- n .F,-.W»m:.»-anﬂs.#+.3

Series: Monografias em Ciéncia da Computac8o, No. 3/81

THE 0=M PROGRAMMING LANGUAGE

Roberto lerusalimschy

Departamento de lnformétiga

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP-22453
RIQ DE JANEIRO - BRASIL

PUC R

Seriegs:

Editor

* 0 Thi

X% On

0 - DEPARTAMENTO DE INFORMATICA

: Cariogs Jd. P. Lucena

Monografiaa em Ciénocia da Computagdo, No. 3783

THE 0=M PROGRAMMING LANGUAGE *

Roberto lerusalimschy

ia da Repdbiica

leave at the University of Waterloo,

XX

S work has opeen spansorad by the Secretaria de
Tecnologia of Presidéncie

Federativa

Canadua.

C

do

8

8

nei

ot}

[4)]

i

a

P

2

In charge of publicationss:

Rosane Teles Ling Castilho
fssessoria de Biblioteca, Documentaglo e Informaglo
PUC Rio - Departamento de Informftica

Rua Marqufs de 580 Vicente, 225 - Gdvea

22453 ~ Rio de Janeiro, RJ

Brasil

Tel. .t (021)529-93846 Telex:34078 Fas(@24)511-54645

E-mailftrosancedinf.puc-rioJbr -

Abstract

O=M is an object oriented programming language designed to
achieve compatibility between Object Oriented Programming and Ab-
stract Data Types. The main characteristic of the language is a com-
plete identification between the concepts of Object and Module. This
feature allows the language to have entities which, like objects, are dy-
namically created and manipulated, have inheritance and late-binding,
and at the same time, like modules, can export types, have sepa-
rate specifications and implementations, and support nesting facilities.
Specifically, the dynamic manipulation of objects which export types
gives the language a high degree of polymorphism.

Keywords: Object Oriented Programming, Programming Lan-
guages, Type Systems.

Sumério

O=M ¢ uma linguagem de programagio especialmente projetada
para compatibilizar Programagao Orientada a Objetos e Tipos Abstra-
tos de Dados. A principal caracteristica da linguagem é uma completa
identificagio entre os conceitos de Médulo e Objeto. Esta caracteristica
permite que a linguagem tenha entidades que, da mesma forma que ob-
jetos, podem ser criadas e manipuladas dinamicamente, tém heranga e
“late-binding”; ao mesmo tempo, estas entidades, assim como médulos,
podem exportar tipos, tém especificagdes e implementagoes separadas,
e oferecem suporte para aninhamento. Especificamente, a manipulagio
dindmica de objetos que exportam tipos d4 & linguagem um alto grau
de polimorfismo.

Palavras-Chave: Programagdo Orientada a Objetos, Linguagens
de Programacdo, Sistemas de Tipos.

1 Introduction

Since the beginning of the 80’s Object-Oriented Programming (OOP) has re- -
ceived more and more attention as a new programming paradigm. Certainly,
a main area (or The main area) in object orientation has been program-
ming languages. From its origins with Simula-67, to its notoriety through
Smalltalk-80, when characteristics like inheritance and data abstraction were
combined, OOP has been guided by developments in object- orlented pro-
gramming languages (OOPL).

In spite of all evolution, most OOPL have not incorporated many of
the programming language technologies established in more traditional lan-
guages, such as those related to rigorous software development. More specif-
ically, the famous equation Objects = Abstract Data Types + Inheritance is
not indeed correct: besides the lack of a formal approach, which has always
guided ADT facilities, OOPL do not present many features originated from
ADT concepts, like module facilities, separate implementation and specifi-
cation parts and generic (parametric) data types.

To overcome the limitations of OOPL for ADT support, we propose a
new programming language, called O=M. From a programming perspec--
tive, O=M has been designed having as a basis a formal object-oriented
development method, which incorporates nesting and inheritance in a VDM
framework. From a linguistic point of view, O=M puts together features
from OOPL as well as from ADT based languages, in an attempt to identify
abstract data types with objects; as a design outcome we have the distin-
guishing mark of the language, which is a complete identification between
the concepts of Object and Module.

Among other features, 0=M has complete mdependence between speci-
fication and implementation hierarchies, a formal basis for late binding and
multiple specification inheritance, nesting of specifications and implementa-
. tions, a high degree of polymorphism, facilities for multiple implementations
for each type, and a more strict visibility control over names and objects.

This paper presents the programming language aspects of O=M; the
formal method behind it is presented in [9]. In the next section we take a
closer look at the problems with OOPL for ADT support. An overview of
O=Mis presented in section 3. Section 4 discusses the relationship between
nesting and inheritance. Section 5 shows the facilities of the language for
visibility control. Finally, in section 6 we present some conclusions.

2 OOPL x ADT

In this section we give close attention to some incompatibilities between
Object Oriented Programming Languages and Abstract Data Types. The
first step here is a clear characterization of OOPL. We characterize OOPL
by a set of language mechanisms which 1) are found in all languages un-
doubtedly recognized as Object Oriented, 2) usually are not found in other
programming languages, and 3) are enough to explain most of the qualities
assigned to this kind of language. These mechanisms are data abstraction
with persistence, inheritance, late binding, instance visibility, and reference
semantics. We will explain better these concepts on the course of the text,
while we relate them with ADT. '

2.1 Data Abstraction

We begin with Data Abstraction, which is a key point in OOPL. Despite the
good support found on these languages, there are some drawbacks. One is
caused by the reference semantics: as all variables actually keep the address
of an object, the abstraction mechanism protects only these addresses, and
not the real valies of the variables (more on this topic in the discussion about
reference semantics). Another drawback is the lack of a clear separation
between specifications and implementations, like we have in Ada [1] and
Modula-2 [19].} The distinction between specifications and implementations
is a key point in data abstraction, and a specific language support for it seems
very important for ADT. '

2.2 Inheritance

As a consequence of the lack of separation between specifications and im-
plementations, OOPL normally present another pitfall, the lack of distinc-
tion between both hierarchies.?. Implementation inheritance, as shown in
Smalltalk [7], is the ability of an implementation (or class) to (re)use code
and data structures written for other implementations as its own, with com-
plete freedom to modify these features for any new purpose. On the other
hand, specification inheritance, as shown in Emerald [2], is a mechanism to
classify types and to increment the language polymorphism. Since Simula-67
these two concepts have been mixed, although there is no reason to suppose

1The OOPL Duo-Talk [14] has this feature.
2 Again, Duo-Talk is an exception; see also (3]

that similar behaviors must be implemented by similar structures and vice
versa. For the user of a class, the implementation hierarchy is useless and
must be hidden, in the same way as the implementation itself, while the
specification hierarchy has to be shown, as the user needs to know the type
compatibility rules over this class.

Using the inheritance classification proposed by Wegner & Zdonik [17],
we can say that specification inheritance must be signature compatible (or
even behavior compatible, if the compiler could check it), while implemen-
tation inheritance is free to be cancel compatible. With distinct hierarchies,
we can reuse code the way we need, changing or deleting features, and at
the same time have static type checking and a clear concept of a type as a
specification.

2.3 Late Bindihg

Binding is the association between a name and its semantics, or its im-
plementation. -Late binding is the facility to bind operation names with
operation bodies only at call time, instead of compile or link time, as is
usually done. There is a close relationship between binding and abstraction,
because it is at binding time that abstractions must be instantiated. When
binding takes place at compile time, as in Pascal, the compiler must known
all data implementations. With binding at link time, as in Modula-2, we
have much more freedom, but still implementations are fixed during run
time. Only with late binding a language achieves complete representation
independence, and a program using a data type needs to know nothing about
its representation. :

On the other hand, late binding presents some difficulties for reasoning
about programs. Without further restrictions, an operation can have not
only many implementations, but marny specifications as well. A partial
solution to this is presented in typed languages. In these languages, each
operation specification is attached to a type, so only objects with this type
(or some subtype of it) give implementations for the operation. The idea is
that all these implementations must satisfy at least the given specification,
so it does not matter which binding is done during run time. A sound type
systeri can restrict the ways an operation can be (re)defined on subtypes,
in order to keep its syntactic specification.’® Anyway, only the types are

3The language Eiffel suggests a stronger verification, with the use of pre and post
conditions for operations. Unfortunately, it has not incorporated this verification facility.
into the compiler. (see {16])

verified, and not the whole specification.

2.4 Instance Visibility

By Instance Visibility we mean the property that objects can access only
their own internal variables, i.e., the abstraction boundary surrounds each
object individually. On languages based on ADT, the abstraction boundary
is set surrounding the whole type, so the type operations can access internal
variables of any instance of the type. The benefits of Instance Visibility in-
clude facilities for distributed systems, when the parameters of an operation
can be on different machines, and the possibility of multiple implementa-
tions of a type, as one can have a different operation implementation for
each type implementation. As subtyping is a special case of this situation,
Instance Visibility isan important mechanism to support inheritance.

On the other hand, Instance Visibility has some drawbacks. One is
efficiency; operations over two or more parameters of the same type can be
more efficiently implemented if they can access details of all parameters. As
a consequence, sometimes a class exports internal details in order to achieve
efficiency, sacrificing abstraction. A good example is the class Rational, in
Smalltalk. As the addition operation does not have direct access to the
other operand, the class has to export functions to access the numerator
and the denominator of a rational number, two meaningless functions from
an abstract point of view.

2.5 Reference Semantics

In QOL, all variables are actually pointers. This property, which has con-
sequences both in language semantics and implementation, is what we call
Reference Semantics. Some ADT languages, as CLU, also have this prop-
erty, although it brings some problems for data abstraction. The advantages
of this kind of semantics are the separation between the lifetime of variables
and objects, and good support for a Database style of programming. From
the implementational point of view, it simplifies memory allocation for vari-
ables, as the actual objects can have variable size due to inheritance and
polymorphism. On the negative side, we have minor problems with effi-
ciency, as all objects must be dynamically allocated. But the real problems
are with data abstraction and modularity. :

For instance, suppose an ADT Stack implemented by an Array. Inter-
nally, the Stack has a protected variable pointing to the array, but the array

itself “lives” outside the stack. If any other object gains access to the ar-
ray, the abstraction is broken. This problem is worsened by what we call
Capture. In procedural languages, when a procedure is called with some
arguments, these arguments can be used by the procedure in many ways,
but usually when the procedure returns the sharing vanishes. In OOL, there
is no way to distinguish between parameters sent to the method or to the
receiver object. So, any parameter of a method call can be stored (captured)
inside the receiver object for later use. In our example, if the Stack calls a
procedure passing the array as a parameter, the array can be captured and '
later accessed.

3 The O=M Programming Language

This section provides a general overview of the programminglanguage O0=M.
The languages with major influence over O=M have been Modula-2 [19],
CLU [13] and Eiffel [15]. From Modula-2 we have borrowed the lexis, the
syntactic style and most of the module concepts, like nesting, visibility rules
and a clear separation between specifications and implementations. From
CLU we have incorporated most of the semantics, like creation of objects,
parameter passing and assignment. Eiffel has given the object-oriented fla-
vor, with multiple inheritance, late-binding, renaming and redefinitions.

A program in O=M is syntactically similar to one in Modula-2. It is
composed by many syntactic modules, some with specifications and others
with implementations for these specifications. On the other hand, the se-
mantic behavior is close to Eiffel and CLU. In the same way as in CLU, every
value is an object. Objects are the basic and unique active entities in the
language, which can be stored in variables, passed as parameters and so on.
The variables always store references. There are explicit commands (called
constructors) to create new objects, while the deletions are automatically
done by a garbage collector. ' ’

The main distinguishing mark of O=M is a complete identification be-
tween modules (in the sense of Modula-2) and objects (in the sense of Eiffel).
These entities (called objects from now on), like modules, are described by a
specification part and a separate implementation part, can export new types
(which in O=M are the same as specifications), and can be nested. At the
same time, like conventional objects, these entities can be dynamically cre-
ated, passed as parameters, and stored in variables. Specifically, as objects
can export types and be dynamically manipulated, the language has a high

degree of polymorphism, as we will discuss in the next section.

3.1 Specifications

Objects are described in the language by their types and classes, or spec-
ifications and implementations. A class is a kind of static generic recipe
used to create new objects with a desired behavior. A type, on the other
hand, is an external description of this behavior. This description declares
all the features that objects of this type must have. These features include
functions, procedures and (nested) specifications.

A specification can be declared as a heir from other previously declared
specifications. This statement makes all features declared (or inherited) by
the parents to be available in the specification, and stands the new type
as a subtype of its ancestors. It is important to note that, unlike some
other languages (e.g. Quest [4] and Emerald [2]), a type is a subtype of
another one only if it is so declared. As what we call a specification is
only a syntactic specification, the language can not constrain compatible
specifications to have compatible implementations, and so the programmer
must assume the responsibility for every subtype relationship. For the same
reason, name collisions between inherited features are also usually considered
errors, even when the definitions are compatible, in order to avoid undesired
coincidences. Only in the event of repeated inheritance, when the same type
is inherited more than once through different paths, the features inherited
repetitively are unified.

When a type inherits from another one, it can rename and redefine the
inherited features. The rename mechanism is a way to change the name of an
inherited feature, with the old name loosing its meaning. Its most common
use is to avoid clashes between features with the same name inherited from
different parents; it can also be used to give to the feature a name more
appropriate to the new environment. A redefine declaration list means that
the specification will present new definitions for the listed features. It also
allows controlled unifications: if twe or more homonym features, inherited
from different ancestors, are redefined, only one new definition is needed.
Obviously, this new definition must be compatible with all the old ones.
The next example shows the use of these facilities.

Example 1:

Specification 4;

Pfdcedure Print; ‘
Function Replicate ():4;
End 4.

Speciﬁcatioh B;
Procedure Print;
Function Copy ():B;

End B.

Specification AB;
Subtype of A
rename Print as PrintA, Replicate as Copy;
redefine Copy;
Subtype of B
redefine Copy;
Function Copy ():4B;
End AB.

Here, the functions Replicate (renamed as Copy), from 4, and Copy,
from B, are unified in a new definition (called Copy) inside AB. The new
definition matches the old ones, as it returns an AB object, which is a subtype
of both A and B.*

Objects, like modules, can export types. This gives the programmer an
option to program in a way more close to ADT languages, as shown in the

next example.

Example 2: This example shows a possible specification for integer
numbers, in an ADT fashion. ’

Specification IntegerSpec;
Specification Integer; -- exported type
End Integer; ‘
Function Add (a,b:Integer):Integer;
Function Sub (a,b:Integer):Integer;

End IntegerSpec.

¢ As usual (and correct) in type systems with subtyping, a function type A — B can
redefine (i.e., is a subtype of) a function type C — D iff C is a subtype of A,and Bis a
subtype of D.) .

This module exports a type and functions to manipulate objects of this type.
As the type and the functions are inside the same module, the functions
can see details of objects of type Integer that are not visible outside an
IntegerSpec object.

_ Please note that the language also allows to build this specification in a
more object-oriented way, putting the operations inside the integer objects.
In fact, with some duplication we can have both (OO0 and ADT) styles, as
in the next fragment.

Specification IntegerSpec;
Specification Integer;

Function Add (a:Integer):Integer;
Function Sub (a:Integer):Integer;

End Integer;
Function Add (a,b:Integer):Integer;
Function Sub (a,b:Integer):Integer; .

End IntegerSpec.

Having an implementation Int for IntegerSpec, together with variables a
and b of type Int.Integer, we can perform the addition either as

Int.Add(a,b)
or as
a.Add(b)

In those cases, the two Add operations do not have to have the same meaning.

It is important to note that the type is exported by the object, and
not by the specification.” A program can have many objects of the type
IntegerSpec, maybe tied to different implementations, and each of these
objects defines a different Integer type. A conversion function between
these types could be declared, inside the IntegerSpec type, as follows:

Function Convert (I:IntegerSpec ; i:I.Integer):Integer;

10

This function receives as arguments an integer implementation and a value
in this implementation, and returns a value with the receiver implementa-
tion. O=M uses the dot notation to access exported features, so I.Integer
denotes the type Integer exported by the object bound to the parameter

I.
Specifications can have parameters, as illustrated in the next example.

Example 3:

Specification RationalSpec (I:IntegerSpec);
Specification Rational;
Function Round:I.Integer;
End Rational;
Function 4dd (r,q:Rational):Ratioénal;
Function Create (num,den:I.Integer):Rational;

End RationalSpec.

This specification allows us to indicate which integer implementation to
use to interface with rational numbers. Parameterized specifications also
give the possibility of creating generic types This facility will be explained -
in the next section.

3.2 The Concept of Type in O=M

The concept of type commonly used in programming languages is something
like “Types are sets of data values” [10], or a type is a function abstraction,
or a collection of functions, which gives a meaning to a, otherwise untyped,
value [6]. Under these assumptions, to type check a program is to verify that
no operation is applied to an invalid value (i.e, from a wrong type), or that
one never uses the wrong abstraction function over a value. In both cases,
the result is the assurance that the semantics of a correctly typed f)roo'ram
is independent of representation , i.e., its semantics does not depend on the
representation chosen for each data type

.These concepts are not very useful in object-oriented languages. As the
operations are semantically attached to the objects (via late binding), there
is no way to apply an operation over an object of the wrong type®. With

®In run-time checked languages, like Smalltalk, one can send an invalid message to an
object. But this is caught by the language, that generates a message not understood error.
So, the program stops before the wrong operation is performed. :

11

these meanings, all object-oriented languages are strongly (not necessarily
statically!) typed. Another complicating factor is subtyping, which would
imply that the set of values of different types were not necessarily disjoint, or
that a given value could have multiple abstraction functions. Nevertheless,
few object-oriented programming languages give a precise meaning for type.
In the OOL jargon, what is considered a (statically) typed language is one
that the compiler can assure the absence of message not understood errors.
We think we could get more from types.

A direct consequence of the identity Object=Module in O0=M is the
identification between the concepts of type and specification. So, any object
of a given type satisfies the associated specification. With this interpreta-
tion, type declarations are seen as (partial) program specifications, and type
checking as (partial) verification. Subtyping presents no problem: a subtype
is just a stronger specification. So, any object of a given type is also of any
supertype of it. Again, we note that only the specification hierarchy needs
this kind of behavior compatibility; the implementation hierarchy has a freer
structure. :

O=M has been developed in order to support a formal development
method ([9]), which is an extension of the VDM based method proposed by
Jones in [11]. The type rules of the language have been all derived from ver-
ification rules, and not from random examples or other ad hoc motivations.
Besides the formal ground, there has been an extra rule: everything that can
not be verified by the compiler must be explicitly stated by the programmer.
This explains why the subtype relationship must be declared (the compiler
does not know the complete semantics of each type), and name clashes be-
tween inherited features are treated as errors unless otherwise stated (via
redefinitions).

3.3 Implementations

For each specification, there can be zero or more implementations. These
implementations are referred to in commands for creation of new objects,
so one can choose dynamically which implementation to use for each object.
Implementations define the internal structure of objects and, like Modula-
s implementation modules, are composed of a set of declarations. These
declarations include variables (called instance variables in the OO jargon),
constants, functions, procedures, specifications, (nested) implementations,
and constructors. ‘

When we declare a variable, we state only its type; the variable can

12

handle any implementation of this type. Only when we create a new object
must we give an implementation. In order to create an object, we apply
a constructor over an implementation. A constructor is a kind of function
that creates and initializes objects of the class, returning the new object.
The semantics of these constructors is quite similar to the Create procedure
in Eiffel, but instead of having a fixed (and only one) name we may use any
(and as many as desired) identifiers for this purpose, just declaring them with
the Constructor reserved word. It is important to note that a constructor,
is not an object feature, but a kind of implementation feature. Different
implementations of the same type can have different constructors.

As a specification can have no implementations, the language does not -
need a mechanism like Simula’s virtual (or Eiffel’s deferred) features. A
virtual class in O=M is just a specification with no implementations. More-

_over, an implementation may have no constructors, so we can build partial
implementations, only to be inherited; the absence of constructors assures
that they can have no instances.

An implementation can be declared as a heir of other previously writ-
ten implementations, in order to reuse their declarations. The hierarchy
created this way has no relationship with the specification hierarchy. As
we have already said, the main purpose of the specification hierarchy is to
reuse specifications and to create subtype compatibility from a behavioral
perspective, while the main purpose of the implementation hierarchy is to
reuse code and data structures. The only compromise between them is that
each final implementation must have at least all features of its specification.

When an implementation inherits declarations from others, it can also
rename these declarations. There is no need for a redefine facility, as a
subimplementation has no compatibility compromise with its ancestors. In-
stead, an implementation has the freedom to list which declarations it wants
from each parent. Usually, the binding between names inside the same ob-
ject is done at compile time. When a feature is inherited, it keeps all its
bindings, despite renames. Any attribute linked to the inherited one is also
inherited, nameless if needed, in order to maintain consistency. If the pro-
grammer wants late-binding, s/he may use the Self constant, which has the
usual meaning. In other words, if there is a direct reference to a name, we.
get early-binding, while if there is an access to an attribute of Self, we get
late-binding. It is worth to note that only exported names can be referred
by Self, as its type is given by the specification. As an implementation does
not need to have the same internal features of its parents, this rule avoids
invalid references.

13

An implementation can declare nested implementations. These internal
implementations are used to reify exported types and to describe classes
with restricted use. Like in Modula-2, nested classes can access internal
features of their external object, and can export features visible only inside
this external object. The following example shows these facilities.

Example 4: This example is an implementation (Rat) for the spec-
ification RationalSpec shown in example 3. :

Import RationalSpec , IntegerSpec;
Implementation Rat:RationalSpec (I:IntegerSpec);

Specification Rational;
Function Round:I.Integer;
Function num:I.Integer;
Function den:I.Integer;

End Rational;

Implementation R:Rational;
Var n,d:I.Integer;
Function num:I.Integer;
Begin Result := n End;
Function den:I.Integer;
Begin Result := d End;
Function Round:I.Integer;
Begin ... End;
Constructor new (num,den:I. Integer);
Begin n := num ; d := den End;
" End R;.

Implementation RInt:Rational;
Subimplementation of R with num , n as value;
Function den:I.Integer;

Begin Result := 1 End;
Function Round:I.Integer;
Begin Result := value End;
Constructor new (num:I.Integer);
Begin value := num End;
End RInt;

14

Function lem (i,j:I.Integer):I.Integer;
Begin ... End;

Function Add (r,q:Rational):Rational;
Declare d := lcm(r.den,q.den);
n := r.num*(d/r.den)+q.num*(d/q.den);
Begin Result := Create(n,d) End;

Function Create (num,den:I.Integer):Rational;
Begin
If den = 1 then Result := RInt.new(num)
else Result := R.new(num,den)
End;

End Rat.

This example illustrates many points. The functions num and den, ex-
ported by the type Rational, are not visible outside the implementation
Rat, because the type Rational in the specification does not export those
features (example 3). As any other specification, internal ones also can have
multiple implementations; in the example, we have two different implemen-
tations for the type Rational, an usual one (R) and another to deal with the
special case of integers (RInt). Implementations of parameterized specifica-
tions must have the same parameters; these parameters act like constants
inside the implementation. That implementation uses the integer implemen-
tation, given as parameter, not only in its interface but also in its internal
structure (see the declaration of the variables n and d). The visibility rules
allows the implementations R and RInt to access the parameter I.

4 Inheritance x Nesting

Although sometimes they are considered redundant or antagonistic (p.e.
[16], p. 323), the mechanisms of inheritance and nesting can be well inte-
grated, and their union gives rise to some powerful facilities of O=M. In
this section we will see how specification inheritance and nesting are used to
achieve parametric polymorphism, and how implementation inheritance and
nesting allow the definition of private classes without sacrificing reusability.

15

4.1 Parametric Polymorphism

Polymorphism in a programming language is the facility of an entity (object,
function, etc) to have multiple types. An always present form of polymor-
phism in OOL is subtyping: an object of a given type T also belongs to
every supertype of T. Another form of polymorphism, presented in non
OOL such as Ada and CLU, enables one to define generic entities with
actual types depending on parameters; this form is called parametric poly-
morphism. (Cardelli & Wegner [5] call these two forms as Vertical and
Horizontal polymorphism).

The first thing to note is the difference between both kinds of polymor-
phism. For some situations they are equivalent, as shown in the following
routine declarations:

Function Area (x:Figure):Integer;
Function Area (%:Figure Type ; x:t):Integer;

In the former declaration, x can be of any subtype of Figure; in the latter,
t can be any subtype of Figure, and x has this type. But this equivalence is
not valid when the routine has a collection of parameters of the polymorphic
type, as below: '

Function F (x:array of T):Boolean;
Function F (t:T_Type ; x:array of t):Boolean;

Now, the former means that each array element can be of any subtype
of T, so x[1] can be of one subtype and x[2] of another one, while in
the latter all elements must have the same given subtype (t). No form is
better than the other, as each one has its applications. For instance, if we
have a function Max over the type Magnitude, with subtypes Integer and
Char, the former would admit (erroneous) comparisons between integers and
characters. On the other hand, if the function is Empty.-Intersection, over
the type Collection, there is no reason to avoid comparisons between sets
and bags (or other kinds of collections).
~ The same difference happens with generic data types. So, a declara-’
tion like Stack(Magnitude) means a stack where each element can have a
different subtype of Magnitude, while something like Stack(t :Magnitude)
means that all elements have the same subtype.

Usually, parametric polymorphism presents some semantic difficulties
in programming languages, due to the need to assign a formal meaning to

16

type values (for instance, the t parameter of the examples above), and the
difficulties for static type checking. Some languages, like Ada [1] and CLU
[13], avoid these problems dealing with parametric polymorphism as a static
facility, constraining actual type parameters to be manifest constants (type
names) and forbidding any kind of computation with these values other than

parameter passing. In this context, parametric polymorphism is equivalent
to a macro facility, and has no effect in the dynamic semantics of a language.

Other languages offer more elaborate solutions. In Russel [6], for in-
stance, a data type is identified with the set of operations which gives
meaning to values of this type. As operations (functions and procedures)
are values (as in many other languages), so are data types. To achieve static
type checking, the language has some constraints in order to have the substi-
tution property®; this way, the compiler decides type equality via equality of
the expression texts describing the types. Another solution is presented by
Quest [4], which uses a two level type system: usual values, such as integers,
stacks, and functions over these values have types with level 1, while the
types (or kinds) of level 1 values such as Integer and Stack—Integer, be-
long to level 2. Static type checking is achieved avoiding loops and recursion
in functions over level 1 values, so the compiler can perform all computations
on this level.

In O=M, parametric polymorphism is a consequence of the mechanisms
for specification nesting and inheritance. This solution has some similarities
with the one in Russel. An object is a dynamic entity composed by a set of
operations and a set of values. Some (or all) of these operations can be used
to characterize a type exported by the object. So in O=M, “type” values
and. common values are unified under the Object concept.” An example is
in order now, to show how to use this facility.

Example 5: This example shows a specification for types with an
order relation. The specification Any is used to give more structure to the
hierarchy.

Specification Any;
Specification T;

-~ End T;

End Any.

¢ Which means that function calls with identical arguments return identical results.
"This characterization is used in the denotational description of the language.

17

Specification MagnitudeSpec;
Subtype of Any rename T as Magnitude;
Function LessThan (a,b:Magnitude):Boolean;
Function GreaterThan (a,b:Magnitude):Boolean;

End MagnitudeSpec.

Objects of type MagnitudeSpec are implementations of magnitude types.
Objects of type M.Magnitude, for some M of type MagnitudeSpec, are mag-
nitude values from the implementation M; for each different M we have a
different type. Now we can use MagnitudeSpec as a “type” parameter to
declare the following polymorphic function:

Function Max (M:MagnitudeSpec ;
a,b:M .Magnitude) :M.Magnitude;
Begin
1f M.LessThan(a,b) then Result := a
else Result := b ’ '
End;

Now, if we declare the two types below, the function Max can be used with
both.

Specification IntegerSpec;
Subtype of MagnitudeSpec
rename Magnitude as Integer;
Function Add (a,b:Integer):Integer;

End IntegerSpec.

Specification CharSpec;
' Subtype of Magnitude
rename Magnitude as Char;
Function IsDigit (a:Char):Boolean;

End CharSpec.

It is worth noting that there is no inheritance relationship between the types
Magnitude, Integer and Char; after all, they are exported by different
objects. The relationship only holds for the types CharSpec, IntegerSpec

18

" and MagnitudeSpec. From a Russel perspective, the Spec objects can be
identified with type values. :

The same technique can be used for specifications. Again, we use an
example to illustrate the point.

Example 6: Here we declare a generic sorted collection, that is,
a collection with an order relationship among its elements. The function
LeastElement returns the smallest element inside the collection.

Specification SortedCollection (m:MagnitudeSpec);
Procedure Insert (e:in m.Magnitude);
Function LeastElement:m.Magnitude;

End SortedCollection.

Some remarks are in order here: the type of the parameter m imposes
the restriction that elements in a SortedCollection must have an order, or
from an implementational point of view, m has to have a function LessThan
to compare these elements, since all subtypes of MagnitudeSpec must have
such a function. This facility is equivalent to the Where clause in CLU or
With in Ada. Another remark is that the real parameter for this specifica-
tion is an object, not another specification. So, it is meaningless to declare
something like

X:SortedCollection (CharSpec); -- Wrong!

but, given an object C of type CharSpec, which is a concrete implemeﬁtation
for characters, we can declare

X:SortedCollection (C);

In order to make the type system checkable, we rely on constants. To
know if types exported by objects are equal, one must know if the exporters
and parameters are the same. O=M only recognizes the equality if these
objects are denoted by the same constant (through parameter passing). This
frees the language from the need of the substitution property. So, if one
needs to declare objects with a type (actually the object which exports the
type) that is given by a function, one has to assign the function result to a
new constant. As function and procedure In parameters are constants, they
can be used directly to declare types.

19

. 4.2 Nesting x Public Implementations

A common critique against nesting is that nesting is prejudicial for code
reuse. This is due to two factors. First, the visibility rules do not allow a
nested feature to be used from the outside world. Second, a nested routine
usually access details of its environment, and this tends to make the feature
too specific to be useful elsewhere. On the other hand, nesting is a practical
mechanism to avoid the proliferation of classes at the global (and unique,
without nesting) level, and to control visibility.

In this situation, inheritance offers an interesting solution which allows
the use of nesting without its drawbacks. With the implementation inheri-
tance mechanism, a programmier is able to declare a generic feature on the
global level, while at the local level s/he fits a subimplementation of it for
the specific need. If later the nested feature shows itself useful in other
places, the programmer can declare it as a new global class; in order not to
change the structure of its old scope, the programmer can keep the nested
class, which now only needs to import the global one.

Before finishing this section it is important to note some restrictions
when mixing inheritance and nesting. According to the visibility rules, a
nested class can access features of its external object (i.e., the one which
surrounds it). If such class is inherited by another one not surrounded by
the same external object, the subclass wold be able to access features outside
its visibility limits. In order to keep consistency, O=M poses the restriction
that a superclass must either have the same external object of its subclass
(i.e., be defined inside the same scope) or be a global class. The second
possibility is due to the fact that global classes can not access any external
feature. : _

For similar reasons, this restriction also applies to nested specifications.
So, a supertype must either have the same external object of its subtype or
be a global type.

5 Visibility Control

Before the discussion about visibility control, we would like to talk a little
more about the concept of capture, which is a concept introduced by Algol,
via the block mechanism. Capture is the act of a routine to assign an
input parameter value to a non-local variable, so that this value can still
be accessed after the return of the routine. This facility creates a parting
between the scope (and life time) of a variable and the scope of its contents.

20

Capture is also present in OOPL, via the nesting of methods inside objects:

OOPL do not possess most of the semantic problems caused by capture.
in Algol-like languages, as that separation of scopes is already present in
object orientation. On the other hand, OOPL have more pragmatic prob-
lems. Although capture has been introduced by Algol-like languages, the
programming style usually adopted in these languages does not stimulate its
use, and in fact many languages impose restrictions on it (p.e. Euclid [12]
and Algol-68 [18]). Quite to the opposite, in OOPL capture is a must. The
only way to link two objects is sending one as a parameter for a method of
the other. The problem is that any object used as a parameter for a method
can be captured by the receiving object, making a permanent link between
them. There is no way to restrict statically the links between objects: all
objects are global.

In order to increase the granularity of control over links between objects
in 0=M, we make use of the External Object concept. As already stated,
the external object (EQ) of a given object is the one that exports its type;
from an implementation point of view, the EO is the surrounding module
of a given object. External Objects make a partition on the object space.
Each object defines a new universe where all its internal objects live, in a
way similar to Euclid’s collections. Objects of classes declared at the most
external level of a declaration have no EQ, but we assume a pseudo-object
named Global which surrounds them.

Besides that partition, EOQ presents another fa.c1hty that is used to re-
strict capture. In order to capture an object we must assignit toa variable of
the right type, that is, a supertype of its own type. As we have already seen,
a supertype of a given type must either have the same external object or be
Global. To limit capture, O=M poses the restriction that variables can not
have Global types. The consequence of these rules is that in order to capture
a given object we have to have already captured its EO; otherwise there is
no way to declare a captor variable with the proper type. (It is important
to note that constants and Input parameters can have Global types.) The
above facility allows the differentiation between parameters sent to methods
and to objects. Parameters sent to methods can have global types, so the
receive object has no way to capture it. An example will help to clarify
these ideas. ’

Example 7: Suppose we have the followmg definitions:

Specification 4;
End A.

21

Specification B;
Specification B1;
Subtype of 4;
End B1; :
Specification B2;
Subtype of B1;
End B2;
End B.

Specification C;

Procedure P1 (x:in 4);

Procedure P2 (x:in B ; xx:in x.B1);
End C.

In this example, it is legal to call P1 with any object of type b.B1, as Bl
is a subtype of ‘A (for any b of type B). But, as A is a global type, it is
impossible to declare any variable with this type, and capture is impossible.
When this routine returns, we are sure the parameter is not being shared.
Procedure P2, when called, can declare variables that are type compatible
with its second parameter (xx), using the type exported by the first one
(x.B1). Anyway, capture is still impossible, as the scope of these variables
is limited by the scope of the parameter x.

So far we have found a way to avoid capture. But many times one needs
to do it, i.e., one needs to send a parameter to an object, and not only to
the method. A trivial example is a Push operation on a Stack, where the
pushed object remains on the stack after the end of the routine. As already
stated, in order to capture a parameter an object has to have (permanent)
access to its EQ. This permanent access is achieved via the parameters of
specification. When we use parameterization, both the specification and the
implementations include the parameters. The specification can use them as
external objects of types it uses, while the implementations can use them
to declare variables with these types, thus allowing capture. This facility
integrates smoothly with parametric types, as shown in the next example.

Example 8: This is the classical example of a parametric stack.

Import Any; -- from example 5
Specification Stack (a:Any);

22

Procedure Push (e:in a.T);
Procedure Pop (e:out a.T);

Function Empty ():Boolean;
End Stack.

Implementation LinkedStack:Stack (a:Any);
Var head:Node;
Specification Node;
Function value:a.T;
Function next:Node;
End Node;
Implementation N:Node;
Var v:a.T;
Var n:Node;
Function value:a.T;
Begin value := v End;
Function next:Node; -
Begin next := n End;
- Constructor new (value:a.T ; next:Node);
Begin v := value ; n := next End;
End X;
Procedure Push (e:in a.T);
Begin head := N.new(e,head) End;
Procedure Pop (e:out a.T);
‘Begin e := head.value() ; head := head.next() End;
Constructor new;
Begin head := Nil End;
End LinkedStack;

Now, if we have an implementation for integer numbers called Int (with type
IntegerSpec, which is a subtype of Any), we can declare an integer Stack
as: : ‘

Var IntStack:Stack(Int);
a.nd create it as follows:
IntStack := LinkedStack(Int).new;
As Int is an implementation parameter, this stack object has permanent

access to it. Using Int as external object, the stack is able to declare

23

variables with type Int.Integer, and then capture parameters with this
type. ’

A distinctive feature of this mechanism is that all dependencies between
objects are documented in the type declarations. In the example above, the
declaration IntStack:Stack(Int) states clearly that object IntStack has
permanent access to object Int. Another characteristic is that any object of
a type that is not exported (like Node, in the example above) can never be

- captured, and so the only references to it are inside the EO. This fact does
not preclude this objects to be used as parameters for outside methods, as
their types can be heirs of global types.

The mechanism presented above implements what we call dynamic visi-
bility control, as its purpose is to restrict access to dynamic entities (objects).
O=M also presents mechanisms for static visibility control, i.e. to restrict
access to static entities (identified by names). These facilities are similar to
those presented by Modula-2, and we will give only a brief description of

‘them. :

An implementation can declare attributes not defined in the specifica-
tion. These attributes are private, and can be accessed only inside the
implementation.. A nested object reifying an exported type can export more
features than stated on the exported type; these features are visible only
inside its external object. The example 4 (Rational numbers) has used this
facility. Nested objects can access features of their surrounding objects;
constants and specifications are automatically visible inside nested objects,
while functions and procedures must be explicitly imported. As implemen-
tations can not be exported, the EO of an object is always visible at the
place of its creation, and could be passed as an implementation parameter.
So, the fact that objects can have direct access to external features can be
viewed as a kind of syntactic sugar.

The last point to note is that all these facilities are not ad hoc. On the
contrary, they are in conformity with the notion that an internal object is
a constituent of its external object, and so an object state depends on the
state of all its internal objects. This notion, only outlined here, is formalized

in [9], which presents the design principles behind O=M.

-

6 Conclusions

We have presented a new programming language, called O=M, which in-
tends to achieve a better compatibility between Object Oriented Program-

24

ming Languages and Abstract Data Types. The design of the language has
been supported by a formal object oriented development method, which
introduces the concepts of inheritance and nesting in a VDM framework.

The main novelty presented by O=M is the complete unification between
objects and modules. Among the outcomes of this unification, we underline
the following features:

¢ Independent specifications and implementations, favoring data ab-
straction and multiple implementations for a type. : ’

o Independent specification and implementation hierarchies. The speci-
fication hierarchy enforces signature (behavior) compatibility between
subtypes, in order to favor formal reasoning about programs, while the
implementation hierarchy allows complete freedom for code reuse.

e Parametric polymorphism (and generic types); as dynamic objects can
export types, the language is able to manipulate types during run-time.
Despite this feature, O=M is statically (and strongly) typed.

e Nesting of implementations, which allows a better control of name vis-
ibility. Together with inheritance, this mechanism does not prejudice
reusability. '

¢ Dynamic visibility control. O=M gives ways to part the object space
of a program. All links between different spaces are documented in
the type declarations.

As the main purpose of O=M has been to show new language concepts,
it still has not an implemented compiler. Instead of it, the language has a
formal description by means of denotational semantics®. This description
includes all type checking, and has been built in a way such that it simulates
static checking: a program only has a valid denotation (different from Error)
if it is free of static errors, like type errors, declaration errors, etc.

References

[1) ANSI Ada Programming Language, ANSI/MIL-STD 1815A - 1983.

[2] A. Black et alii. Distribution and Abstract Types in Emerald, IFEF
Transactions on Software Engineering SE-13(1), 1987.

8 This semantics is presented in [8].

25

[3] P. Canning et alii. Interfaces for Strongly-Typed Object- -Oriented Pro-
gramming, Sigplan Notices 24(10), 1989, pp. 457-67. (OOPSLA’89
Proccedings)

[4] L. Cardelli. Typeful Programming, notes of IFIP Advanced Seminar on
Formal Description of Programming Concepts, Petropolis-Brazil, 1989.

[6] L. Cardelli & P. Wegner. On Understanding Types, Data Abstraction
and Polymorphism, ACM Computing Surveys 17(4), 1985.

[6] J. Donahue & A. Demers. Data Types are Values, ACM Transactions
‘on Programming Languages and Systems 7(3), 1985.

[7] A. Goldberg & D. Robson. Smalltalk-80: The Language and its Imple-
mentation, Addison-Wesley, 1983.

[8] R. Ierusalimschy. O=M: Uma Linguagem Orientada a Objetos para De-
senvolvimento Rigoroso de Programas, PhD the51s, Dep. Informatica,

PUC-Rio, 1990.

[9] R. Ierusalimschy. A Method for Object-Oriented Specifications with
VDM, Monografias em Ciéncia da Computagio 2/91, Dep. Informatica,
PUC-Rio, 1991.

[10] K. Jensen & N. Wirth. PASCAL - User Manual and Report, Springer-
Verlag, 1976.

[11] C. B. Jones. Systematic Software Development Using VDM, Prentice-
Hall International, 1986. (Series in Computer Science)

[12] B. Lampson et alii. Report on the Programming Language Euclid, Sig-
plan Notices 12(2), 1977.

[13] B. Liskov et alii. CLU Reference Manual, Springer-Verlag, 1981. (LNCS
114)

[14] C. Lunau. Separation of Hierarchies in Duo-Talk, Journal of Object-
- Oriented Programming 2(2), 1989, pp. 20-26.

[15] B. Meyer. Eiffel - A Language and Environment for Software Engineer-
ing, The Journal of Systems and Software 8(3), 1988, pp. 199-246.

[16] B. Meyer. Object-Oriented Software Construction, Prentice-Hall Inter-
national, 1988. (Series in Computer Science)

26

[17] P. Wegner & S. Zdonik. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn’t Like, ECOOP’88 Proceedings,
Springer-Verlag, 1988, pp. 55-77. (LNCS 322)

[18] van Wijngaarden et alii. Report on the Algorithmic Language Algol-68,
Mathematisch Centrum, Amsterdan, 1969. ‘

[19] N. Wirth. Programming in Modula-2, Springer-Verlag, Berlim, 1985.
(third edition)

27

