertext fragment of figure 5.

ENTITY

2Entity Entity type Default perspective

Circular HyperBank .~ Regulation Official Text

Mortgage Loan Procedure Procedure Description

COMPONENT .

icgmggngr}r_ #Father #Pntity Title Order purberx
Cl1 nil Ciréular HyperBank Circular HyperBank 21/10/89 1
c2 c1 nil Subject » 1

c3 Loh nil ‘Operational'Norms in Request Verif 2

18

c4 nil Mortgage Loan Procedure Mortgage Loan Procedure 1

c5 Cc4 nil Reguest Acceptance and Entry 1

cé Cc5 nil Reguest Data Entry 1
© UNIT

#Unit #component Pexrspective Body Template

NI C1 Official Text filel CHTempl

N2 c2 Official_ Text file2 CHTempl

N3 C3 Official Text file3 CHTempl

N4 c4 Description file4 " MLTempl-1

N5 - CS5 Description file5S MLTempl-1

N6 Ccé6 Description fileé6 MLTempl-1

N7 Cc4 Code file7 MLTempl=-2

N8 C5 Code file8 MLTempl-2

N9 cé Code file9 MLTempl-2

APLINK

#Source #Target link Type

Cc2 C5 Has_Effects_on

c2 _ (13 Has_Effects_on

C5 c3 Motivated by

LINKAN

link Tvpe Anchor Type

Has_Effects_on Effects

Motivated by Motivation

root/Motivated by Global Motivation

ANPERSP _

Anchor Type =~ Perspective

Effects Official_Text

Motivation Description

Global Motivation Description

'3.3. The Compilation Process
3.3.1 - Derivation of links

Even though HDM does not yet include a language for specifying derivation of
links, we illustrate here how this can be done using a relational query language to do so.
It should be clear that we do not, by this, advocate that this is the most suitable language .
to do so; in fact, we are convinced that there are better (and more powerful) ones. What
is described here is simply an exercise to show the viability of the ideas discussed so far.

3.3.1.1 - Structural links derivation

This stage makes explicit structural links left implicit in the HDM hypertext
definition. Five structural link types will be made explicit:

19

FATHER: links a compbnent' to its direct ascendent
SON: links a component to its first descendant

RIGHT BROTHER, LEFT BROTHER: link in a linear fashion all the sons of the
same father component : : : :

ROOT: links a component to the root component of its entity

These new links have the same structure as application links: they are described
by a source component, a target component and a 1ink_type. The output of this
stage is a hypertext where entity trees of components are not any more a data structure
embedded in the hypertext, but are implemented explicitly by links.

v The database describing the hypertext is the same as the inpﬁt database, where
table APLINK has been modified as follows. (bold show new or modified records).

APLINK (including structural links)

fSource #Target link Tvpe

c2 C5 Has_Effects_on

cz - Cé6 Has_Effects_con
. C5 - e3 Motivated by

c1 c2 son

c2 c1 father

c3 c1 father

c2 el root
- C3 c1 root

c2 - €3 . rBrother

c3 c2 lBrother

c4a Cc5 son

C5 (o _ son

cé c5 : father

Cc5 c4 o father

Cc5 C4 root

cé6 c4 root

3.3.1.2 - Application links derivation

Next, we compute the derived application links; they can be computed on the |
basis of both structural and application links. A rule for generating derived links we will
use as an example is: - '

¢ for each application link connecting two components of different entities.

generate a derived link to connect the source component to the root of the
target component. ‘ ' '

This derivation rule reflects the assumption that if a component of an entity is

linked for any reason to a component of another entity, then it should be linked to its
root (which stands for the whole entity) too.

20

After this stage the original hypertext has been transformed into an equivalent
one where all links that were left unexpressed in the original HDM description have
been explicated. In the sequel we will refer to “component links”, disregarding whether
they are structural, apphcatlon or derived. The database describing the hypertext is the
same as for the previous section except for table APLINK which has the following two
new entries added

¥Source #Target link_Type
c2 c4 root/Has_Effects_on
c5 Ccl root/Motivated by
root/Has Effects on "
.] Morgage Loan b
root/Motvated by ‘
Circulan HyperBonk < :

21/10/89

’a
roo!

Opelohoncl Norms in
bject
wu }ec Requesf Verfication

- Motivated by

brother

—_— Has Eflcts on
Ibrother

~ Has Effects on

Figure 6 - Derived links for example in fig. 5

Fig.6 represents the result of a link derivation applied to the HDM hypertext
fragment of fig. 5. Entities are not shown for the sake of simplicity.

3.3.2 - Mapping entities and components into units

Next, we map the concepts of component and entities into units. It should be
remembered that we are using the browsing semantics in which Units are the only
visible HDM ob]ects, they hold the bulk information actually viewed by the user of the
hypertext and “physically” correspond to a “node” in the common hypertext
terminology. Links between components will be mapped to their associated units
accordingly to the following rules:

1) for each pair of linked components belonging to the same entity place a link
between each pair of their units having the same Perspective;

21

2) for each pair of linked components belonging to different entities place a link
between each unit of the source component and the default perspective unit of
the target component; ' '

3) for each unit of a given component plaée a link of type Change_perspective
to cycle between all the perspectives of that component.

4) The type of a new unit link (except for the third rule) shall be the same as the
type of the component link it originated from. :

The structure of unit links is isomorphic to that of component links, being
defined by a source unit, atarget unitanda link_type. Fig. 7 shows the output of
this step. It is composed of structures very similar to those of fig. 6, where components
Circular HyperBank 21/10/89, Operational Norms in Request Verif,and

“Subject and their structural links have been transformed into an isomorphic structure
composed of nodes N1, N2, N3 together with their structural links. Components
Mortgage Loan Procedure, Request Acceptance and Entry, and Request
Data Entry have been transformed into two isomorphic structures (one for each
perspective), composed by nodes N4, N5, N6and N7, N8, N9.Isomorphic nodes (for
example pair <N4, N7> of these structures are linked by Change_perspective unit
links. ‘ '

rooyHas Effects on
roctMotivated by

rool/Motivaled by

Figure 7 - Unit level ans generated from hypertext in fig. 6

The reader should note that links of type Has_Effects_on point to the nodes
belonging to the default perspective (Description) of the entity originally constituted
by components Mortgage Loan Procedure, Request Acceptance and Entry,
Request Data Entry.

22

Qur hypertext is now composed of units and unit links only, it can be described by
the following tables:

UNIT (#unit* ‘ unique identifier
#component the Comp.this Unit belongs to
Perspective “style” of this Unit
Body pointer to the Unit’s body
Template Information for the delivery environment
)i
LINK (#source_unit Source unit Id
#¥target_unit Target unit Id
link_Type ' describes link semantic

)i

Table UNIT is the same as the original UNIT table. Table LINK has the same
structure as the original table APLINK, but now describes links between units instead of
describing links between components.

UNIT

#Unit #component Perspective Body Tenplate

N1 Cl Official Text filel CHTempl

N2 c2 , Official Text file2 CHTempl

N3 Cc3 Official Text file3 CHTempl

N4 c4 Description file4d MLTempl-1

NS C5 - Description file5 MLTempl-1

N6 cé Description fileé6 MLTempl-1

N7 c4 Code file7 MLTempl-2

N8 Cc5 Code file8 MLTempl-2

N9 Cé6 Code file9 - MLTempl-2

LINK

#source #target lipk type =~ comments

N2 N5 Has_Effects_on application links

N2 N6 Has_Effects_on

" N5 N3 Motivated by

N8 N3 Motivated by

N1 N2 son ' “links outgoing from nodes of entity
Request_Data_Entry

N2 N1 father (Official Text perspective)

N3 N1 father

N2 N1 root

N3 N1 root

N2 N3 rBrother

N3 N2 1Brother

N2 N4 root/Has_] Effects _on

N4 NS son links outgoing from nodes of entlty
Mortgage Loan Procedure

N5 N6 son’ (Description perspective)

N6 ‘ N5 father

NS " N4 father

23

N5 N4 root

N6 N4 root

N5 N1 root/Motivated by

N8 " N1 root /Motivated by

N7 ‘ N8 son links outgoing from nodes of entity
Mortgage Loan Procedure

N8 - N9 son (Description perspective)

N9 N8 father '

N8 N7 father

N8 N7 root

N9 N7 root

N4 N7 change Change Perspective links _

N5 N8 change (toggle between Description and Code)

N6 N9 change

N7 N4 change

N8 N5 change

N9 N6 change

3.3.3 - From links to anchors

Now we substitute links by anchors. This operation is just a renaming and
regrouping of the types of the links. The rule for changing link types is the following:

o substitute the type of each unit link with the correspéndin’g anchor type (look
for this in table LINKAN). " : :

, The table representing anchors is similar to table LINK: the only differences are
the renaming of the field 1ink_type (that now becomes anchor type) and the change
of the values it contains to the corresponding anchor types (records affected are written
in bold), as follows: ' '

Has_Effects_on — Effects

root/Has_Effects_on — Effects

Motivated by — Motivation

root/Motivated by — Global Motivation

ANCHOR _

fsource #target anchor tvpe comments

N3 NS5 Effects application links

N3 N6 Effects

N5 N3 Motivation

N8 N3 Motivation ‘

N1 N2 son links outgoing from nodes of entity
_ Request_Data_Entry

N2 N1 father (Offlicial___Text perspective)

N3 N1 father o

N2 N1 root

N3 N1 root

N2 N3 rBrother

24

N3 N2 l1Brother

N3 N4 Effects

N4 N5 son links outgoing from nodes of entity

Mortgage Loan Procedure

N5 N6 son (Description perspective)

N6 N5 father

NS N4 father

N5 N4 root

N6 N4 root

N5 N1l Global Motivation

N8 N1l Global Motivation

N7 N8 son links outgoing from nodes of entity
) Mortgage Loan Procedure

N8 N9 son (Code perspective)

NS N8 father

N8 N7 father

N8 N7 root

N9 N7 root

N4 N7 change Change_Perspective links

NS N8 change . (toggle between Description and Code)

N6 N9 change '

N7 N4 change

N8 N5 change

N9 N6 change

3.3.4 - Anchor filtering

Finally we delete the anchor links whose type is not allowed for the perspective
of their source unit (look for this in table ANPERSP). The result is that, in the final
database, anchor types Motivation and Global Motivation have been removed from
perspective Code by removing the corresponding anchors connecting unit N8 to N1 and
N3.

3.3.5 - Chooser generation

The particular browsing semantics we have chosen requires the generation of a
chooser mechanism for each multiple destination anchor (see section 2.2.1.2). This is
done by scanning the table ANCHOR, looking for anchors with the same source node
(same #source and anchor_type field values). For each set of such anchors, a new
chooser node is generated, the destination node (#target field) of the original anchors
is changed to point to the new chooser, and new records are created, to include anchors
from the chooser to the original destinations. The table below shows the updates to the
ANCHOR relation of the example.

ANCHOR
#source #target anchor type comments
N3 CH1 Effects previously pointing to N5

N3 CH1 Effects previously pointing to N6

. (same as before)

N3 CH1 . Effects ' previously pointing to N4
. ' : (same as before)

(below are the new chooser anchors)

"CH1 N5 1. . chooser anchor for first node
CH1 N6 2 ‘ . chooser anchor for second node
CH1 N4 3 o chooser anchor for third node

A new record for each generated chooser is also created and included in table
DEUNIT. The #Unit field has an automatically generated value; the Body field has a
constant value “chooser” (which allows the recognition of chooser nodes); and the
Template field contains a reference to a standard chooser template This is exemplified
in table DEUNIT (DElivery UNITs) shown below.

The whole hypertext is now represented by the tables ANCHOR and DEUNIT. Table
DEUNIT differs from UNIT in that the attribute Per spect ive has been replaced by Title,
whose contents are derived from the Title field of the Component table the unit
belonged to and the Perspective field of the Unit table. For choosers, the Tit1le field
has its value composed with the values of the Title field of the source of the chooser
and the anchor_type of the chooser.

The final output of the first compilation step, which is called the Intermediate
Model, is the representation of an oriented graph whose nodes (units) are the same as
those in the original hypertext, and links connect nodes instead of connecting the
original HDM components. This simplified version is described by the following two
tables (changes of table Anchors with respect to table Links are shown in bold).

DEUNIT (Delivery Unit)

#Unit Title Body Template
N1~ Circular HyperBank 21/10/89:0fficial Text filel CHTempl
N2 Operational Norms in Request Verif:0fficial Text file2 CHTempl
N3 Subject:0fficial Text . , file3 CHTempl
N4 Mortgage Loan Procedure:Description filed MLTempl=1
N5 Request Acceptance and Entry:Description file5 MLTerpl-1
N6 " Request Data Entry:Description fileé6 MLTempl-1
N7 Mortgage® Loan Procedure:Code file?7 MLTempl-2
N8 Request Acceptance and Entry:Code file8 MLTempl-2
N9 Request Data En;ryECode file9 MLTempl-2
CH1 Circular HyperBank 21/10/89:Effects - chooser ChsTempl
ANCHOR

‘#sourcn #target anchor type gommuents

N3 ~ CH1 Effects application links; note anchor

N3 ' CH1 Effects for these nodes points to choosers:

N5 N3
(deleted)
N1 N2
N2 N1
N3 N1
N2 N1
N3 ‘N1
N2 N3~
N3 " N2
N3 CH1
N4 N5
N5 N6
N6 N5
N5 N4
N5 N4
N6 N4
N5 N1
(deleted)
N7 N8
N8 N9
N9 N8
N8 N7
N8 N7
N9 N7
N4 N7
N5 N8
N6 N9
N7 N4
N8 N5
N9 N6
CH1 N5
CH1 N6
CH1 N4

26

Motivation:

(old N8 — N3: Motivation) - not
allowed for this perspective

son links outgoing from nodes of entity
Request_Data_Entry

father - (Official Text perspective)

father

root

root

rBrother

1Brother

Effects

son links outgoing from nodes of entity
Mortgage Loan Procedure

son (Description pérspective)

father

father

root

root

Global Motivation

(old N5 —» N1: Global Motivation) —- not
allowed for this perspective

son links outgoing from nodes of entity
Mortgage Loan Procedure

son (Code perspective)

father

father

root -

root

change Change Perspective links

change (toggle between Description and Code)

change '

change

change

change

1 chooser anchor for first node

2 chooser anchor for second node

3 chooser anchor for third node

3.3.5 - Translation into HyperCard

The purpose of this step is to generate an application in HyperCard, the input

being the tables ANCHOR and DEUNIT; the problem then becomes the translation of
delivery nodes and anchor links into HyperCard objects.

The most natural choice for what concerns nodes is to map them onto HyperCard
cards. Unfortunately there is no such simple choice for anchors since HyperCard does

27

" not directly implement links as such - they are actually coded as part of $c1'ipts associated
to buttons. When a button is “clicked”, the associated script is execlited, and if it contains
~a “go to card ...” command, the effect is the same as a link traversal.

‘The first alternative for compiling HDM anchors is to generate one script for each
corresponding button. Arother possibility is to have only one “generic” parameterized
script for all buttons, where the destination is given by the parameter, usually found in a
table. In HyperCard this can be achieved by placing the script to handle mouse clicks at
the stack level.

We have opted for the second approach simply because it allows for a simpler
compiler, and, secondarily, because it makes the resulting HyperCard stack easier to
maintain within the HyperCard environment. It should be noted that, in any case,
either option is possible; had we chosen the first alternative above, only a small change)
to the overall compiler would be needed. Furthermore, with a simple utility program
written in HyperTalk (the scripting language of HyperCard) it is possible to convert one
representation into the other.

Thus, we have implemented a small engine implemented in Hypertalk which
detects user navigation requests, retrieves the rame of the target node from a table, and
finally instructs the HyperCard engine to show the target card. A simplified fragment of -
the script handling button activation is given in figure 10. The name of the target node
is retrieved by the engine from a table (conceptually identical to table ANCHOR) that
describes links in terms of triplets <anchor_type, source_card, target_card>; this
table is stored in a hidden field of a card in the stack. From the user's point of view,
anchor links are mapped onto HyperCard buttons placed in source cards.

The final thing that must be translated from IM into HyperCard are chooser
nodes, which have a different structure from other nodes. We solve this problem, in the
case of HyperCard, by connecting the source card to a special type of card generated from .
a chooser template, containing fields with a short description (title) of the target cards;
the reader selects the actual target by clicking on its title. Choosers are generated
‘automatlcally by the HF compiler. ‘

If we had chosen a different browsing semantics, choosers could have been
implemented as a pull-down menu whose items would be target node titles; this
solution would have freed some screen space on the card but seemed to us to be less
natural for the typical HyperCard user. :

Now we shall examine in detail the stages of this éoméilation step.
Stage 1 - Nodes generatibn v
| For each deli;rery node HF genefates an HyperCard ﬁode (card).

The node is generated cloning (copying) a prototype card using the card whose ID
is given in the template field of table DEUNIT, and whose content is specified in the

body field.

Prototype cards can be freely designed, except for the following constraints:

° They must have a button for each outgoirng anchor link, so that users can
actlvate ‘all-anchors;

28

» They must have a field to hold the title of the node. Whereas the first
restriction above is logically necessary for consistency, this restriction is rather
of a stylistic nature. It is logically necessary for chooser templates only (since the
user selects target nodes clicking on their titles), but requiring it for all
templates imposes some uniformity on the visual identification of all cards.
This also helps to convey the notion of “component”.

After having been cloned from its prototype the newly created card is assigned an
unique identifier and its title (respectively, the #unit and title fields of the DEUNIT
table.

For example, the card corresponding to unit N1 in that table will have
(HyperCard) name N1 and the value of the HyperCard field “Title” equal to “Circular
HyperBank:0fficial Text”.If the card shown in figure 8 is the template for that node
(i.e., the card with name CHTempl, taken from field template of that record in table
DEUNIT), then the cloned card for unit N1 will be the one shown in figure 9.

Figure 8 - Template card corresponding to template field value CHTempl in table DEUNIT

A few remarks about figures 8 and 9 are in order. First of all, since we are
‘illustrating just a portion of a more complex application, there are buttons which
correspond to anchors we have not mentioned (“Motivation”, “Description”,
“Structure”). The group of buttons (icons) at the bottom right hand of the screen

. correspond to anchors for structural links. All the other buttons on the sides correspond
to functions either related to navigation or to system operations. Navigation functions

29

can be “Trace”, “Navigation Map”, “Mark Node”, etc...; system functions allow, for
- example, access to files, printing and the such. : '

We inform that the existing rules, to be be adopted by the local units, regsrding

MORTGAGE LOAN REQUEST VERIFICATION and MORTGAGE LOAN CONCESSION, have
== {been extended as follows:’ -

) if the purpose of the loan isthe purchase or the restructuring of the lending party’s
<11egelly declared residence, then the highest loan amount that can be provided is the
475 % of the value of the guaranty; the guaranty must be, as ususl, the costumer ‘s
‘1legally declared residence. :

‘4This rule holds for ANY costumer category.

Signature

2.3t
Dr. M. Bisnchi
Client Services Dept. Director

Figure 9 - Card corresponding to node N1 in table DEUNIT. Buttons “Motivation”,
“Description” and “Structure” should be ignored for this example.

Stage 2 - Links generation

Since we do not use the standard linking technique of HyperCard, link
generation simply consists in generating a table of triplets <anchor type,
~source_card, target_card>, which gets encoded into invisible fields of an
HyperCard card. Figure 10 contains part of the HyperCard script that handles button
clicks, thereby implementing the small hypertext engine.

~- This script is placed at the Stack level of the Hypercard
hierarchy
- A X T A A KA AT T A R AR AT AR ALTA KRR KA AR A A AR AR AR R A A AT AR AR A AR A A Ak %

—- kxkkkkxkkx* Captures mouse clicks on buttons ****dxkkwdikxax

on mouseup

if "button" is in the name of the target—
or "field" is in the name of the target
‘then’ :

set ‘cursor to busy

lock screen

set lockMessages to true .
ActivateAnchor the short name of the target &","&—
the short name of this cd

else

exit mouseup
end if
unlock screen

end mouseup

— AKX AKX AR A I A A A I I A I AKRAAA A AR AT kA Ak hkhkkk Ak khkdhkhkkkhkk

—— kkkkkkkkkkkxkx ACTIVATE ANCHOR Kk KKK KKK AR KKK A

on ActivateAnchor anchor
put the name of this card into CurrentNode -- for error recovery
go to cd "delink" ' -- Contains table “delink” in its fields

-- Now find the target node of this anchor by looking in the fields
-- "DELINKn" of card "delink". This done to simply to cirmcumvent
-- Hypercard’s 32K limitation on field sizes

put 4 into maxtabdelink -- Number of fields to encode table
~- delink, in card “delink”.

put false into found
repeat with n=1 to maxtabdelink

‘set cursor to busy

do "find string anchor in fld delink"&n&&"of cd delink"™

if the result is empty and the short name of this cd is "delink"
then

put true into found
put item 3 of the value of the foundline into targetnode
exit repeat

end if
end repeat
~if not found then

-~ Error - should not happen since it is checked at compile time
ErrorHandler (CurrentNode)
exit ActivateAnchor:

end if
go to targetnode
end ActivateAnchor

‘Figure 10 - Script for handling button clicks. It is placed at the stack level.

Stage 3 - Choosers

The purpose of this stage is to implement the support for one-to-many links. In
HyperCard this is implemented generating some cards (choosers) which allow the reader
to select one of the (mary) target cards. Chooser cards are cloned from a standard chooser
template card, whose title field is assigned the title of the source node concatenated -
with the type of the anchor leading to that chooser. Each chooser and has as many
clickable fields as the destinations. Each destination field contains the title of a target
node, and the user chooses the node she wants to see by clicking on its title.

If the value ”ChsTempl” of field template in the record for chooser CH1 in table
DEUNIT is the name of the card shown in figure 11, the corresponding chooser cloned
from it is the one shown in figure 12.

Figure 11 - Template card corresponding to the template field value ChsTempl in table
DEUNIT.

32

Request Acceptance and Enlry

Request Data Eniry

Mortgage Loan Procedure

Figure 12 - Chooser corresponding to node CH1 in table DELINK.

Once this stage is finished, the resulting stack contains the final application,
which can be run using HyperCard.

4. Conclusions

We have shown how a model-based approach can enhance the design of an
hypertext; although the example shown is only a small part of a large application, it
should be clear how the systematic approach allows to handle a quite complex structure
in an organized way. The existence of a model allows relatively simple tools to
considerably speed up hypertext structure development, as can be verified, for example,
by comparing the complexity of the structures depicted in figures 5 and 7. Moreover, this
complexity is managed in such a way that should render it easier on readers that must
“navigate” in such hypertexts.

It is clear that this approach is less advantageous in application domains where
there are few structural regularities, or where such regularities should not be exploited
too much (in certain games, for instance). Even in such cases, though, the approach
described here can serve as a starting point from which the author may continue
embellishing the hypertext structure.

The compilation schema presented here allows several degrees of “reusability” of
the code implementing the compiler. The first degree is when, maintaining the same
browsing semantics, one generates the hypertext for a different system. In this case, only
the last step of the compilation process (targetting of the IM) must be implemented
again. The second degree is when the browsing semantics is changed; if the only thing

33

that is changed is the behaviour upon link actlvatxon , then again most of the
compilation process can be reused.

The approach we have described takes a hitherto new HDM specification and
generates an empty HyperCard stack to be filled in. Clearly, if the author changes her
mind about the hypertext structure after having compiled its specification, she would
not want to re-specify unchanged nodes. In order to accomodate this need our approach
should be extended to allow for incremental compilation. Here, rather than starting
with a completely new design, the author starts with a previously defined specification.
In this situation, the compiler must be extended in to keep track of altered information
(mainly link information), so that only new additions and changes to previously
defined objects must be generated. .

As a more general comment, model specifications and node content editing
should ideally be processed within an integrated environment, allowing the author to
move “seamlessly” from the specification level to the delivery environment level. As
mentioned previously, such an environment is being defined and developed within the
Esprit II Project HYTEA [ARG 90], of which Politecnico di Milano is a partner

5. References
- [ARG 90] ARG, “HYTEA Technical Annex”, Esprit Project P5252, June 1990

‘[Akscyn 87] Akscyn, R.; McCracken, D.; Yoder, E.; “KMS: A Distributed Hypermedia
System for Managing Knowledge in Orgamzatlons , Proc. Hypertext '87,
ACM, Baltimore, 1987, pp. 1-20 ’

[Atkinson 87] Atkinson, W.; HyperCard, software for Macmtosh computers,
Cupertino, Apple Computer Co, 1987.

[Brown 87] Brown, P.J; “Turning Ideas Into Products: The Guide System”, Proc.
Hypertext ‘87, ACM, Baltimore, 1987. pp- 33-40 '

[Brown 89] Brown, P.J.; “Do we need maps to navigate round hypertext documents?”,
Eletronic Publishing-Origination, Dissemination and Design 2, 2 (July
89). '

[Furuta 90] Furuta R,, Sfotts D., The Trellis Reference Model”, Proc. 1st Hypertext
Standardization NIST Workshop, Gaithersburg, MD, Jan. 1990

[Garzotto 89] Garzotto F., Paolini P., “ Expert Dictionaries: Kriowledge Based Tools for
Explanation and Maintenance of Complex Application Environments”,
Proc. 2nd ACM Int. Conf. on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Tullahoma , TN., Aug. 1989

[Garzotto 90a] Garzotto F., Paolini P., Schwabe,D., Bernstein, M. “Tools for

Developers”, Chapter 5 of ”Hypertext/ Hypermedia Handbook”, Devlin,
J. ; Berk, E. (eds), McGraw Hill 1990.

[Garzotto 90b] Garzotto F., Schwabe,D.; Paolini P Caloini, A. Mamettx, S.; Borroni,S,
“HDM - HYPERMEDIA DESIGN MODEL”, Tech. Report.m 90-41, Dept.
of Electronics, Politecnico di Mxlano, Oct. 1990

[Garzotto 90c] Garzotto F., Schwabe,D.; Paolini P.;, “HDM - A Model Based Approach
to Hypermedia Application Design”, submitted to ACM - TOIS,
November 1990. Also available as Techmcal Report 90-??, Dipartimento
di Elettronica, Politecnico di Milano, Nov. 1990.

[Halasz 90] Halasz F., Schwartz M, “ The Dexter Refernce Model”, Proc. 1st Hypertext .
Standardization NIST Workshop, Gaithersburg, MD, Jan. 1990

34

[Stotts 89] Stotts, P.D.; Furuta, R., “Petri-Net-Based Hypertext: Document Structure
with Browsing Semantics”, ACM Transactions on Office and

[Utting 90]

REM /*

CREATE

CREATE

CREATE

CREATE

CREATE
CREATE
REM /*

CREATE

COMMIT;

Information Systems, 7(1), January 1989.

Utting K; Yankelovich, N.; “Context and Orientation in Hypermedia

Networks”, ACM Trans. on Information Systems, 7. (1990) pp. 58-84
6. Appendix: SQL Code

In this appendix we show the SQL code corresponding to the compilation steps
described in the article. The implementation of the chooser cloning mechanism requires
the use of embedded SQL, and we have therefore chosen to implement it in HyperCard,
rather than having it in yet another programming environment. This part is not shown
in the appendix.

CREATE Tables */
TABLE ENTITY (#ENTITY CHAR (4) NOT NULL,
ENTITY TYPE CHAR(15) NOT NULL,
DEFAULT PERSPECTIVE CHAR(15) NOT NULL
)i
TABLE COMPON (#COMPONENT CHAR (4) NOT NULL,
#FATHER CHAR(4),
#ENTITY CHAR (4) NOT NULL,
TITLE CHAR (45),)
ORDER_NUMBER NUMBER NOT NULL
)i
TABLE APNODE (#UNIT CHAR(4) NOT NULL,
#COMPONENT CHAR (4) NOT NULL,
PERSPECTIVE CHAR(15) NOT NULL,
BODY CHAR(45) NOT NULL,
TEMPLATE CHAR(45)
):
TABLE APLINK (#SOURCE CHAR (4) NOT NULL, /* APplication LINK */
#TARGET CHAR (4) NOT NULL,
LINK TYPE CHAR(15) NOT NULL
):
TABLE LINKAN (ANCHOR TYPE CHAR(15) NOT NULL, /* ANchor LINK */
LINK_TYPE CHAR(15) NOT NULL
)¢
TABLE ANPERSP (ANCHOR_TYPE v CHAR(IS) NOT NULL,
PERSPECTIVE CHAR(15) NOT NULL
)i
Structural Link Derivation - Generates Table COMP_STRUCT_ LINK */
TABLE COMP_STRUCT_LINK (#SCURCE CHAR (4) NOT NULL,
/* COmponent STructural LinK */
#TARGET CHAR (4) NOT NULL,
LINK_TYPE CHAR(1S) NOT NULL

)

35

INSERT INTO COMP_STRUCT_LINK

SELECT #COMPONENT, #FATHER, 'FATHER' = /*FATHER Relation */
FROM COMPON _ _

WHERE #FATHER != 'NULL' ;
COMMIT;

INSERT INTO COMP_STRUCT_LINK

SELECT #FATHER, #COMPONENT, 'SON' /* SON Relation */
FROM COMPON
WHERE #FATHER != 'NULL'

AND ORDER_NUMBER=1 ;

COMMIT;

INSERT INTO COMP_STRUCT_LINK /* RIGHT BROTHER Relation */
SELECT COLB.#COMPONENT, CORB.#COMPONENT, 'RBROTHER'
FROM COMPON COLB, COMPON CORB /* COLB = COmponent ‘Left Brother */

/* CORB = COmponent Right Brother */
WHERE COLB. #FATHER=CORB. #FATHER .
AND COLB.ORDER_NUMBER=CORB.ORDER NUMBER-1 ;

COMMIT;

INSERT INTO CGMP_STRUCT_ LINK /* LEFT BROTHER Relation */
SELECT CORB.#COMPONENT, COLB.#COMPONENT, 'LBROTHER'
FROM COMPON COLB, COMPON CORB
WHERE COLB.#FATHER=CORB.#FATHER _ :
AND COLB.ORDER_NUMBER=CORB.ORDER_NUMBER-1 ;

COMMIT;
INSERT INTO COMP STRUCT LINK ~ . /* ROOT Relation */
SELECT COMP.#COMPONENT, ROOT.#COMPONENT, 'ROOT'
FROM COMPON COMP, COMPON ROOT
WHERE COMP.#ENTITY = ROOT.#ENTITY
AND ROOT.#FATHER IS NULL;
COMMIT;

REM /* Application Links. Table COAPLK */

CREATE TABLE COAPLK (#SOURCE, /* COmponent APplication LinK */
#TARGET, :
LINK_TYPE
)
AS o : .
SELECT *° /*Copy application links */
FROM APLINK ; .
COMMIT;
INSERT INTO COAPLK /* Generate derived links */

SELECT DISTINCT #SOURCE, ROOT.#COMPONENT, LINK_ TYPE

FROM APLINK, COMPON TARG, COMPON ROOT

WHERE APLINK.#TARGET = TARG.#COMPONENT
AND TARG.#ENTITY = ROOT.#ENTITY /* for each link */
AND ROCT.#FATHER IS NULL; , /* find its root */

COMMIT;

REM /* Temporary Table for Units */

CREATE TABLE NOLINK (CD_NOS, /* NOde LINK - Links between Units*/
: CD_NOT,
LINK_TYPE
)
AS

SELECT DISTINCT NODES.#UNIT, NODET.#UNIT, COMP_STRUCT_ LINK.LINK_TYPE
/*Structural Links*/
FROM COMP_STRUCT LINK, APNODE NODES, APNODE NODET / *Remember * /
/* structural links connect components of the same entity */
WHERE COMP_STRUCT_ LINK.#SOURCE NODES . #COMPONENT /* Connect units */
AND COMP_STRUCT_ LINK.#TARGET NODET.#COMPONENT /* with the same */
AND NODES .PERSPECTIVE = NODET.PERSPECTIVE; /* perspective, */
/* if their components are connected by structural links */

1]

COMMIT;

INSERT INTO NOLINK
SELECT DISTINCT NODES.#UNIT, NODET.#UNIT, COAPLK.LINK_TYPE
/*Application Links*/

FROM COAPLK, COMPON, APNODE NODES, APNODE NODET, ENTITY / *Remember */
: /* application links connect components of different entities */
WHERE COAPLK.#SOURCE "= NODES.#COMPONENT /* Connect components linked */
AND COAPLK.#TARGET = NODET.#COMPONENT /* by application links. x/
AND COAPLK.#TARGET = COMPON.#COMPONENT /* Links go from units of */

AND COMPON.#ENTITY ENTITY.#ENTITY /* each perspective to the */
AND NODET.PERSPECTIVE = ENTITY.DEFAULT PERSPECTIVE; /* default persp. */

COMMIT;

INSERT INTO NOLINK /*Change Perspective links */
SELECT SOURCE.#UNIT, TARGET.#UNIT, 'PERPSPECTIVE®
FROM APNODE SOURCE, APNODE TARGET

WHERE SOURCE.#COMPONENT = TARGET.#COMPONENT /* Connect each persp to all */
AND SOURCE.#UNIT != TARGET.#UNIT; /* other perscpectives . */
COMMIT;

REM /* Generated Delivery Link Table */

CREATE TABLE DELINK (ANCHOR_ TYPE, /* DElivery LINK */
CD_NOS,
CD_NOT
)

AS

SELECT ANPERSP.ANCHOR TYPE, CD_NOS, CD_NOT

. FRCM ANPERSP, LINKAN, NOLINK, APNODE

WHERE ANPERSP.PERSPECTIVE = APNODE.PERSPECTIVE /* if node n with persp.p */
AND APNODE.#UNIT = NOLINK.CD NOS /* is source of link of type 1t to node NOT*/
AND LINKAN.LINK TYPE = NOLINK.LINK TYPE /* get anchor_type at corresp to 1t */
AND ANPERSP.ANCHOR TYPE = LINKAN.ANCHOR _TYPE; /* if at is allowed for p */

COMMIT;

REM /* Generate Delivery Units */

CREATE TABLE DEUNIT (#UNIT, /*DElivery NODE */
TITLE,
. BODY,
TEMPLATE
)
AS SELECT #UNIT, TITLE | ":" | PERSPECTIVE, BODY, TEMPLATE

FROM APNODE, COMPON : .
. WHERE APNODE.#COMPONENT = COMPON.#COMPONENT;

COMMIT;

37

