B e B S PR A R R

S e N e e A SR A

Series: Monografias em Cléncia da Computacdo,
No. 23/80

NEW PERSPECTIVES FOR HYPERTEXT APPLICATIONS USING
MODEL-BASED DESIGN

Franca Garzotto
Daniel Schwabe
Paolo Paolini

Departamento de Informdtica

e R S AR R e P

PONTIFICIA UMIVERSIDADE CATOLICA DO RIO DE JANEIRO

AUA MARQUES DE SAC VICEMTE, 225 - OCEP.-22453

RIQ DE JANEIRO -~ BRASIL

LIRS

T T

S

PUC RIO0 ~ DEPARTAMENTO DE - INFORMATICA

Serles: Monografias em Ciéncia da Computa¢do, No. 23/80
‘Editor: Paulo A. S. Veloso : _ Decemher, 1980

NEW PERSPECTIVES FOR HYPERTEXT APPLICATIONS USING
MODEL-BASED DESIGN *

Franca Garzotto *%
Daniel Schwabe
Paolo Paolini *x%x.

%* This work has been partially sponsocred by the Brazilian
Government Office of Science and Technology.

¥% Politecnico di Milano, Milano, Italy, where this work has
also been published, under series no., TR-B0-76. ‘

In charge of publicationss®

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentaglo e Informagan

PUC Rio ~ Departamento de Informftica
Rua Marqubs de 5Ho Vicente, 225 - Gdvean
ap453 - Rio de Janeiro, R.J

Brasgil

Tel. . (d24)529-9386 Telex:i31078
E-mailitrosanedinf.puc-rio.br

Faxr (@24)511-5640

fAbstract®

We describe a novel use of hypertext within hybvid applications -~
those involving the integration of formal and informal knowledyges
about an application domain. This integration is achieved using
a model-based approach to hypertext application design: this
madel can be used even if no integration with formal knwoledge is
nesded., fis wn consequence of this approach, we also propose ®
structured =approach to hypertext application design that aims at
detining the “structure” of the hypertext before the actual
contents of the nodes are defined.

Kevwordst

Knowledge hased systems, hypertexts, muitinedia systems,
authority models for hypertext.

Resumos

Neste artigo descreve-sg um nova uso para hipertextaos, no
contexto de aplicagdes hibridas - aguelas que envolvem E
integragio de conhecimento informal e formal acercd de um dominio
de conhecimento. Fata integracho & conseguida atravds da
utilizagio de um enfoque baseado em modelos para o @ prodeto de
aplicagtes hipertextunist este modelo pode ser atilizado mesmo
quando nho ¢ necessdria a integragdo com . ¢ conhecimento formal.
Como consequéneia deste enfogue, € proposto. tambdm umin abordagen
estruturada ao projeto de aplicagtes hipertedtuais, que Procurs
definir a estrutura do hipertexto antes da defini¢lo dos
conteddos dos nds propriamente ditos. :

Keyuwords s

Siatemas baseandos - em conhecimnento, hipertextos, sistemas
multimidia, modelos de autoria para hipertexto.

NEW PERSPECTIVES FOR HYPERTEXT APPLICATIONS USING MODEL-
BASED DESIGN '

Franca Garzotto, Daniel Schwabe, Paolo Paolini
Politecnico di Milano '

Abstract - We describe a novel use of hypertext within hybrid applications - those
involving the integration of formal and informal knowledge about an
application domain. This integration is achieved using a model-based approach
to hypertext application design; this model can be used even if no integration
with formal knowledge is needed. As a consequence of this approach, we also
propose a structured approach to hypertext application design that aims to define
the structure of the hypertext before the actual contents of the nodes is defined.

1. Introduction

Traditional hypertexts have been used to describe complex application
domains. The complexity is represented mostly through a large number of
connections (links) between nodes, and it is commonly argued that it is exactly
this richness of connectivity that gives it advantages over traditional, linear text.

It is possible to claim that, in some sense, hypertexts are a form of
knowledge representation. Since most hypertext systems know nothing about
the contents of the nodes, and are aware only of the particular network topology
of the hypertext, this representation is in some sense informal - any additional
interpretation is done by the human reader. We refer to information that can
only be processed by human beings as an informal representation of the
knowledge about an application domain. Informal representation is most useful
for domains in which the knowledge relies on some sort of “common-sense”
(e.g., legislation), whose formal representation and automatic processing are very
difficult. ' '

Authors’ addresses: Department of Electronics - Politecnico di Milano Piazza Leonardo da
Vinci 32 - 20133 Milano Italy. Phone: +39-2-23993634; Fax: +39-2-23993587; E-mail:
relett34@imipoli.bitnet-

Paolo Paolini is also with A.R.G. - Applied Research Group Via Pio La Torre 14 -
Vimodrone (Milano) Italy. Phone: +39-2-2650072; Fax:+39-2-2650693 ; E-mail:
paolini@icil64.cilea.it.

Daniel Schwabe developed this work while on sabbatical leave (until January 1991) from
Departamento de Informatica, Pontificia Universidade Catélica do Rio de Janeiro, R. M. de S.
Vicente, 225, CEP 22453, Rio de Janeiro, Brasil. Phone: +55-21-274 4449; Fax:+55-21-274 4546; E-
mail: schwabe@inf.puc-rio.br, and was partially supported by CNPg-Brasil.

The work reported here was sponsored in part by the EEC, in the scope of the. HYTEA
Project (P 5252) of the ESPRIT II Programme, whose main contractor is ARG SpA, Milano, Italy, and
includes among other participants the Dipartimento di Elettronica, Politecnico di Milano.

A different approach to knowledge representation has been taken by the
so-called “Knowledge Based Systems” (KBS's) [Frost 89]. Here the application
domain is formalized in some computer processable way, and once this formal
description is available the system can try to solve specific problems in the
application domain by manipulating the formal description. This approach is
most successful when it is possible to narrow the problem area to very specific
points, in domains amenable to formalization. We refer to information
represented in a computer-processable form as a formal representation of the
knowledge about the application domain.

Integration of hypertext and “knowledge-based” systems can be done at
various levels - see for instances the articles in [Bernstein 88]. To organize the
discussion, we could classify these approaches as follows.

1) Hypertext interface - In this class, the domain knowledge is all contained
and processed in the KBS formalism; hypertext is used to provide a user-
friendly interface to it. This interface may either allow navigational
access to the knowledge, or it may be used to enhance the explanation
capability of KBS ([Moore 88] contains a survey of such explanations). .
Examples are the hypertext interface to medical knowledge-bases [Banks
88] and the interface to CYC using hypertext [Travers 89].

2) Knowledge Based Enhancements to Hypertext - This class includes the
systems in which knowledge-based techniques are used to enhance
hypertext functionality. Such enhancements can help the navigation
process, query mechanisms, the computation of dynamic links, etc...
Examples are VISAR [Clitherow 89] and certain aspects of Object Lens
[Lai 88] .

3) Hybrid systems - Systems in this class represent the knowledge both in
hypertextual and using knowledge based techniques. Besides the system .
described in this article, other examples are the representation of
engineering norms described in [Schwabe 90] and the JANUS
(architectural) Design Environment [Fischer 89]. Notice also that systems
in this class may also have features of kinds 1) and 2) above.

The third category above, hybrid systems, can also be seen as a special case
of “semi-formal systems”, which can be defined as (see [Lai 88]) “Computer
systems that 1) represent and automatically processes certain information in
formally specified ways; 2) represent and make it easy for humans to use the
same or other information in ways that are not formally specified; and 3) allow
the boundary between the formal processing by computers and informal
processing by people to be easily changed”.

Semi-formal systems are useful when there is an application domain
where part of the knowledge is readily formalizable, and part of the knowledge is
not. To achieve graceful integration between the two types of knowledge
representation, it would be desirable to have some sort of notation which, on

3

one hand, is formal enough to be mapped onto formal representatxons, and on
the other hand is at the appropnate level of abstraction to also be used by human
beings as an aid in accessing the informal knowledge representation.

Hybrid systems, in which the informal part of the knowledge is
represented in hypertextual form, open up new perspectives for hypertext
applications. Furthermore, the goal of having graceful integration with formal
representation may induce thinking about the informally represented
knowledge at a more conceptual level, thus leading to a “disciplined” hypertext
application design. : :

We describe in this article an example of a hybrid system, specified using a
design model for hypertext applications, called HDM (Hypertext Design Model),
which aims at “bridging” formal and informal representations. This model has
been fully (also formally) specified in another article [Garzotto 90c].

Independently from the advantages of allowing graceful integration of
representations, HDM prescribes an approach to hypertext application design
which brings several advantages to the authoring process as well as to the final
resulting application. To summarize, it allows a structured, systematic,
“authoring-in-the-large” approach, in which the global aspects, as well as the
structure of the hypertext are designed independently from content and

“appearance” concerns; and it allows achieving a larger degree of independence
of the particular hypertext system used for implementation.

The remainder of this article is divided as follows. Section 2 gives an
example application domain in which hybrid systems are useful; secticn 3
discusses the overall architecture of the proposed system to support the activities
specified in section 2; section 4 discusses model-based hypertext application
design, also introducing HDM; section 5 presents the system specification using
HDM, presenting also examples of an implementation; and finally section 6
draws some conclusions. '

2. An Application Domain

To illustrate and motivate the use of hybrid systems as discussed so far, we
describe a particular application domain, office automation of banking
environments, and its requirements. :

Consider, for example, the activities involved in a mortgage loan
procedure for an (Italian) bank. To obtain a loan, a customer must fill-in an
application form, which will be evaluated by a number of departments in the
bank.

If the application is accepted, the customer is then requested to provide
additional information about the property being bought; a specific department
within the bank will check if this property satisfies all of the bank requirements.
Assuming a positive evaluation of the property, a preliminary contract is drawn,
~and the customer, having signed this contract, receives part of the money and

4

actually buys the property. At this point, a final contract is drawn, in which there
is a mortgage on the property defined in favor of the bank, and the customer
receives the rest of the loaned amount. -

The customer starts paying back the loan, with payments (say) every six
months, for at least 10 years. At the end of the payment period, if the customer
has kept with his obligations and paid up the mortgage, a new final contract is
drawn, stating the customer’s full rights to the property. Otherwise, other
complex procedures are started to correct the situation.

The description just given is clearly a simplification of the actual case. For
example, a simple statement such as “a contract is drawn” is actually an involved
procedure, in which the relevant data must be collected and validated, the
appropriate “legal” phrasing must be coined, and the proper placement of the
data in the text must be defined, all according to several rules. Another example
is the case where the bank now wishes to change an existing loan contract, maybe
due to new government regulations, or to adapt it to a new type of loan, it is
necessary to find all the portions that are affected. Some portions of the contract
depend on regulations (government or bank), others depend on the nature of the
object of the contract, and still others depend on the nature of the loan itself

The knowledge required to perform such activities in this type of
environment is very complex. Some of the types of knowlege in the domain are
more readily automatically' processed, whereas others are less readily or
conveniently processed automatically, since they are typically ill-defined. As a
consequence, there will be tasks that are easier or harder to be automated.

Consider for example the activities related to handling contracts.
Definition of new contract types requires quite sophisticated expertise, including
the hability to interpretat relevant laws and regulations, knowledge about
commonly accepted practices, as well as of operational factors that may affect
future handling of such contracts within the organization. This type of activity
involves a level of knowledge processing which is very difficult to automate, but
is more easily done by humans. The definition of a certain type of contract
becomes, at the end, a set of operational rules that a lay employee is able to follow
in order to produce a contract instance for a specific situation. This last phase
may, as a matter of fact, be automated, since the type of knowledge it employs is
much more well-defined.

Even an automated activity such as contract generation may benefit from
being integrated with less formalizable knowledge, in order to be better managed
by human beings. The non-automated tasks (such as definition of new contract
types) may also benefit from having access to some organized informal
representation of the required knowledge, as a support for human processing.

In fact, much of the knowledge involved in non-automated tasks is not
recorded explicitly anywhere, and is usually available only through some experts
that simply “know” it, but are often unavailable. Even when recorded explicitly,
it is oftentimes distributed throughout the organization, and not available in

5

organized form. As a consequence, such tasks become hard to perform, and in
" fact most of the time contain inconsistencies.

For example, since it is difficult to determine the rationale behind the
form and contents of contracts, new types of contracts are defined by altering
portions of existing contracts by addition of new parts, taking care only not to
introduce obvious contradictions with other pre-existing parts. Things like
redundancy or obsolescence of old parts are almost always not checked, with the

end result being unnecessarily complex (and big) documents.This cbservation

can also be made for most office procedures - they tend to evolve from pre-
existing ones via small local changes, leading to a gradual loss of overall
consistency due to lack of global consistency checking.

As another example, the lack of explicit representation of the rationale
behind contracts and procedures also affects training. New employees can, more
or less easily, learn by heart how procedures work. However, they have difficulty
in dealing with unforeseen and uncommon situations, as they have little
understanding for the reasons behind the rules they have learned. “Word of
mouth”, when available, is the only way apprentices learn about things from
older, more knowledgeable employees. One of the side-effects of this situation is
that personel turn-over is very disruptive to the institution, since “institutional
memory” is stored inside people’s minds and gets lost when people leave the
organization. '

It should be clear, at this point, that hybrid systems are appropriate for
supporting activities in the banking environment. As an example, we would like
to have a system that supports, among others, the activities related to contract
handling described above, and in particular is able to automatically generate
documents in this environment, and support the definition and maintenance of
contracts, as well as professional training. Of the many aspects of the application
domain just sketched, we would like to formally represent document generation
knowledge and to automatically manipulate it, and informally represent the
knowledge required for the other tasks, as a support for human processing.!

3. An Architecture for Hybrid Systems
3.1 Overview

In light of the discussion of the previous section, hypertextual
representations seem to be good candidates for informally representing the part
of the domain knowledge that cannot be automatically processed, as they
conveniently provide exploratory access and friendly user interfaces, both useful
for supporting human processing of such knowledge.

1 It should be noted that this choice of what should be “formalized” and what should be
left “informal” is somewhat arbitrary, and we make it here basically to provide an example. A
real system could also “formally” represent other aspects of the activity (e.g., certain procedures)
just as well.

6

For the application under consideration and many others, it is convenient
to think of the whole knowledge representation, including the formally
represented one, as being “hypertext based”. This means that certain hypertext
nodes contain the formal representation of the knowledge which can be
automatically processed, and the user may access this knowledge by activating
specialized processors which are capable of formally manipulating it. The
particular division between what is kept formal and what is kept informal in
each application is in some sense arbitrary, and is determined by the designer as
part of the design process.

Figure 1 contains a schematic, informal representation of the proposed
architecture of the system. The system is composed of two “engines”, one capable
of managing hypertextual descriptions, the other capable of processing formal
descriptions. The grayed arrows indicate access through activation of specialized
processors. Note that, given the complexity of the application domain tasks,
manipulating hypertext structures should also include adding functionalities
beyond simple navigation primitives, such as query mechanisms, task oriented
navigation aids, etc... (as in [Halasz 87]). ‘

For the application under consideration, the document generation task is
automatically performed via specialized processors that access and manipulate
the formal representation (see section 3.2); other tasks, such as training or
exploratory query of the knowledge, are performed by humans mainly by
browsing through the informal knowledge represented in the hypertext (e.g.,
laws, informal norms, etc...), with support by the hypertext engine.

The maintenance task typically needs to access both the formal and the
informal representations, browsing through the knowledge represented
hypertextually and also taking advantage of the specialized processor’s
understanding of the formal representation. For example, to integrate a new law
about contracts that changes previously existing laws, the user may browse
through the informal knowledge representation, looking at existing laws and
their effects (which are represented as links in the hypertext) on document
generation rules; once the effects are determined, the user may ask the
specialized processor to retrieve all generation rules that satisfy certain
conditions (specified by the human, depending on. the conditions imposed by the
new law). In some cases, the retrieved rules should be updated to satisfy the new
law; the actual interpretation of the required changes, when needed, is done by
humans.

Exploration Informal
\ N Representation
Training '
\g
/ 7 Hypertext
Mamtenance Engine

Formal representarion

Knowledge
7 Engine

\/

Document
Generation

Figure 1. General architecture of the system.

The remainder of the article will concentrate on the hypertextual aspects
of the system. For completeness, we briefly describe here the part of the system
that manipulates the formal representation to achieve one of the tasks of the
application domain, namely document generation2. :

3.2 Automated Document Generation

The Document Generator is a rule driven system that takes as input a set
of raw data and produces contracts by choosing the proper variants and text
clauses, and properly placing this data in the final text. The document is
produced in two steps: generation of a conceptual document and generation of a
concrete document from a conceptual document. A conceptual document is a
formal specification of the contents of the (final) document, abstracting from its
presentation (i.e, it.does neither describe specific words that must be used to
express particular concepts, nor does it describe their physical appearance).

A conceptual document is generated using a schema, which is simply a set
of rules that determine the possxble logical structure of conceptual documents
An example of a rule is

2 The document generator described here is a résu_lt of the research conducted in the ESPRIT
INDOC and SUPERDOC projects. A complete description of the system can be found in [%%%].

“If a mortgage is given as a warranty of a loan, this mortgage must be
defined in favour of the lending bank, and the mortgaged property must
be described in the contract”.

A schema is used to derive a conceptual document by interpreting its rules
in a given case. To produce an actual document, a presentation schema must be
applied to a conceptual document description. A presentation schema is a set of
rules determining the actual appearance of documents - particular terms
employed, the division into sections and subsections, and layout aspects.
Therefore the same conceptual document can appear in many different forms,
depending on the particular presentation schema used. ’

In order to describe the rest of the system in more detail, the next section
will introduce a design model for hypertext applications, which will ease the task
of describing the various characteristics of the proposed system. Besides that, it
also allows graceful integration of the formal and the informal representations,
and has several other advantages, also discussed. '

4. Model-Based Hypertext Design

A design model for hypertext applications® provides a predefined
vocabulary of concepts and primitives which can be used to specify them, with
little regard for the contents of the nodes. Hypermedia design models try to
identify representation structures (such as nodes, links, anchors, etc...), and
operational behaviour, that are common to many existing hypermedia
applications in a certain domain, and attempt to provide a common language in
which to describe, compare and evaluate the various hypermedia applications.

The use of a model will help to discipline the authoring activity, especially
for large (i.e., significantly larger than a book) and complex hypertexts by
encouraging the development of the hypertext in a structured fashion, so that its
structure is designed before the actual text is actually filled into nodes.

This is very similar to what happens when developing a strongly
modularized software application: designing the topology and the
interconnections among modules is different from writing the code for the
content of the modules themselves. Most hypertext authors agree that hypertext
developers face two different (but strongly correlated) tasks: developing a
network of nodes and links, and filling in the nodes’ content. By analogy with

3In this article we use the term hypertext to denote online documents made up of a network
of interconnected pieces of information (nodes). The term hypertext system is used for software tools
used to create a hypertext. Notecards, KMS, Intermedia, Hypergate, Guide are examples of
hypertext systems. Note that a single hypertext might be published in several editions, each using
a different hypertext system.

9

~ the Software Engineering field we use the terminology authoring-in-the-large - to
refer to the development of the structure of the network and authoring-in-the-.
_small to refer to the development of the contents and appearance of the nodes.

It is interesting to summarize the major advantages in having a design
~model; some are true of any kind of model, others are more specific to hypertext
design models. :

A design model provides a formal language in which to describe certain
regularities of the application domain; this language can also serve as a
representation of the domain knowledge. Clearly, this representation is quite
“shallow” when compared to other formalisms, but it is at the appropriate level
to serve as an interface between a “deeper” level formalization of some domain
aspect, and the more informal level provided by hypertext. Being formal, it may
provide a handle for “knowledge-based” type of enhancements to hypertexts.

Design models provide a language in which an application analyst can
specify a given application. Thus they facilitate the communication between the
analyst and the end user (i.e., the client, in most cases); between the analyst and
system designer; and between the system designer and implementor, when they
are different persons. They can be used to document the application. This
provides support for users of the application; it helps the maintenance of the
system; and it serves as a common language in which to compare applications
when desired. At the very least, a basis for discussing the similarities and
differences of applications exists.

Design models provide a framework in which the authors of hypermedia
applications can develop, analyse and compare design methodologies and
rhetorical styles of “hyperauthoring”, at a high level of abstraction. This analysis
can be done without having to resort to looking at particular visualizations
(screen formats and appearances, button functionalities and the such) or to the

~detailed contents of units of information. At this level, it is possible to analyse '
the ”conceptual” organization of the application domain knowledge represented,
and examine its adequacy for the intended uses.

Design models can be used by Design Tools, much in the same way as
application generators are based on languages to specify classes of applications or
as CASE tools have specification languages to describe software (at various levels
of abstraction).

An interesting related aspect, which has received little attention in the
research literature, is the task of proof-reading a hypertext. It is clear that proof
readers need to check links as well as text, and that spurious or accidental links
can be as embarrassing (or even damaging) as more conventional typographic
errors [Margolis 89]. This task should be greatly helped by the availability of a
specification language.

An additional expectatlon is that applications developed according to a
model will result in a very predictable representation structure. As a
consequence, navigation environment for possible readers should also be

10

predictable, thereby reducing the so-called “disorientation/ éognitive overhead”
problem [Utting 90]. '

The next section presents a design model that addresses the issues
discussed so far.

4.1 The Hypermedia Design Model (HDM)*

HDM is a hypertext application model developed at the Politecnico di
Milano. According to HDM, an application domain is seen as being composed of
Entities, which in turn are formed out of hierarchies of Components. Entities
belong to a Type. Entities can be connected to other Entities or Components by
Links which can be either Structural or Application links. Structural links reflect
the hierarchical structure of entities; Application links connect Entities or
Component to other Entities or Components to reflect application domain
relations. Components can be instantiated by one or more Perspectives into
Units. Units provide a reference context to information, contained in their
bodies. An HDM Schema is then a set of Entity and Application Link type
definitions. An HDM Schema Instance is a particular set of entities and links
defined according to a given schema. '

Once a Schema Instance has been defined, it can be operationalized via the
specification of a particular Browsing Semantics, that gives the runtime
behaviour of the application. Even though HDM does not provide, so far,
primitives in which to specify such Browsing Semantics, there is a default
Browsing Semantics that is compatible with most card-oriented hypertext
systems. -

41,1 HDM Primitives
4.1.1.1 Entities and Components

We refer to an Entity as a concrete or conceptual real world object in the
domain that is relevant for the application. Typically, an entity will denote
something quite complex, whose internal structure may be further decomposed.
An entity in its whole can be represented through several individual, smaller-
grained pieces of information, that we call Components. Examples of entities are
“Law 19/8/89”, Dante’s “Divine Comedy”, Gershwins’s “An American in Paris”.

A Component is a piece of information describing a part of an Entity.
Components are grouped into an arbitrary, application dependent, hierarchy to
form the corresponding entity. All components of an entity are homogeneous.

Examples of possible components (with the corresponding entity from the
examples above) are “Article 1”7 (“Law 19/8/ 89”), “Paradise” (“Divine Comedy”),
“First Movement” (“An American in Paris”).

4 This section contains a summary of HDM, which is taken from [Garzotto 90c].

11

We have chosen hierarchies as the structure of Entities because they are a
frequently occurring structure, useful in specific contexts [Brown 87]. Many
authors have observed that hierarchies are very useful to help user orientation
when navigating in hyperdocuments [Acksyn 87, Brown 89]. HDM recognizes
this via the notion of entities made up of- components organized into .
hierarchies, but leaves unspecified the criterion to be used when breaking up an
Entity into Components since it is very much dependent on the specific
application.

4.1.1.3 Perspectives and Units

Components describe pieces of information. Due to the richness of most
hypertext reading environments, information may be presented in many
different ways. A natural abstraction that can be made in these situations is to
allow an author to refer (and think) about the concept that is being represented
by a Component independently from the way it is described. In other words, the
concept can be thought of as having several “perspectives”.

HDM facilitates this abstraction by having Perspectives for Components.
By the term Perspective we mean the appearance of a piece of information. The
description of a component according to a given perspective is called a Unit,
which has a body containing the information itself. HDM says nothing about
bodies, as it is interested in talking about hypertext structure.

The concept of body here is meant to serve as an interface to the
environment “outside” the hypertext, in the sense that the information
contained in the body can be interpreted, or processed, by specialized processors
(even human beings) outside the hypertext per se. The value of the body can,
when desired, even be computed from other bodies or from any data outside the
hypertext, including data obtained as a result of an interaction with the reader.
For example, the body could be a set of document generation rules, interpreted by
a generation program activated when the corresponding unit is activated. We
will say more about this when we discuss browsing semantics in section 4.1.2.

A Component may have, therefore, one or more Units (corresponding to
Perspectives). For example, assume that entity type “Law” has perspectives
“Official Text” and “Description”. If we structure an entity of type “Law” such
that each component corresponds to an article, then we may say that for each
article (component) of an entity of type “Law” there will be one unit whose body
is its “Official Text” and another whose body is its “Description”. These units
provide a context in which to refer to (the text or description of) the article as part
of the “Law”.

Two Units may share the same body. In the “Law” example above, assume
furthermore that there is another entity, for instance “Contract” (of type
“Document”), where one of its components, say “Legal Background”, represents
a literal inclusion of one of the “Law”’s articles, say “Article 3”. This component
would also have an “Official Text” perspective; the body of the unit
corresponding to the “Official Text” perspective of “Legal Background” would be

12

shared with the “Official Text” perspective unit of component “Article 3” in
“Law”. Note that the context of the reference to the text of the article within the
“Law” entity is completely different from the reference in the “Contract” entity,
even if the text itself is the same.

Given the large amount of information present in many hyperbases, and
the fact that the same information may be used in several different places, it is
natural for many authors to simply isolate the shared information into a chunk
of hypertext, and set up links to it whenever necessary, allowing the information
to be included only once in the hyperbase and be referred to from all points.

A careful examination of the notion of sharing of bodies between Units
will show that it is enough to model the desired degree of sharing, at least for
“well-structured” documents. This allows the preservation of the “navigational”
contexts provided by Entities and Components, and yet does not require actual
duplication of information in the hyperbase.

4.1.1.4 Entity Types

A common abstraction found in most data models is the notion of type.
An Entity Type groups entities having common properties. In HDM, the
properties chosen as relevant are “using the same set of perspectives”, “being
broken into components according to the same criteria”, and “being related to
other entity types in the same way”.

Examples of entity types (with the corresponding entity from previous
examples) are “Law” (“Law 19/8/89"), “Poem”(“Divine Comedy”), “Symphony”
(“An American in Paris”).

In HDM the set of perspectives associated to an entity type is indicative
only of possible perspectives for its entities, so that it is necessary to have the
notion of a Default Perspective. The intended meaning of the default perspective
is that all entities of this type have af least this perspective; further significance
of this concept will be shown when we discuss the process of mapping into node-
and-link structures.

4.1.1.5 Links and Link Types

The major advantage of the hypertext model is that one may organize an
information base in a non-linear fashion. This means, loosely speaking, that
pieces of information can be related to each other through links associated to
them. The success or failure of a given application using the hypertext paradigm
is heavily dependent, among other things, on the appropriate choice of links.
The more the “meaning” of a link approximates the relationships in the
application domain, the more the user will be at ease in “using” the.
corresponding hyperdocument, since links will evoke familiar associations.

HDM differentiates between three kinds of links, which we discuss next.
HDM Structural Links connects components belonging to the same hierarchy.
Since entities are intended to provide a kind of “navigation context”, following
hierarchical links has familiar meanings such as “Next”, “Previous”, “Up” (e.g.,

13

to move higher in abstraction level), “Down” (e.g., to get more “details”), etc...
The meaning of each of these relations is dependent on the particular criterion
chosen to organ17e the hierarchy, but the reader should nevertheless be aware
that she is moving “inside” the particular entity in question.

The second class of links in HDM are the Application Links. Whereas
structural links capture rather “standard” semantics (structure), Application
Links embody semantic relationships in the domain. That is, they represent
some (arbitrary) relationship between entities that the author deems meaningful,
in the sense that this relationship evokes some association between concepts
useful to the user of the hyperdocument. By providing an application link, the
author will be making it “natural” to the user to access some information which
is “related” to the information being read at that point, by simply traversing that
link.

The third type of link in HDM are the Perspective Links. Given that
Components stand for an abstraction of several Perspectives of the same subject,
Perspective links allow the reader to move between different Perspectives (i.e,
Units) of the same Component.

To be consistent with the notions of Entity and Entity Types, HDM defines
Application Link Types as being a set of links instances whose source and
destination entities are of the same entity type, respectively. '

For example, the author may specify that a link of type “Is-author-of” can
connect entities of type “Book” to entities of type “Person”: this means that in
principle all instances of “Book” (e.g., “Hamlet”, “Illiad”, etc...) may have a link
to a corresponding “Person” (e.g., “Shakespeare”, “Homer”) that is its author.

4,1.1.6 Cutlines

An important part of many applications is providing the initial access to
the hypertext before the user starts navigating at all. More generally, it is useful
to envisage navigation patterns (including the starting points in the hypertext)
which are superimposed onto the hypertext itself. :

HDM recognizes this need by allowing (and encouraging) the usage of .~
Entities in a special way, which we call Outline. An Outline is a special usage of
types of entity (and therefore Outline instances have hierarchical internal
structure) whose instances have leaf components which “point to” (are linked by
application links to) nodes of the hypertext proper; the contents of outline
components is navigational information. A typical example of an outline is a
hierarchical index of the contents of a hypertext.

4.1.1.7 Derivation of Links

Having hierarchies as primitive concepts suggests that, at design level, an
author needs to specify only a minimal set of structural links - those necessary to
define the structure of an entity (“parent” and “next sibling”) - from which a
large number of other implicit structural links (such as parent-child, to-top, etc...)
may be derived if desired. '

14

Derivation rules can exist for application links too if we regard them as
relations between entities (components). Properties of these relations, such as
symmetry and transitivity, when existing, can be used to derive other links. The
reader should note that link derivation becomes particularly powerful when
used in conjunction with composition of relations.

As an example (see Fig. 1), assume that “Article 2” of a “Bank Regulation”
(a component of an entity of type “Regulation”) is connected to “Section 1” of a
“Contract” (a component of an entity of type “Legal Document”) by a link of type
“Has Effects on”. Then one might argue that that article of the bank regulation
“Has Effects on” the whole contract too. To represent this, the author would
probably set a link of type “Has Effects on” between the "Bank Regulation” and
the root of “Section 1”7 ("Contract). This link however can be derived
straightforwardly as simple composition of the link “Has Effects on” between the
two components and the structural link “to-top” between the second component
and the root of its entity.

derived link

Bank

L, Has Effects on
Regulation k-

Contract

Section 1.

Akt aRet

Has Effects on

application link

Figure 1- Example of derived link

It should be observed that defining which links are actually derived, for a
given application, is a full fledged design step. The same schema (without
derived links) can be reused simply by specifying different sets of links to be
derived; this usually will take into account delivering the same application to
different kinds of users. ‘ :

So far, HDM does not itself include a language to specify such derivation
rules. Nevertheless, it is possible to have such a language in a formalism outside
HDM. Given such a language, the use of HDM provides a great amount of

15

conciseness to the model specification - the author needs to provide a much
smaller amount of links than the number of links that will actually be present
both at conceptual level and at concrete level.

4.1.1.8 Schema and Schema Instance

A class of hypertext applications in a given domain can be characterized
via the notion of Schema, which is defined as a set of entity type and link type
definitions. A schema characterizes classes of application because it does not
specify actual entities and links, but rather general properties of potentlal entities,
and potential links between them.

The discussion on derived links in the previous section indicates that, in.
reality, it is useful to specify derivation rules at the schema level. In particular,
each entity type definition should include also structural link derivation rules, as
the instances of each type may require different navigational patterns inside its
structure. Furthermore, the derivation rules for application links are naturally
specified together with application link type specifications.

One may consider the entity and link type definitions, and their respective
instances for a given application, a form of abstraction of the informal
knowledge of the application domain. The abstraction level of the specification
can be regarded as the one beyond which the knowledge representation must
-remain informal. In this sense, derivation rules allow automatic manipulation
of this abstraction of the informal knowledge. This capability is another factor
that contributes to making HDM useful for specifying hybrid systems.

A particular application in a given domain is specified by instantiating a
schema, i.e., by giving entities and links as instances of the types defined in the
schema.

The notion of schema and schema instance allows, in many cases, the
reutilization of the same schema for different applications in the same domain.
These applications should share the same global structure, but differ in the
particular instances which are actually present. A further level of reutilization
may be obtained when new applications preserve the local structure (structural
links inside entities and application links between them) in a schema instance,
but redefine the bodies of the units.

A schema instance characterizes the “static” aspects of a specific
application. To specify the “dynamic” (runtime) behaviour of an application, one
must add a particular browsing semantics, as will be discussed in section 2.3. This
again adds another reuse dimension, in which the same static specification is
maintained, but a different browsing semantics is used, generating a different
running application. By varying the browsing semantics, it is possible to have the
- same conceptual application, whose running versions are implemented in
several different hypertext systems.

16

4.1.2 Browsing Semantics

The actual appearance of a hypertext is largely defined by its browsing
semantics [Stotts 89]. In HDM browsing semantics will determine three further
design choices for authoring-in-the-large: '

1) What are the objects for “human consumption”; in HDM terms, what
can the user perceive: Entities, Components, or Units?

2) What are the perceived links between objects; in HDM terms, which
links are visible? :

3) What is the behaviour when links are activated; in HDM terms, what
happens when one activates a one-to-many link? Also, what happens if
the body of the destination must be processed by some specialized
processor to be “perceived”?

HDM, as discussed so far, does not specify any particular browsing
semantics for hypertexts specified with it. Work on providing primitives for’
defining such browsing semantics is at a preliminary stage, but simple browsing
semantics can be specified with formalisms such as Petri-Nets (see [Stotts 89]);
[Garzotto 90c] contains the formal definition of the browsing'semantics described
in section 4.1.2.1 using a Petri-Net based formalism.

Note also that other aspects of the browsing activity, such as the actual
appearance of screens and icons, and other authoring-in-the-small concerns are
not discussed at all.

We have defined a simple browsing semantics that is compatible with
" systems at the node-and-links level found in many card-oriented hypertext
systems; it is presented in the next sub-section.

It should be noted that, given a particular browsing semantics, it is possible
to translate an HDM specification into the implementation structures of some
running hypertext system; this translation process actually introduces another
design dimension. Each choice made when deciding how to translate HDM links
into concrete links affects the final hypertext the user will see. For this reason, it
is quite natural to think that these choices should be made according to certain
user profiles, therefore allowing the same hypertext design to be compiled for
different classes of users. Reference [Schwabe 90a] describes a prototype compiler
that allows the translation of an HDM schema instance into HyperCard, using a
relational database representation. - '

4.1.2.1 A Default Browsing Semantics for HDM Specifications.

In this class of browsing semantics, we assume that no abstract objects
(entities and components) are directly visible - only units (corresponding to the
usual hypertext notion of node) can be perceived by the readers as concrete
objects. In consequence, readers can see links only among units and so, in the

17

end, actual connections must be established among units. Furthermore, we also
assume that only one node is active at any time, and only one link can be
traversed at any time. We will call concrete links the connections among units,
as distinguished from abstract links, which are defined among entities and/or
components. It is necessary, therefore, to specify how concrete links can be
-obtained from abstract links.

Structural link translation obeys the following rule: Links between
components should be translated into links between the corresponding units in
the same perspective. This rule expresses a kind of stability criterion w.r.t. the use
of perspectives - if the reader is looking, say, at the “Text” perspective of an article
of a law, and follows the structural link “next article”, she will see the “Text”
perspective of the destination component, as opposed, say, to the “Graphic”
perspective, which might be the default.

A simple choice to map (abstract) application links is the idea of having a
default representative for each abstract object (component or entity). The default
representative for a component is its unit in the default perspective of its type.
~ The default representative for an entity is the default representative of its root
component. This corresponds to saying that the root component of an entity (in
its default perspective) “stands” for that entity. Given this notion, entity-to-entity
abstract links translate into concrete links between their representatives.

A simple rule for translating component-to-component application links
is one in which each abstract link corresponds to a set of concrete links
connecting each unit of the source component to the default perspective unit of
the target component. '

To illustrate this rule, consider the situation (fig.2) in which there is a
“Part of Law” component (belonging to an entity of type “Law’), linked to a “Step
of a Procedure” component (belonging to an entity of type “Procedure”), through
an “Has Effects on” application link. Consider further that the “Law” entity type
has perspective types “Text” (corresponding to an informal commentary) and
“Official Text”, and entity type “Procedure” has “Text” and “Graphic”
perspectives (the latter being a dataflow diagram for example) the “Text” one
being the default for both entity types.

In this case, concrete links (corresponding to the link connecting the two
components at the abstract level) will connect both the “Part of a Law:Text” and
the “Part of a Law:Official Text” units to the “Step of a Procedure:Text” unit
(corresponding to the default perspective).

18

Has Effects on

Applicationlink
Step of @

Procedure

rart of a Law

................................

IR R 2 S A R R L

.....................
..........................

..................

...............

WA %
/ Concrete Links /
Presentations g

Components

Figure. 2 - Example of concrete link generation

In hypertexts, connections among pieces of information are usually
visualized through “anchors” (or “buttons”). Anchors are well identifiable areas
on the screen that show the existence of a connection, and can be selected by the
reader in order to get into the link target(s).

This approach suggests the need of a new primitive, which captures the
notion of “anchor type”. Anchor types provide a mechanism for the author to
present groups of link types together, also renaming or hiding them as well, as
desired. By assigning a set of link types to each anchor type, the author can
control link visibility.

Consider for example, that entity “Procedure” have a link of type “Formal
Legal Justification” to a “Law” and a link of type “Informal Justification” to a an
“Informal Regulation”. The author might want to provide to the user a single
reading link, maybe labeled “Justification”, since the distinction might not be
important for the reader. This can be achieved by specifying the anchor type
“Tustification” to be the union of link types “Formal Legal Justification” and
“Informal Justification”. It should be noted that the anchor mechanism also
allows the author to selectively hide some links for some perspectives.

From the previous discussion, it is clear that there are many situations in
which an anchor actually refers to several possible destination nodes. It must be
defined, therefore, what happens when the user activates one such anchor.
Clearly, this is a part of the particular browsing semantics being used, which in
turn is partially dependent on the particular system being used to implement the
hypertext. If it supports multiple active windows, for instance, a possible choice

19

may simply be to show all destinations, each in a separate window. This
solution, however, is often not acceptable, and oftentimes not even possible in
‘many systems.

An alternative approach that can be adopted to deal with this situation is
to introduce the notion of chooser. A chooser is a mechanism associated with a
single-source-multiple-target anchor that allows the selection of one of the
multiple targets of the anchor. As such, choosers are implementation structures
that can be generated automatically from the specification of the hypertext, using
any available mechanisms present in the implementation environment (e.g.,
menus).

5. System Spéciﬁcation in HDM

As indicated in section 2, the HDM specification attempts to abstract the
application domain concepts and organize them in a schematic way. The schema
generated can be instantiated in many ways, corresponding to several possible
applications in this same domain. We will discuss one such alternative.

In this example, the organization manipulates “Generalized Contract”s
according to “Procedures”. The reasons why “Documents” and “Procedures” are
the way they are can be explained by looking at “Laws”, “Regulations” and
“Informal Norms”. “Generalized Contract”s describe classes of contracts in terms
of their parts in common, and of the variant parts specific to-each type of contract
in the class. A particular contract is defined by a set of conditions that determine
its structure; this will be exemplified shortly.

“Laws” are issued by the state to discipline and control credit granting and
taking activity. Most of the times laws are too broad, and must be made more
specific by “Regulations” issued by some authority, on the basis of the text of the
law. Finally, these regulations are interpreted within an organization with the
addition of “Informal Norms”, which are of course valid only for that
organization. ' ' :

The above state of affairs is captured in the schema described in Fig. 3.,
where Entity Types and Application Link Types have been specified. Since in this
case all application links are by-directional (representing a relation and its
inverse) - this is frequently (but not necessarily) the case - we have drawn the
links only once. '

Each of these Entity Types has a set of Perspectives associated to it. We do
not enumerate all of them here, but give a few examples (the one marked with a

“* is the default perspective):

© Laws and Regulations have Structure and Official Text"}

o Generalized Contract has Structure”®, Official Text, Formal Specification
and Description;

20

e Procedures have Flow Diagrams®, Code and Description;

e Informal Norms have Text*.

motivated by

\/ motivated by motivation

motivation for \ o
for y \y motivation for

v motivated by

T Regulations ¥\ justifi) .
motivated by/ Py Justified by, ° " usuﬂed by Informal Norms ﬁ
23 N \)
motivation for it . —> Y
[\ justified b {;’Sﬁfied Justified by A justified by
Yy

has effects
on

has
effects has effects
Aon
haseffects\ °"
on produced by
> Generdlized % 97
Contract Procedures ¥ haseffects
; R i LI on
shares . \ documents
parts with necessary for

influences-conceptual-
structure-of

Figure 3 - The schema of the example of banking activities support
environment. For each direction, the link types are the labels nearest the
arrowhead. :

The “Formal Specification” perspective of “Generalized Contract” contains
a set of formal rules that define the conceptual structure of the contracts in the
class. This perspective is not meant to be processed by humans, but rather by a
special processors that are capable of interpreting these rules producing a natural
language rendering of the contract. The result of this processing is actually the
template for the contract, as it contains blanks (e.g., customer’s name) to be filled
in with specific data for a specific case.

21

Preliminary

Contract Generalized

Contract

Law

e -
Law Has EffectsOn Justified b Justified by
P AR A '

article 50

Figure 4 - An instance of the schema in Figure 2. Grayed nodes indicate
comporents not further detailed. Gray background indicates an entity, whose
type is specified next to it in italics .

Figure 4 shows a small fragment of an instance of the HDM schema for the
support environment. In this example, there is one entity instance of type
“Generalized Contract” (indicated by the gray background) called “Preliminary
Contract”, whose internal structure is outlined. Similarly, there are two instances
of type “Law”, called “DPR 21/1/76” and “Notary Law”. Links within one entity
are structural links; links with labels on them, “Has Effects on” and “Justified
by”, are application link instances.

22

Using a compiler of HDM schema instances into HyperCard described in
[Schwabe 90a], a concrete hypertext was generated. This compiler takes a
description of an HDM schema cast as a relational database, and generates a set of
tables containing linking information. These tables are then loaded into
HyperCard fields; button clicking in HyperCard causes the the corresponding
destination to be retrieved from the table and displayed. As far as cards are
concerned, the compiler defines only anchoring information, but does not fill-in
the card contents (which is regarded as an authoring-in-the-small task). The
examples that follow are taken from the resulting system. In the prototype
implementation, both the hypertext engine (built in HyperCard) and the
knowledge engine for document generation (built in Prolog) are currently
running independently; the run time integration between the two
environments is currently under development.

Figure 5 shows the “Structure” perspective of component “Preliminary
Contract”; it can be observed that it contains essentially the same information
depicted in the diagram of figure 4, as far as structural links are concerned.
Besides the anchors corresponding to the application relations (“Effects”,
“Motivations”) and the perspective links, all of which are at the bottom of the
screen, there are other anchors on the sides, some corresponding to other
structural links (e.g., “Top”), others corresponding to functions of the system (i.e,
are not associated with any link), such as “Mark” and “Trace” at the top right
hand.

TRANSACTIONAL PART

FORUM, LEGAL EXPENSES, TECHNICAL
BEXPENSES

ANNEXES

Flgure 5 - Structure of component “Preliminary Contract” of the schema
instance in figure 4.

23

Supposing the reader navigates down the structure of “Preliminary
Contract”, eventually reaching component “Warranty”, she will see the screen
shown in figure 6. Notice that the children of this component are atomic, in the
sense that they are not decomposed any further.

I T

MORTGAGE AMIOUNT

DEGREE ONE MORTGAGE
WARRANTY

DEGREE TWO MORTGAGE
WARRANTY

DEGREE ONE MORTGAGE
WARRANTY WiTH
PRE-EXISTING MORTGAGE

e A AR S A o e R i

Formel Spec.| Description | Ofici Test

Figure 6 - Structure of component “Warranty” of- the schema instance in -
figure 4.

The reader may wish to look at the “Description” of compohen’c “First
Degree Mortgage”, which can be done by selecting the corresponding field in the
card, and clicking on the “Description” button, seeing the screen in figure 7.

24

'}

A e

P

Inapreummalymtract,mthep:rbmzeg
) I clauses referring to the degree of the mortgage determine that, if the property is free of
mer | previous mortgages,

TS TR RS 7

TR T IR

arding the morigagor'sdligations, the |

’ _ o The martgagor, ora third party guarantor, mustestablish a first degree mortgage,
free of other martagees, in favor of thebanks

¢ The morigagar, arat}ﬁrdpartygtmnt&, mustprove thathe s the rightfull
' { owner of the property, and that said propertyis unencumbered of any other
| contractual doligations,

‘Nemyﬁr

Produced by

Figure 7 - Description of component “First Degree Mortgage” of the schema
instance in figure 4.

From here, it also possible to look at the “Official Text” (i.e., traversing the
corresponding “Perspective” link). This entails the activation of the specialized
processor that generates the actual template text of the corresponding section of
the final loan contract, from the rules represented in the “Formal Specification”
perspective. Figure 8 shows the generated template text, and Figure 9 shows the
rules that are used to generate it.

25

REERETIMINARS

"Asa prernise, the above identified parties declare that
") § A)On <DATE> in iy presence they stipulated a preliminary contract for the loan
- (with registration number <N>),
ammmhngtn<NETIDANAMOUNT>wInchwﬂ]berepayedm<N>msiaﬂmenis
within <TIMERANGE> :

"{ B) The canditions specified havebeen fulfilled; the doctmnents herein provided

7] estabilish thatthe mortgagor has established martage MORTGAGE

| REGISTRATION NUMBER> amounting to <MORTGAGE AMOUNTS in favour
122 of the lendingbank in the REAL ESTATEREGISTRY of <CITY and ADDRESS>,
s Said a mortage is of first degres and dewoid of any legal enctmbrances.”

R T e T T O e

e e e “'maSFJZMT

Soruchwe Dmmm

Figure 8 - “Official Text” of component “First Degree Mortgage” of the schema
instance in figure 3. This text is actually generated by a specialized processor,
from the rules in fig. 9.

An important observation must be made here. The rules presented in
figure 9 constitute a textual rendering of the formal knowledge representation
about document generation. This textual rendering is meant for human
consumption, not for automated processing; therefore, in this sense it is
informal. At this point, by traversing the link anchored with “Official Text”, the
user may activate the specialized processors, which interpret the formal
representation and produce the text exemplified in figure 8. :

26

BREMMINARYRS

FGRIABLES:
8g : integer (warranted sum); L: integer (loan_net_amount);
Ig: integer (interest_global_amount); Cg:integer (commission_global amount);
Go: waxxants;B: person (lending party bank);)
Im: estate (morvaged_estate); Ti: estote_xypes (typology of estate);
D: integer (moxtguge_ degrez) ; Ib: integer (mortgage_ amount);
RULES : .
/tench lown controvet must specify the warranted sum®/
rule WPl : --> E! 39 worranted_sum(3g)
/% the varronted sum must be computated as the sum of the net losn amount,
the interest global amount, and the commission global mmount ¢/

eonstraint WDl : .

lonn_net_mmount (L), interest_global mmount (Ig),

commission_globnl_ amount (Cg),warranted_sum(3g)

-=> 3g= Lt+lg¥Cgq
/%each’ loan contract must specify the warranty ¢/
rule ¥D2 : =-=> I! Ga warranty (MORTGAGE,Ga)
/¢ if =» mortgage is assumed for warranty, it must be in favour of the bank and
the mortgaged real estate must be described in the contract®/

rule W3
waxranty(MORTGAGE,Ga), lending_party(3) -->

E! Im E! Ti mortgaged_estate(Im,Ti), in_favour of(3,Ga)
1%if u mortgage is assumed for warranty, the degree and amount of the moxtage
must be specified®/

rule W4 :
waxrsnty(MORTGAGE) -->

T SR

I! mortgage degree(D) & I! mortqgage amount(Ma)
e A A B R T R R S S R R R R W{m’:“‘ AR

Figure 9 - “Formal Specification” of component “First Degree Mortgage”
containing the rules used to generate the text in figure 8.

The example shown here shows that the hypertext interface provides a
further degree of flexibility - it allows the formal knowledge representation to be
both processed by specialized processors (accessing “Official Text” perspective)
and examined by human beings (accessing “Formal Specification” perspective),
in a way that is consistent for the user. As a matter of fact, for most readers of this
application the formal rules in the “Formal Specification” perspective would be
“hidden”, since they are not capable of interpreting them anyhow.

When looking at the “First Degree Mortgage” component of a loan
contract, the user might be interested in seeing the legal justifications for its
contents; this can be achieved by clicking on the “Justification” button. Since
there are several pieces of legislation that are relevant in this case, the reader is
presented with a chooser screen (see figure 10), allowing the selection of one
alternative among the possible destinations. Supposing the first choice is made,
the user will see the screen in figure 11, showing the “Official Text” of “article 2”
(of entity “DPR 21/1/76").

27

S [

BPR21/1/76: Aricle 2

DPR21/1/75: Aricie 3

Moy Low: Aricle™

Figure 10 - Chooser allowing the choice among the possible destinations of
link “Justified by” in figure 9.

— 7"

s s

Thepurpose of "Credito Fondiario" is toprovide

a) Loans securedby first degree mortgages in favour ofthebank in whichthe value
ofthe mortgagedreal estateis at leasttwice theloan smount . Loan repayment is
donebyinstalments, within a timeperiod ranging from ten totwenty five years,

" | b)Loans includingthetotal repayment of previous losns, providedthis repayment
resultsinthe mortgage ofthe current loan being a first degree mortgage.

Previously existing mortages will not hinder the current loan ifthe sum of the :
amount of the previous mortgage andthe net current loan amount is lessthan half g
ofthe mortgage amount that gusranteesthe current loan.

To granttheloans mentionedinthisarticle, banks may usetheir capital funds as
well asthrough the issue of bonds, under the conditions statedin art, 8 ofthe
present law, '

| T

Sirochre Hes Efects an Motivatin x| Motisatedly

Figure 11 - “Official Text” of component “Article 2” of entity “DPR 21/1/76”,
one of the legal justifications for the rule in figure 9.

6. Conclusions
6.1 Discussion

We have discussed a class of systems, called hybrid systems, that attempt to
integrate formal and informal representations of knowledge in an application
domain. We have argued that the hypertext paradigm provides a good
framework in which to informally represent part of the application domain
knowledge, facilitating its use by human beings. Furthermore, we have shown
how this representation can be integrated with the formal representation of the
knowledge in a consistent way, through the use of the primitives provided by
our Hypertext Design Model. Hybrid systems developed using this approach
constitute a novel class of applications for hypertexts.

As an example, it was discussed how a relatively complex system
supporting office automation of banking environments can be specified using
HDM. Taken as knowledge representation, this specification can be seen as a very
shallow (abstract, high level) representation of human processable knowledge in
that domain. Nevertheless, this specification may be used as an aid for humans
that must use the system, for instance for understanding all the navigational

29

alternahves, and for abstractmg from presentation aspects. The use of formal
representation of machine-processable domain knowledge (the rules for
document generation) as being a perspective of components provides an elegant
way to interface such “formal knowledge” with the “informal”, human-
processable knowledge representation (for example, laws and regulations).

From a methodological point of view, HDM allows the specification of an .
hypertext at the “authoring-in-the-large” level, focusing on the structure and
global aspects of the hypertext rather than nodes’ contents. Both from the
knowledge representation and from the navigation points of view, and
especially for complex hypertexts, most of the “deeper” semantics lies in the
connections among the nodes, rather than in the contents of the nodes
themselves. As a consequence, many critical design decisions are made at the
authoring-in-the-large level. :

Authoring in the large can exploit common characteristics across many
applications in a given domain, and it can be to some extent independent from
the medium - establishing a connection between two nodes is somewhat
independent from the representation of what is inside the nodes 5. In addition,
management of the topology becomes very critical as soon as the size of the
hypertext exceeds a manageable limit (which is quite arbitrary and dependent,
among other things, on the available technology).

Even in its present simple formulation, HDM provides conceptual and
formal tools to design, analyze, and verify structural and access properties of a
given hypertext at a relatively high level of abstraction and of independence
from 1mplementat10n environments. From this, it is p0551b1e to see the power of
the authoring-in-the-large approach.

HDM specifications allow several degrees of reuse, provided by at least two
dimensions of indirection. The first dimension is static, provided by the notion
of schema (global structure) and schema instance, and by the separation between
contents and structure, given by the notion of bodies for units. Along this
dimension, a schema may be reused by different applications in the same
domain, by giving different instances in each case; in some cases, even. the
structure of a schema instance may be maintained, and the bodies of the units be
replaced.

The second dimension is dynamic, provided by the separation between the
static and runtime "aspects, given by the notions of schema instance and its
assotiation with some browsing semantics. Along this dimension, the same
HDM specification (corresponding to a conceptual application) may be used to
generate different running versions, by varying the browsing semantics
according to different hypertext systems used for implementation.

S5This last statement is perhéps less obvious for span-to-span links, that appear to connect
parts of nodes to other parts of nodes.

30

6.2 Related Work

From the architectural point of view, the approach described here can be
regarded as an alternative to Object Lens for specifying “semi-formal systems”.
With respect to it, as well as to other systems such as the ones mentioned in
[Gaines 88, Garg 88], the major difference lies in our emphasis on hypertextual
representation for informal knowledge, as opposed to adding hypertext
functionality to traditional knowledge based representation mechanisms.

From a methodological point of view, HDM shares some apparent
similarities with the Entity Relationship (ER) model [Chen 76]. However, there is
no ER notion equivalent to HDM perspectives and HDM Entities are much more
structured than ER entities, which do not have structural links. Most
importantly, whereas in the ER model relations are included for representational
reasons, HDM links are included also with the goal of providing navigational
paths. In fact, in those cases where entities do not have any internal structure,
the resulting HDM model will be very similar to an ER model, if one ignores
momentarily HDM perspectives; HDM in this sense can be said to be higher level
than ER, allowing for more concise specifications of hypertext applications.

The IDE [Jordan 89] and g-IBIS [Conklin 88] approaches attempt to explicitly
model the semantics of their application domains adopting predefined structures
which reflect such “deeper” semantics. HDM differs from IDE and g-IBIS in the
fact that it does not fix, a priori, the application domain, and therefore its
primitives are more “general”, oriented towards allowing the specification of
models in most application domains.

Object Lens classes resemble somewhat HDM entity types. However, there
are no constraints imposed on possible connections between object class
instances; even if one interprets class fields as link types, they do not impose any
real discipline on actual instances. For example, one may have a “Supervisor”
field for object class “Person”, and have an instance in which the value of this
field is (an instance of) a “Vehicle”. '

The Trellis model [Stotts 89] and the model proposed in [Tompa 89] are
mainly “behavioural” models for hypertext. In Trellis, Hypertext networks are
modelled as Petri nets and several sets of various browsing semantics (that is,
how information is to be visited) are discussed in terms of Petri nets
computations. As such, we have adapted it to specify the browsing semantics of
HDM specifications. Both models provide some sort of abstraction mechanism
for hypertexi structures, but these are not related in any way to application
domain concepts.

With respect to other models such as the Dexter Hypertext Reference
Model [Halasz 90], HDM differs in the fact that it is aimed at modelling
applications rather than systems. Therefore, it is fair to say that its primitives are
at a “higher” level of abstraction than the node-and-links level of the other
models. '

31

6.2 Future Work

Future work will concentrate along several lines. The first is to study and
characterize complex application domains where the use of hybrid systems for
supporting machine and human processing may be useful.

The second is the extension of HDM in order to include more powerful
primitives that make it capable of satisfying the design and representation
requirements which emerge from the first line of investigation, as well as from
the analysis of other complex hypertextual applications. This includes also
extending the formalization of HDM in order to provide a precise overall
semantics to hybrid systems.

Finally, a third line of investigatioh is towards development
environments which allow the specification and implementation of hybrid
systems in an as integrated fashion as possible.

Acknowledgements - The work repoted here has benefited from discussions,
comments and suggestions from Cristina Borelli, Andrea Caloini, Sergio
Danieluzzi, and Stefano Mainetti, which worked on parts of it at certain times;
we also acknowledge the comments and suggestions on HDM by Mark Bernstein,
Norman Meyerowitz and John Mylopolous.

7 References
[ARG90] ARG, “HYTEA Technical Annex”, Esprit Project P5252, June 1990
[Akscyn 87] Akscyn, R.; McCracken, D.; Yoder, E.; “KMS: A Distributed

Hypermedia System for Managing Knowledge in Organizations”,
Proc. Hypertext ‘87, ACM, Baltimore, 1987, pp. 1-20

[Atkinson 87] Atkinson, W.; HyperCard, software for Macintosh computers,
Cupertino, Apple Computer Co, 1987.

[Banks 88] Banks, G.; McLinden, S.; Carlos, G.; “Implementation of Medical
Knowledge Bases in Hypercard”, in [Bernstein 88].

[Bernstein 88] Bernstein, M. (Ed); AAAI-88 Workshop “Al and Hypertext:
Issues and Directions”, AAAI, 1988.

[Brown 87] Brown, P.J.; “Turning Ideas Into Products: The Guide System”,
Proc. Hypertext ‘87, ACM, Baltimore, 1987. pp. 33-40

[Brown 89] Brown, P.J.; “Do we need maps to navigate round hypertext
documents?”, Eletronic Publishing-Origination, Dlssemmatmn
and Design 2, 2 (July 89).

[Chen 76] Chen, P.P.S.” The entity-relationship approach: toward a umfled
view of data”, ACM Transactions on Data Base Systems 1(1), 1976.

[Clitherow 89] Clitherow, P.; Riecken, D.; Muller, M.; “VISAR” A System for

Inference and Nav;gatlon of Hypertext”, in Proceedings of
Hypertext ‘89, ACM, Pittsburgh 1989.

32

[Conklin 88] Conklin, J.; Begeman, M. L.; “gIBIS: A Hypertext Tool for
Exploratory Policy Discussion”, ACM Trans. Office Information
Systems 6 (1988) 303-331

[Fischer 89] Fischer, G.; McCall, R.; “JANUS: Integrating Hypertext with a
Knowledge Based Design Environment”, Proceedings of
Hypertext ‘89, ACM, Pittsburgh 1989.

[Frost 89] Frost, R. ; “Introduction to Knowledge Based Systems”, Collins
Professional and Technical Books, London, 1987.

[Furuta 90] Furuta R., Stotts D., The Trellis Reference Model”, Proc. 1st
Hypertext Standardization NIST Workshop, Gaithersburg, MD,
Jan. 1990.

[Gaines 88] Gaines, B. R.; “Integration of Hypermedia with Knowledge Based
Systems”, in [Bernstein 88].

[Garg 88] Garg, P.; Scachi W.; “Intelligent Software Hypertext Systems”, in
[Bernstein 88].

[Garzotto 89] Garzotto F., Paolini P., “ Expert Dictionaries: Knowledge Based
Tools for Explanation and Maintenance of Complex Application
Environments”, Proc. 2nd ACM Int. Conf. on Industrial and-
Engineering Applications of Artificial Intelligence and Expert
Systems, Tullahoma , TN., Aug. 1989

[Garzotto 90a] Garzotto F., Paolini P., Schwabe,D., Bernstem M. “Tools for
Developers”, (_hapter 5 of ”Hypertext/ Hypermedia Handbook”,
Devlin, J. ; Berk, E. (eds), McGraw Hill-1990.

[Garzotto 90b] Garzotto F., Schwabe,D.; Paolini P.; Caloini, A. Mainetti, S.;
Borroni,5, “HDM - HYPERMEDIA DESIGN MODEL”, Tech.
Report.m 90-41, Dept. of Electronics, Politecnico di Milano, Oct.
1990.

[Garzotto 90¢c] Garzotto F., Schwabe,D.; Paolini P.;, “HDM - A Model Based
Approach to Hypermedia Application Design”, submitted to
ACM - TOIS, November 1990. Also available as Technical Report
90-2?, Dipartimento di Elettronica, Politecnico di Milano, Nov.
1990.

[Halasz 87] Halasz, F. “Reflections on Notecards: Seven Issues for the next
generation of hypermedia systems”, Communications or the
ACM 31,7, July 1987,836-855.

[Halasz 90] Halasz F., Schwartz M, “ The Dexter Reference Model”, Proc. 1st
Hypertext Standardization NIST Workshop, Gaithersburg, MD,
Jan. 1990.

[Jordan 89] Jordan, D.; Russel, D. “Facilitating the Development of
Representations in Hypertext with IDE”, Proc. Hypertext ‘89, ACM,
Baltimore, 1989

[La1 88] Lai,K.Y.; Malone, T.W.; “Object Lens: A “Spreadsheet” for cooperative
work Proceedings of the ACM Conference on Computer
Supported Cooperative Work, Portland, Oregon, 1988.

. 33

[Margolis 89] Margolis, M.; review of “The Election of 19127, Social Science
Computer Review 7 (1989) 231-3.

.[Moore 88] Moore,].D.; Swartout, W.D.; “Explanation in Expert Systems: A
Survey”, Technical Report ISI-RR-88-228, Information Sciences
Institute, Marina del Rey, Calif., December 1988.

[Schwabe 90a] Schwabe,D.; Caloini, A.; Garzotto, F.; Paolini, P., “Hypertext
Development Using a Model Based Approach”, Tech Report 90-
??, Dipartimento di Elettronica, Politecnico di Milano, Nov. 1990.
Submitted to “Software Practice and Experience”.

[Schwabe 90b] Schwabe, D.; Feijo, B.; Krause, W.G; “Intelligent Hypertext for
Normative Knowledge in Engineering”, in “Hypertext: Concepts,
Systems and Applications” (Proceedings of ECH’90), Rizk,A;
Streitz, N.; André, J. (eds)m The Cambridge Series on Eletronic
Publishing, Cambridge University Press, 1990.

[Stotts 89] Stotts, P.D.; Furuta, R., “Petri-Net-Based Hypertext: Document
Structure with Browsing Semantics”, ACM Transactions on Office
and Information Systems, 7(1), January 1989.

[Tompa 89] Tompa, F., “A Data Model for Flexible Hypertext Database
Systems”, ACM Transactions on Information Systems, Jan. 1990. .

{Travers 89] Travers. M.; “Visual Representation for Knowledge Structures”,.
Proceedings of Hypertext ‘89, ACM, Pittsburgh 1989.

[Utting 90] Utting K; Yankelovich, N.; “Context and Orientation in
Hypermedia Networks”, ACM Trans. on Information Systems, 7.
(1990) pp. 58-84

