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Abstract

This paper presents a new specification method for Object Oriented
Programming. The method is an extension of the method proposed by
Jones, using VDM. The main additions are mechanisms for inheritance
and nesting of specifications. Inheritance is used to achieve reusability,
as supported by the object oriented paradigm, while nesting allows a
better modularization of the state space of a system.

Keywords: Object Oriented Programming, Formal Specifications,
VDM, Inheritance. '

Sumaério

Este trabalho apresenta um novo método de especificagio para
Programagio Orientada a Objetos. Este método ¢ uma extensio do
proposto por Jones, com VDM. As principais contribuigoes sdo meca-
nismos para heranga e aninhamento de especificagdes. Heranga ¢'us-
ada principalmente para reutilizagdo, como proposto pelo paradigma
de orientagio a objetos. Aninhamento permite uma melhor modular-
izagio do espago de estados de um sistema. :

Palavras-Chave: Programagao Orientada & Objetos, Especifica-
¢oes Formais, VDM, Heranga. :
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1 Introduction

Since the beginning of the 80’s Object Oriented Programming (OOP) has
received more and more attention as a new programming paradigm. Cer-
tainly, one significant thrust in OOP has been programming languages.
From its origins in Simula-67, to its prominence in Smalltalk-80, OOP has
been guided by developments in object oriented programming languages
(OOPLs). :

Unfortunately, the evolution of OOPLs has been mainly ad hoc, without
a solid ground of formalisms or methodologies. Usually, new features are
justified only by means of examples. On the other hand, proposed object
oriented methodologies do not use these features, thus neglecting facilities
like inheritance and reference semantics. As a consequence, most of those
methodologies used with OOP in reality are related to Abstract Data Types
(ADT), and are better suited for non OOPLs such as Ada or Modula-2. !

This paper presents a new method for software specification, which
has been developed to guide the design of a new OOPL, named O=M
[Ter90, Ter91]. The method is mainly an extension of the method proposed
by Jones [Jon86), adding facilities for inheritance of specifications and nest-
ing, while keeping VDM’s formal nature. Inheritance is used to support
reuse of specifications, and also as a guide to inheritance in implementa-
tion, as supported by most OOPLs. Nesting is used here as a link between
the monolithic point of view for states adopted by Jones, and an informal
distributed one, supported by OOP; moreover, nesting allows simpler speci-
fication models for reference semantics. As a consequence of these features,
we have specifications better fitted to the facilities provided by object ori-
ented languages. '

The paper is presented in six sections. The next section discusses the
use of ADT specifications for object oriented languages. Section three shows
how we introduce inheritance in formal specifications and in reuse of specifi-
cations. Nesting and its relationship with reference semantics are considered
in section four. Then, section five gives an example of a specification for a
File System, using those facilities. Finally, section six presents some conclu-

sions.

1A good example is the methodology proposed in [Boo8é].



2 Formal Specifications

Since their inception, OOPLs have been associated with Abstract Data
Types. One of the first formal treatments for ADTs3, from Hoare [Hoa72),
was based on the class mechanism of Simula-67. It is undoubtedly recognized
that data abstraction is a main characteristic of OOP. These facts, together
with the success of ADTs in the field of formal software development, sug-
gested this paradigm as a method for object oriented specifications.

At the end of the 70’s, the so called property oriented methods for data
type specifications gained attention, with particular emphasis on the alge-
braic and axiomatic specification methods. Their common characteristic is
the absence of an explicit model in the definition of a type; the specifica-
tion states only the properties that the operations over the type must fulfill.
The main case for these methods, as opposed to the model oriented view
proposed by Hoare, is that this kind of specification is more abstract. More
abstract means that, by giving only the properties of a type, the specification
allows a large class of models, instead of just one?, avoiding biases towards
particular implementations. :

Recently, however, some results have changed this situation. One is
the difficulty presented by property oriented methods for building many
practical specifications. [Maj77] has already shown the problems for an
algebraic specification of a Stack with access to its internal elements, and
[BzT83] states that this type of difficulty happens for any data structure
which allows operations on non border elements, such as trees and iterators.
272 Another result is a method to know if a given model is abstract enough
for a set of operations [Jon86]. The last point is whether we need so much
abstract specifications. '

One of the main cases for object oriented programming is the change of
emphasis from “what . the system does” to “what it does it t0” [Me88a). This
emphasis seems better fitted for the construction of an evolutionary system,
as during the life-time of a system modifications are made to its behavior
more frequently than to the concepts (or objects) it manipulates. Many
times the designer over-specifies a type in anticipation of future updates.
Inheritance is also centered around object states; usually subtypes change
the functionality of the original type, keeping a similar internal structure.

This reasoning to justify OOP can also justifies model oriented speci-

3 Although some algebraic methods, with the use of initial or final models, do not have
this property (p.e. [ADJT8]).



fications. To build a specification only using operations is to give a great
importance to them. Any future modification of the operations can lead to
unanticipated changes on the specification and its properties. On the other
hand, having an explicit model for a system (or for its types) allows the
introduction of changes without great disturbance, as changes on the op-
erations do not affect the model. Even model changes are easily managed,
as explicit models are usually more intuitive than implicit ones. Whenever
necessary, one can make a test to know whether the model is a minimal
specification. For all those reasons, we argue that property oriented specifi-
cations are methodologically inconsistent with object oriented programming,
while model oriented specifications and OOP use the same basic approach.

3 Inheritance

Inheritance is one of the main features of object oriented programming lan-
guages. In fact, some authors propose inheritance as the main feature,
by giving the definition Objects = Abstract Data Types + inheritance (p.e.
[DFT88]). Nevertheless, most of the development methods proposed as ob-
ject oriented do not provide clear support for this feature. In this section
we describe a mechanism to incorporate the concept of inheritance in an
specification language framework.

Before proceeding, we would like to stress the difference between subtyp-
ing, inheritance of specifications, and inheritance of implementations. Here,
type means specification. Subtyping is a relation % <" between types, mean-
ing that, if A < B (4 is a subtype of B), thus all objects which satisfy
the specification A also satisfy the specification B. In the framework of
a programming language, where a type is only a partial specification, the
subtype relationship usually takes into account only the type signatures, as
these are all the compiler can check. However, in the framework of a speci-
fication language, subtyping means behavior compatibility®. Inheritance of
specifications is a mechanism to reuse specifications, allowing the designer
to combine and refine old specifications in order to build new ones. Fi-
nally, inheritance of implementations is mainly a mechanism for code (and
data structure) reuse. It enables one to combine and refine code in order
to build new implementations. Since Simula-67, most OOPLs identify these
three concepts, in a way that a specification heir is always a subtype and

3 According to the classification given in [WeZ88].



an implementation heir.4 Some languages Present only one of those con-
cepts; Quest [Car89) has only subtyping, without & mechanism to declare
heirs. . Emerald [BeA87] has only inheritance of specifications, which also
define subtype relationships. Smalltalk, without a type system, has only
inheritance of implementations; the polymorphism of the language is not a
¢onsequence of the inheritance mechanism, but of late-binding and typeless
variables. :

There is no implicit relationship between subtyping and inheritance of ‘
specifications; one can yse inheritance to create new specifications which
are not subtypes of thejr ancestors, and, on the other hand, a type can be
subtype of another one without being a heir of it. However, if the inheri-
tance mechanism is such that every heir is also a subtype, then inheritance
of specifications can be used not only for reuse of specifications, but for
reuse of verification proofs as well. In a Programming language framework,
an inheritance mechanism dissociated from subtyping has little use, as it
would achieve only reuse of signatures, Linking both concepts brings to
the language a mechanism to build “subtypes by construction”, enhancing
polymorphism and type classification. '

specifications and implementations. First, there are abstraction problems.
A user of a class must know its specification ancestors, in order to know
its complete behavior and type compatibility, but the user does not need to
know the implementation ancestors of the class, because that is an imple-
mentation decision that must be hidden by the abstraction. Second, there is
1o reason to suppose that similar behaviors must be implemented by simi-
lar algorithms, or that similar data structures can not be used to implement -
incompatible specifications. Obviously, many times the implementation hj.
“erarchy will follow the specification one, but this must be a programmer
decision, and not be imposed by the language. Third, the lack of distine-

‘Two exceptions are Duo-Talk [Lun89] and 0=M [Ter91], which have separate hierar-
chies for specifications and implementations,



In order to explain our inheritance® mechanism, the first step is to give a
precise characterization for subtyping. The intuitive meaning of subtyping
is that any object of a given type A is also an object of the supertypes of A.
This characterization is also known as an is-a relationship. This implies that,
if A is a subtype of B, then an object of A can be used wherever an object
of type B is needed. An easy way to allow this is to provide a projective
function which gets objects from A and returns B objects. Moreover, if one
intends to use formal (or even informal) reasoning, then a subtype must
keep all the properties of its ancestors. ’

The above characterization can bring one to compare the relationships
between Type and Subtype and between Specification and Implementation.
In fact, an implementation also satisfies the requirements stated previously.
This similarity leads many authors to try to support separate specifications
by means of supertypes (p.e. [Me88b, HIB87]). However, this is a misuse
of inheritance: first, the mechanism for separate specifications intends to
hide “how to do” from “what to do”, while the subtype mechanism is a way
to organize specifications, without any change of abstraction level. Second,
there is a subtle formal difference between both relationships. Although
any implementation could be a valid subtype, not all subtypes are valid
implementations, as a subtype does not need to conform with the adequacy
criterion. This criterion states that any correct implementation must have a
representation for each abstract object that the specification describes. This
is not needed for subtypes and, many times, a subtype is defined exactly to
restrict the valid objects of a given type (for instance, a subtype Square of
a type Rectangle).

Besides these differences, the two relationships are close enough to allow
us to use the formal definition presented by [Jon86] for implementations to
fit our definition of subtyping. We say that an abstract type 4 is a subtype
of an abstract type B, denoted by A < B, iff:

o there is a total function projs 5: 4 — B, which allows to see states of

objects of the type A as states of objects of the type B.

o For each function (or procedure) X over the type B, there is a func-
tion (or procedure) over A4, with the same name, the same number
of parameters, and such that its pre and post conditions satisfy the
following equations: )

- ¥z € A-Vp-pre-Xp(proja,p(z),p) = pre-X4(z, p)

'From now on, we will use inheritance to mean inheritance of specifications.

6



- VT ,2 € A-Vp-pre-Xp(proja,s(% ), p) A post-X4(T ,2,p) =
post-Xp(proja,B(T ), proja,a(z), p) .

where p represents the operation parameters, and ‘Z the state before
the operation. These formulae are similar to those for implementa-
tions, and simply state that wherever a B operation can be used, the
equivalent A operation is also allowed. Following [Jon86], the param-
eter types are considered as a part of the pre and post conditions, so
there is no need to put explicit rules for them.

If A < B, then every value of an A object can be viewed as a value of a
B object, via the proj function. So, A objects can be treated as B objects,
without the need to explicitly write the proj function.

It is important to note some consequences of this definition:

e A given type can have multiple supertypes.

¢ A very common case of subtyping occurs when the new subtype keeps
the model structure of the original one, only adding new fields. In this
case, the function proj is the orthogonal projection. When the type
implementations follow the model, the inheritance mechanism found
in OOPLs can be used to implement the subtype.

e The definition given above has no mention of initial states. So, it is
possible to define new subtypes only putting stronger invariants. Of
course, the new invariant can not refute any post-condition, otherwise
the type can not be implemented.

o The input parameter types of the new operations can be supertypes of
the parameter types of the old operations®, as the new preconditions
can be weaker than the old ones; conversely, the output parameter
types can be subtypes of the old ones.

e It is trivial to show that the subtype relationship is transitive; the
projection functions can be composed to give the new omne, and the
_implications of the pre and post condition rules are transitive.

The next step, after a characterization of subtyping, is a definition of
inheritance. As we intend to use inheritance for polymorphism and type

¢This property is known as the contravariance property, the more restricted a type,
the less restricted its operational parameter types. :
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classification, we will associate the subtype and inheritance relationships;
any heir of a given type must be a subtype of this type. So, we would like a
mechanism which allows us to reuse a given specification, but in such a way
that the resulting type is always a subtype of the original one. Moreover, we
would like to support multiple inheritance, keeping the subtype relationship
for all parents. '

The linguistic support for inheritance that we are going to introduce is
specifically designed for composite types, as these are the most frequently
used types in VDM specifications , and we can keep some parallelism with
the inheritance mechanisms presented by programming languages. In order
to accommodate the syntactic extensions presented here, and also to keep
together models and operations, giving a more “object oriented” look to a
specification, we use a different syntax for VDM specifications. To declare
a type (or specification) B, and then another type A as a subtype (or heir) -
of B, we use the following notation:

Specification B
for: Ty

Jorn: T

inv-B 2 pp

Procedure Pb; (...)
ext  wr fo,,

pre Pre-Pb;
post Post-Pb,

End B

Specification A
Subtype of B
fa1: T01

Ja,: Ta,
inv-A & pa
Procedure Pg (...)



ext wrfa,
pre Pre-Pa;
post Post-Pay

End 4

The subtype declaration in the type A makes the above definition of A
equivalent to the following one:

Specification A
for: Ty

fom: Thp,
f(11: T01

fan: Ta,
inv-A 2 paAps
Procedure Pb (...)

ext  wr fby,

pre Pre-Pb;
post Post-Pb;

Procedure Pg (...)
ext wr fo, .

pre Pre-Pay
post Post-Pa;

3
ca®
.

End 4



projap:A— B
pmjA,B(mk-A(b],...,b,,.,al,...,a,.)) & mk-B(byeooybm)

It is important to note that, inside the new type, the inherited attributes
(fields and operations) have the same status as the new ones. So, if there
is any name collision between an inherited attribute and a new one, it must
be treated as an error in the same way as if one defines two fields with the
same name. : :

It is very easy to show that an heir, defined according to the above
mechanism, is also a subtype. It is also easy to see how the mechanism works
for multiple inheritance. However, this mechanism is still very rigid, as 1) the
inherited operations can not be modified in order to access the new fields,
and 2) the possibility for multiple inheritance only works provided there
is no name collision between fields or operations inherited from different
ancestors. ’

In order to solve these problems, and to increase the flexibility of the
inheritance mechanism, we have introduced the Rename and Redefine facili-
ties. These facilities have been taken from the programming language Eiffel
[Me88a), and adapted for the specification phase. The syntax for these fa-
cilities is as follows:

Specification A
Subtype of B
rename 0Ny 8s NN, ..., Ofl} 35 NN
redefine n,..., M}

fo1: Tay .

.

fan: Ta,
(declarations for ny, ..., n)
End A

The Rename facility is used to change the name of one or more inherited
attributes (operation or field). Its most common application is to avoid name
clashes, but it can also be used to give to the attribute a more appropriate
name in the new environment. The semantics of a rename operation is only
to replace all occurrences of the old name (on) by the new name (nn)in ev-
erything inherited, including the invariant and the pre- and post-conditions.

10



Note that these modifications do not affect the subtype relationship, and do

not affect the proj function as well.
The Redefine facility is used to modify a given operation inherited from

the original type , while keeping it compatible with the old one. For each
operation in the redefine list, we must give a complementary definition,
. which is combined with the old one to create the new definition. The join
process is such that the new definition always satisfies the subtype relation
with the old one. It works as follows:

Suppose the old definition (in type B) is:

Procedure X (p: TP)
ext  wr fby,: Tby,

wr fby,: Tb.;,j
_pre pre-Xp
post post-Xp

and we give the following complementary definition:"

Procedure X (p: TP)
ext wr fa,: Tay,

wr fa,, : Tb,,
pre pre-X,
post post-X,

Then, the new definition is:

Procedure X (p: TP)
ext  wr fby,: Tby,

wr fou,: Thy,
wr fay,: Ta,

wr fa,, : Tby,
pre pre-X, V pre-Xp
post post-X4 A (pre-Xp => post-Xp)

11



The ﬁxstA thing to note is that this definition satisfies the criteria for
subtyping. In fact:

o pre-Xp = (pre-Xy V pre-Xp)
‘s (pre-Xp A (post-Xu A (pre-Xp = post-Xp))) => post-Xp

Moreover, the original operation has an implicit post-condition stating that
the variables not listed in the external list can not be modified, that is:

A fi=s

ie{w;,...'wj}

As the complementary definition can not have any fb field in its external
list, the above condition is still satisfied by the new operation. It is important
to note that any function definition which already satisfies the subtyping
restrictions can be written as a complementary definition, without being

modified by the join process, as:
o (pre-Xp = pre-X4) = (pre-X4 & (pre-Xa V pre-Xp))

o ((pre-Xp A post-X,) = post-Xp) =
(post-Xa4 & (post-X4 A (pre-Xp = post-Xp)))

In other words, the combination process transforms any definition into a
new one which satisfies the subtype relationship; if the definition already
satisfies this requirement, it is left unchanged.

Another use of the redefine facility is to allow the attributes inherited
from different ancestors to be combined. As already stated, when there
is a name collision between inherited names, it is treated like an error.
However, sometimes one could want to join the attributes. This can be
done redefining all the clashing attributes. Accordingly, the new operation
will be the composition of all the old specifications and the complementary
one. '

Let us now see a small example of all those features. Suppose we have
the type Stack, modeled as a sequence of values:

Specification Stack

val: T*
Procedure Push (e: T)

12



ext wruval: T
post val = e val

Function Pop () &: T

ext wrwval:T*

pre lenval >0

post (e = hd ;;t_l-l) A (val = tl:«;l)
End Stack

and a type for iterating objects, as follows:

Specification Iter
s: T*
N
inv-Iter & 0< c<lens
Procedure Reset
ext wrc:N
post c =10
Function Nezt () e: T
- ext wrc:N
ds: T*
pre c<lens
post (¢ = C + 1) A (e = s[c])
Function End () b:B
ext rd N
ds: T
post b = (c =len s)
End lter

With these definitions, we are able to define an IterStack, that is, a Stack
with iteration facilities.

Speciﬂéati'on IterStack
Subtype of Stack
redefine val, Pop

13



Subtype of Iter
rename 8 as val
redefine val

Function Pop () e: T

ext wrc:N

post ¢ = min('C,len val)
End lterStack

As we want to join the fields s and wval, we first rename one of them (s in
this case), and then redefine both inherited val attributes, to avoid a clash.
The redefinition of Pop is needed in order to keep the Iter invariant after
the operation (otherwise a Pop could leave the iterator position outside the
stack contents). It is only necessary to define the new properties of the Pop
operation; the old ones are inherited.

4 Nesting |

Nesting is a very useful concept to model many aspects of reality. Our
perceptions of the real world are usually structured, with some concepts
being used to build more complex concepts, and others being decomposed to
simpler ones. Some examples are Bank-Branch-Account, and File-System—
File—Character. Usually these sub-concepts can not exist by themselves; e.g.,
it is meaningless to have an Account without a Bank. On the other hand,
they have their own meaning, in the sense that we can have relationships
between these entities and entities outside their surrounding objects.

The idea of nesting resembles opacity, mainly because of the block strue-
ture of Algol-like languages. This kind of structure is not very compatible
with the object oriented paradigm, which uses a flat state space, supported
by reference semantics in OO programming languages. Moreover, as the
OO paradigm already presents a mechanism for encapsulation (the object
concept itself), sometimes the nesting concept is considered useless within
00P.

However, nesting does not need to mean opacity. First, nested com-
ponents can be exported to be visible outside their surroundings. Second,
we can use inheritance to decompose a specification in order to encapsu-
late only its specific parts. Using the File-System example, we can have a
global GenericFile specification which is inherited and tuned by a File spec-

14



ification nested inside the File-System. The example in section 5 uses this
approach. Moreover, nesting also presents a strong organizational aspect,
connected with modularity. These characteristics can be very useful in an

object oriented environment.

Here we show a specification facility that allows the modularization of
a specification by means of nesting — a specification can be decomposed in
components that can be described in a partially independent way. As with
inheritance, the nesting facility extends VDM with concepts which can be
mapped back to “standard” VDM. . ,

The main idea in the mechanism is to use maps to keep nested objects
.as part of the state of their surroundings. For example, when we declare a
‘Branch inside Bank, we mean that the Bank object has a map field where
it keeps record of its branchs. In the same way, each branch has a map to
keep its accounts. However, since nested objects have their own meaning,
one must be able to write operations that act directly on these objects, even
if the final result is a change in the surrounding state. In this way, we can
keep the operations nearer their target objects. Without this facility, all
operations would have to be put in the most external object.

Generally, a nested object is declared as follows:

Specification O
Jor: To,

Specification S
f51: T8y

inS & ps(s)
End S
inv-0. 2 po(o0)
End O

and this declaration is translated to:
S=N

Specification S.O0bj

15



fs;: TJ1

inv-S.0bj 2 ps(s)
End S.0bj

Specification O
Jor: Toy

S-map:.S' 2, 5.0bj

inv-0 £ po(o)

End O

In words, the nested type is translated to an access key type (N), and the
surrounding type gets a map between these keys and the “real” objects. Any
operation over S can be translated to an operation over O, according to the

following scheme:

Procedure X5 (p: TP)
ext  wr fsy,: Tsy,

wr fa.,,j: Ts.,,j
wr fo,, : Toy,
wr foy,: Toy,
pre pre-Xs
post post-Xs

is translated to:

Procedure Xo (i: S; p: TP)
ext  wrS.map:S — S.0bj
wr fo,, : Toy,
wr foy,: Toy,
pre (i € dom S-map) A pre-Xs(S-map(i),p)

16



post Jo € S.0bj -
post-Xs(S-map(i), 0,p) A (S-map = S.map {i~ o})

Accordingly, an operation call like 5.X(p) is translated to X(s,p), that is,
the receiver object is in fact the first parameter of the operation; we add in
the pre-condition a check about the existence of that object. Note that the
operation can access “external variables” (fou;,. .- foy,); the occurrence of
these variables in the pre and post conditions remains unchanged by the
translation. ' .

A last point about the implicit use of maps for nesting is its relation to
reference semantics”. The kind of maps we use to represent nested objects,
with a natural number as index, can be translated directly to a program-
ming language with reference semantics. The indexes are identified with the
references, while the map range keeps the real objects.

‘5 An Example

In this section we present an example of a specification which makes use of
all facilities presented above. The example specifies a simple file system.

The first item to specify is a type Collection, which exports objects to
iterate over the collection. This is a typical specification one would expect
to find in a specification library. The specification is shown in figure 1.

Usually, & collection can be modeled by a sequence. For collections where
the order is irrelevant, one can strengthen the invariant to enforce a given
order. All collections export a Iterator type, which allows multiple (and
simultaneous) iterations over a collection. The iteration state is stored in
the variable position. Besides that type, a collection can also export other
operations not showed here.

Next, we have a specification for generic files (figure 2). This is another
kind of specification one would expect to find in a library. The GenericFile
type inherits from Collection the basic facilities for sequential reading. More
general access is provided by means of a Handle. When a file is opened, an
appropriate handle is created, and the handle takes care of the iteration

state.

"By reference semantics me mean the characteristic of OOPL that 2ll variables can
store only object references, and not an object itself.

17



Specification Collection(T)
c:T*
Specification Iterator
position: N
inv-Tterator & (1 < position < lenc+1)
Procedure Resel
ext wr position:N
post position =1
Function Read () r: T
ext  wr position:N
de:T*
pre position < lenc
post r = c¢(position) A position = position + 1
Function End () e:B
ext 1d position:N
dc: T*
post e = (position > len c)
End Iterator

E.nd' Colleciion

Figure 1: Collection Specification

18



Specification GenericFile
Subtype of Collection(T)
rename Iterator as SeqReadHandle

Specification Handle
position:N
Function Read () r: T
ext  wr position: N
dc:T*
pre position < lenc
post r = c(position)
Procedure Write (d: T)
ext wr position: N
wre: T
pre position < lenc
post len ¢ = len T A
VieN-i<lenc = Ifi= position
» Then c[i]=d
Else c[i] = i)
End Handle
End GenericFile

Figure 2: Generic File Specification

19



The GenericFile only defines a generic handle, which defines basic writ-
ing and reading behavior. Both operations do not specify the value of
position in the post-condition, allowing different subtypes to specify different
restrictions. As a generic file does not know how to check the availability of
disk space, the Write pre-condition only allows modifications; more specific
pre-conditions, such as to allow the write operation to append values at the
end of a file, are left to subtypes.

The file system specification is presented in figure 3. The first point to
note is that a file system is itself a collection. As we usually want to iterate
over file names (p.e. to search the directory), we can declare the file system
as a subtype of Collection(String). We rename some attributes only to have
more meaningful names. »

A File system exports a file type, defined in figure 4. Besides the files,
defined as File_map, and the directory list, inherited from Collection, the
system must keep the relationship between names and files; this is achieved
by the dir map. The following auxiliary function computes the free space on
the system (the constant MAX.SPACE is the total space of the system).

fs : (File == File.Obj) = Z
fs(m) & MAX.SPACE— 3. lenc(m(i)

iecdomm

The invariant of FileSystem assures that 1) all file names are in the directory,
2) all names have an associated file, 3) there are no repeated names or files,
and 4) the files do not use more than the available space.

This specification presents only some basic operations. Other operations
(like DeleteFile, Rename, etc) can be specified in a straightforward way. The
GetFile operation just returns the file descriptor associated with the given
name, and the CreateFile procedure creates an empty file, updating the dir
map and dirList in order to keep the invariant.

, The File type (figure 4) inherits from GenericFile its basic facilities, and
tunes them for sequential and random access. The operations OpenRandom
and OpenSeq provide for random and sequential access to a file.
_ TFor sequential access we define the handle SegHandle (figure 5), which
is a heir of both Handle and SeqReadHandle (the later has been inherited
from Collection). The attributes Read and position are redefined only to be
joined. The Read operation is completely defined by the inherited proper-
ties; Handle specifies the generic reading characteristics, and SeqReadHandle
specifies the final value of position. The Write operation needs to specify
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Specification FileSystem
Subtype of Colection(String)
rename Iterator as Directory, ¢ as dirList
dir: String — File

Specification File
(see figure 4)
End File
inv-FileSystem 2 (dom dir = g dirList) A (g dir = dom File_map) A
(len dirList = card dom File.map) A (fs(File-map) > 0)
Function GetFile (name: String) f: File
ext 1d dir: String —— File
pre name € domdir
post f = dir(name)
Procedure CreateFile (name: String)
ext  wr dirList: String®
wr dir: String — File
- wr File.map: File — File_Obj
pre name ¢ g dirList
post dirList = dirList ™ name A
3f € File - f ¢ dom File_map A dir = dir U {name — f} A
File_map = File.map U {f — mk-File.0bj({],{ })}
Function FreeSpace () f:Z
ext rd File.map: File =, File.Obj
post f = fs(File.map)
End FileSystem

Figure 3: File System Specification
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Specification File
Subtype of GenericFile

Specification SeqHandle
(see figure 5)
End SegHandle

Specification RanHandle

(see figure 6)
End RanHandle

. Function OpenRandom () rh: RanHandle
ext wr RanHandle.map: RanHandle — RanHandle. Obj

post th ¢ dom RanHandle.map A

RanHandle.map = RanHandle.map U
{ OpenRandom + mk-RanHandle.Obj(1)}

Function OpenSeq () sh: SegHandle

End File

Figure 4: File Specification
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Specification SeqHandle
Subtype of SeqgReadHandle
redefine Read, position
Subtype of Handle
redefine Read, position, Write

Function Read () r: T

Procedure Write (d: T)

ext 1d File_map: File — File_Obj

pre position = len ¢ + 1 A fs(File.map) > 0

post position = position + 1 A
 (position=1len C +1 = c="cT™d)

Procedure ReWrite
ext wr position:N
wre: T
post position = 1A ¢ = ]
End SeqHandle

Figure 5: Sequential Handle

the final value of position, and allows append operations. The operations
Reset and End are inherited from SeqReadHandle without modification.

For random access we define RanHandle (figure 6). As a heir of Handle,
it only needs to specify the final value for position in the operations Read
and Write, and define a procedure Seek to set up a random position.

6 Related Works

This section discusses other works related to inheritance of specifications
and nesting in object oriented approaches.

Cardelli [Car84] has presented a semantic description of subtyping in a
programming language framework. Within this framework, his description
introduces a clear concept of subtyping and inheritance, but with no sup-
port for complete specifications. Moreover, his work makes no distinction
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Specification RanHandle

Subtype of Handle
redefine Read, Write ‘
Procedure Write (d: T)
post position = position
Function Read () r: T
post position = position
Procedure Seck (r:N)
ext  wr position: N,
de:T*

pre 1< r<lenc
post position = r

End RanHandle

Figure 6: Random Handle

24



between inheritance of specifications and implementations; as a consequence,
it does not support multiple inheritance for abstract data types.
[Lea90] presents an interesting method which incorporates inheritance in
the specification language LARCH. Its concept of subtype is similar to ours.
The main deficiency of that proposal is that it can not handle mutable
objects, which is a significant case in real 00 systems. This deficiency
seems to be caused by its use of a property oriented method; model oriented
methods, like VDM, handle mutable objects without difficulty. '
Another definition for inheritance of specifications in a model oriented
framework is presented in [SPB90], using Z as the specification language.
This work concentrates on concurrency aspects of OOP. Its definition of
inheritance is not associated with a concept of subtype or another concept
related with verification concerns, but with a way to combine process spec-
ifications.
The facilities to rename and redefine inherited features were borrowed
from the programming language Eiffel [Me88a). (LARCH [GHW85] presents
a strong rename facility, too.) Eiffel has also the criteria of weaker pre-
conditions and stronger post-conditions to redefine functions in subtypes.
However, the language does not enforce the criteria; furthermore, those con-
- ditions must be written over the implementation, breaking the abstraction.

In spite of the weaker precondition criterion, a routine redefinition in Eiffel
~ can restrict its input parameter types [Mey89], creating inconsistencies in
the type system.

The origins of nesting facilities in an object oriented environment can
be found in the programming language Euclid [Lam77]. Although it is not
a true object oriented language, Euclid allows module objects to be cre-
ated dynamically and export types and operations. The programming lan-
guage Beta [Mad86] also incorporates nesting facilities in an OO framework.
[BuZ88] presents some extensions to the notion of nesting in order to improve
its use in OO languages. Nevertheless, none of these proposals is intended
for specifications. Jalote [Jal89] presents a method that uses nesting to im-
plement object oriented specifications, but nested objects are hidden from

the outside world.

7 Conclusions

We have extended VDM specifications in order to deal with object oriented
specifications. We have argued that model oriented approaches to specifi-
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cations, like VDM and Z, are better fitted to the object oriented paradigm

than property oriented specifications.

Some features of the object oriented model, like data abstraction with
persistence and instance visibility, are already present in model oriented
methods. Our extensions allows the method to deal with inheritance of
specifications and nesting of objects. Nesting also allows a better treatment
for reference semantics, a mechanism found in most OOPLs.

The proposed inheritance mechanism allows the definition of "subtypes
by construction”, which means that types defined as heirs automatically
have behavior compatible with their ancestors. In a programming language
with independent hierarchies for specification and implementation, that fea-
ture does not present an obstacle to code reuse. At the same time, subtypes
with behavior compatibility makes possible the use of formal reasoning in
object oriented programs.

Specifications can be build in a modular way with the help of nesting.
Together with inheritance, nesting does not preclude specification reuse, as
shown in the File-System example. ‘
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