Série: Monografias em Ci&ncia da Computacido,
No. 4/81

A MULTILEVEL CONJUGATE GRADI!ENT METHOD

Maurfcio Kischinhevsky

Departamunto de Informédtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP-22453
RIQ DE JANEIRO - BRASIL



PUC RI10 -~ DEPARTAMENTO DE INFORMATICA

Sérle: Monograf!as em Ciéncla da Computagdo, Nd. 4/91 ‘
Editor: Carltos J. P. Lucena ‘ Abril, 13881

A MULTILEVEL CONJUGATE GRADI!ENT METHOD x

‘Maurfcio Kischinhevsky

X Trabalho patrncinado pela Secretar»a de Ciéncia e Tecnologla,
da Presidéncia da Rupdblica.



In charge of publications:

Rosane Teles Ling Castilho

fessessoria de Biblioteca, Documenta¢lo e Informa
PUC Rio - Departamento de Informdtica

Rua Marqufs de 530 Vicente, 225 - Gdvea

22453 ~ Rio de Janeiro, R.J

Brasil

Tel .2 (021)529~-92384 .
E-mailirosancdinf.puc-riao.bhy

GAao

Telexi31078 Faxs (0215



4/94,

Abstract:

This text  discusses attempts to put together convenient
properties of  Cohjugate Gradient and Multigrid Methods for the
numer ical solut ion of liner systems arising  from the
discret ization of certain partial differential  equations. Some

trials which one finds in the literature are reviwed, and a new
praposal ie made that intends to form a competitive  alternative
to the conventional solvers. :
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Multilevel conjugate gradient, multigrid method, conjugate

gradient method, numerical solution of partial differential
equations.

Resumos:
Neste texto discuten-se tentativas de utilizagido de

caracter fsticas de nétodos de gradiente conjugados e de redes
mfltiplas, dando origem =a novos métodos para a solugio de
sistemas de equagdes lineares provenientes da  discretizacio de
certas equagles diferenciais parciais. Tentat ivas presentes na
lTiteratura sfo descritas e uma alternativa € proposta com o
intuito de gerar um wétodo competitivo com o0s resolutores
CONVENCIONAIS ' ‘
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1 Introduction

“The interest in’ efficiently solving large scale sparse systems has led to many strategies, from iterative
methods such as Gauss-Jacobi, Gauss-Seidel, SOR, Steepest Descent, Multigrid and Conjugate Gra-
dient to direct ones like Gaussian Elimination, Crout-Banachiewicz LU decomposition or Conjugate
Gradient (see,e.g.,{17][1][16][3][11]).

The main problem is to solve

Hz=b, =zbeR¥ , HeRVV (1)

in a convenient way for the specific application.

Conjugate Gradient (CG) methods are usually considered iterative because successive estimates
of the solution vector are generated, with non-decreasing number of significant digits(see convergence
aspects below) at cach step. Iowever, CG methods can be considered direct in the sense that it
spans the whole vector space RY in at most N steps, where N is the number of distinct eigenvalues
of the system’s matrix. The way it is known to be an cfficient tool is as an iterative method for large
sparse sets of lincar equations, rather than as a direct method for full systems.

Multigrid (MG) methods form iterative procedures which are becoming very popular and exhibit
asvmptotic convergence rates very convenient for large systems, although with a significant cost per
iteration. _

"Some of the conventional methods can be combined in order to provide fast solving of the lincar
system. The main tools in choosing which one to use in cach situation are operations count and
convergence properties of the iteration matrices ({10][15][13]). As a consequence one uses smoothers
as SOR together with standard Multigrid methods([15]), combined CG-MG methods({4][19][8]), and
preconditioning of various types(e.g. LU, SOR, Diagonal) in Preconditioned CG methods.

In the following sections one starts by overviewing some Conjugate Gradient and Multigrid con-
cepts that arc usclul for the specification of Multilevel Conjugate Gradient methods, and procceds
describing the first attempts to put together such ideas. In the continuation a proposal of a Multi-
Level Conjugate Gradient method is described and some properties are discussed. Some preliminary
perspectives of such method come next, together with the concluding remarks.



2 A Brief Review on CG and‘,MG’ concepts.

2.1 Some aspects on CG

The Conjugate Gradient Method[l?] was proposed as a means to solve a mlnumzatlon problem for
quadratic functionals of the form !

flz) = ; eTHe — b7z + ¢, (2)
where H is positive or negative definite.

In the usual notation the gradient and the Hessian of f(x) are casily found to be g(z) = Hz - b
and I(z) = H, respectively. Thus, such quadratic functionals have constant Hessian. Morcover, it
i important to notice- that they provide the simplest examples of functionals thal possess a strong
local minimizer (that is, a & such that f(2) < f(z), Yz € RV ) or maximizer.

A point & is a stationary point of f i the gradient vanishes al &, that is, il H& ~b= 0, If I is
non-singular, £ is uniquely determined by & = ="' and f(x) may be rewritten as

L T sy s |
J(z) = —2-(1‘ - :L')FH(:I: - &)+ ¢, (3)
where ¢ = —1b672 + c.
If{ Aiy v },_l are the eigensolutions of I, and H is symmetric, the cng,cnvalucs are real and can be
ordered as A; < A; < ... < Ay and the cigenvectors supposed to satisly vv; = §;5,1,5 = 1,2, ... W V.

Define A = diag(/\l,)\g, ., An) and V' = (vy,vs,,...,vn). V is an orthogonal matrix, i.e.;
V-1'=VT and HV = AV . _
With the aid of the variable z = VT(z — ) it is obtained

f) = J(Vat2) = g VIRV o= L The ks (@)
or |

Nl ze RN (5)

o Sinee f(z) = f(r) under the 11'amlln|n.|1ion v V- 7) L one can focns on [0 iy positive
definite then all of its eigenvalues are positive and tll(‘ range of [ is [4, o0). Clearly z = U 18 the strong

" IFor clarit I bol of ! fi ible
y one may gmmit the symbol of transposition where no confusion is possi



global minimizer. In the case H is positive definite, for k > ¢ the level surface Ly is the ellipsoid

N -
by /\gz? =k, (6)

=1

where k = 2(k — ¢) > 0 as sketched in figure 1.

The distortion measure will be given by K(H) = f\;\f:’-, the spectral condition number of H(A;
and Ay are the smallest and largest cigenvalues of I, respectively). Numerical methods for the
minimization of a functional will behave badly if the level surfaces are highly distorted from spherical
form, and as is shown in what follows, the spectral condition number plays a critical role.

Of course this analysis will also be valid for arbitrary functionals, provided that a convenient
Taylor expansion i performed near o stationary point.

Now the Conjugate Gradient Method is described, showing that it produces the minimizer of f
in at most N iterations. In the next section some aspects of convergence are described, and bounds
on the number of iterations necessary to provide an atenuation of a constant factor in the error are

derived. ‘

In order to obtain a solution with the required accuracy, iterations of the type ( d* is called the
search direction ) '

oFt = of 4 e dt k=],2.... (7)
which is equivalent to ( multiply equation (7) by H and subtract b )
=gl d L | (8)
Thus, ' : _
dFgH = db gk 4 ndkidt =0, (9)
if ik
' g
__dd ]
T (10)

The choice made above is important since it causes the minimization of f(z*+7d*), 00 < 7 < o0.
Morcover, it makes the gradient at z¥*1 orthogonal to the scarch direction d* ( as sketched in figure

2)

What is done at this moment is to generate successive scarch directions via iterations of the form

dk+1 — ___gk+1 + ﬁkdk , (11)



where d° = —¢° and o, fi, ... will be determined in order to minimize at cach iteration the error
|z = &||1; over a certain subsct of RY. Here ||yl -1 = (yH~'y)* = VyTI~Ty. The expression [ly|
is called the energy norm of y and is based on the energy inner product y [y, From the relation
r—% = H"g it is easy to obtain |lz — &||ly = llgllg-1.

That is, working with the gradients rather than directly with z, and noticing that from cquations

(8) and (11} successive iterations generale a subspace of 2V

Sy = SPAN{H ¢, H*, ..., H*¢°} 12)

which has dimension equal to the number of linearly independent vectors in the set {Hg®, ..., H*¢°}.
The parameter Sy for the iterative process may be written as

k+1 gy gk o '
9"t Hd
b= | (13)

and will correspond to the minimization of the gradient in the //~'-norm,
lg - = min gl = min |lg° + Ally-r . ' (14)
h € S, h e S :

Let Ty = {g € RN;g=¢°+ h,h € S}. It is important to note that g € Ty, since
g g=49 ) p g

k : ‘ .
F =+ = o'y . | (15)
With the above choice of f; onc obtains
gt =0, L#k (16)
and - |
d*Ild' =0, 14k, ’ (17)

that is, the gradients are orthogonal to each other and the search directions are orthogonal to each
other in the energy inner product.
It is casy to sce that equation (14) is equivalent to

l9° + B = min lg° + hlly-r | (18)
h € S



where hF = gk — ¢ Now viewing any h € 'Sy as an approximation to the vector ~g% , then the
corresponding error in the approximation is ‘ ’
| h=(=g")=h+4°, (19)

Thus, the problem becomes that of finding in the subspace Sy the veclor &% that most closely
approximates —g°, the crror being measured in the H=! norm. According to the projection theorem
of Linear Algebra, h* exists, is unique, and has the property of making the error g% 4+ h* orthogonal
to every h in S, that is

(°+RrHTh=0 Vhes,. (20)
See figure 3 for geometrical interpretation. ,

Since the minimizing vector is g% = ¢° + 4 , for any g € T,_; the vector h = Hg belongs to Sy, .
Thus, g* has the property that g*g=0,forall g € T\_;. So, the subspace of RN that is spanned by
the gradient is increased by onc dimension at cach iterative step, which is a desirable characteristic,
and also guarantees the finite termination of the iterative process in the absence of rounding errors.

As some relations are available that establish that

( k-H( A4t

, gty
B = ——~—
grg*

s casy to obtain an algorithm that requires low computational effort and saves storage to a few
veetors in case of compact representation(3] of the matrix /1. The algorithm becomes

, )

Procedure Conjugate Gradient(CG)
For k£ =0,1,... and z° chosen, set ¢° = [{2° — by, d® = —¢® and
k k
T = d%Hf;f
2F =gk 4 g gk
9"+t =gk + n.Hd*

B =
dk+1 — _gk+1 + ,Bkdk
End_For

End of CG

Making use of Chebyshev polynomials and extending their validity to @ € (—o00,00) it can be
shown ([3]-App.A) that, for any ¢ > 0, if p(c) is defined to he the smallest integer & such that

”;zrk ~ &y < (”;no -y Vo e Y , (22)



then | p—— 9 - ‘
€) < 5_\/1((11)17:(-6.) +1 | (23)

where K (I1) is the condition number %\f for matrix H.

2.2 Preconditioning

The process of preconditioning is a means of solving Lhc minimization problem for the functional

f(y) related to f(z) , that is,
. 1 - . , .

where H = ET'HE™T |b=E-'5 and &= c. The main requirement is that one has K(H) < K(H)
(preferably much less than) in'order to increase the rate of convergence in comparison to the related
Conjugate Gradient Method. In general, a good preconditioning matrix has the following propertics:
(1) K(H) is significantly less than K(H)
(2) the factors of I can be determined quickly and do not require excessive storage in relation to
H ' :
- (3) the system EA* = g% can be solved much more efficiently than Hz =b

It follows that one may have some different forms of preconditioners. The differences among them
refer to the strategy of balancing computational effort for items (2) and (3) above and the reduction of
condition namber (¢l item(1) ). The convergence analysis of the Preconditioned Conjugate Gradient
Method (PCG) leads to the same results of that for CG, provided that one reads [ instead of H .

In [3], chapterT it is shown that when a boundary value problem(BVP) with smooth cocfficients is
solved through the finite clement method(FEM), the use of lincar (or bilinear) basis functions makes
K(II) R~ for SSOR preconditioning (here h is the greatest eiemcnt edge length in the mesh).
In the other hand, for the CG method one obtains K(#H) ~ h~%. Thus for a model problem such

as Poisson’s equation in n-dimensional unitary cube and )mchlct conditions, using N &~ A™" and
w(H) = hall bandwidth of H ~ N3 table 1 can be generated..

Method | n=2 n=23
CG O(NI.S) O(NI,BJ)
PCG O(NI.ZS) O(Nl.l‘f)

Table 1 - Computational Cost of iterative methods in units of A"

that is, volumic of the domain in which the BVP is being solved

P reconditioning can bc a powerfull tool in the improvement of convergence rate for CG, provided
that it lowers the global cost, cven though it causes an increase in the cost for each iterative step.

)
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2.3 Some aspects of MG

To motivate the use of multigrid concepts, consider a classical iterative method such as damped
Jacobi iteration (alternatively Gauss-Scidel or SOR could be used) to solve the lincar system of
equations (1). _

In the definition of an iterative process it is required that-the true solution £ = H™'b appears as
a fixed point of a general expression

gFt = Mz* + Nb, | (25)

where M is called the iteration matrix. As the error ef = &* — & from one step to the next is given
by '
ekt = Me* | : (26)

it immediately follows that the iteration matrix is the amplification matrix for the error, that is,
F = MFSD, (27)

Consequently the iterative process is convergent for all initial guesses z° if and only if the spectral
radiug v

p(My=  Lim |M*|* < 1. | - (28)
k- oo
Morcover the convergence will be exponential with asymptotic rate at least p(M), i.e., _
l|lz* — &|| < Kk"p*(M) (29)

for some K,p < 0o ( K depends on 2° ) [21].
As an example consider the damped Jacobi iteration to solve the Poisson equation in a discretized
domain, that is, ’ '

CAbh=fu, € =1[0,1]%[0,1] ' (30)

one may generate the corresponding linear system, build the iteration matrix Mpy and solve exactly
for its eigenvalues[13], obtaining

Ap=(1-w)+ %)(co.sp, + cospz) (31)

where w 1s the damping facf;or, 0<w<1,and

T 2r Lr
,[,+1’.1;+1’-"",L+1’

Map2 =

(32)
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where L = }. The spectral radius p(Mp,) is the absolute value of the cigenvalue of p(Mps) with

largest magnitude, That is, '

p(Mpy) = Ao , .
= 1 =w{l - cos(757)} (33)
= 1-0(L2)

Thus, it is to be noted that the convergence will be slow, since O(L?) iterations will be necessary
for the damped Jacobi iteration to converge adequately. Such behavior is called critical slowing
down, and is responsible for the increase in computational labor when L(number of grid points) is
large. , ' '

Here it is convenient to highlight what has happened. The slow modes (A & 1 )are the long
wavelenght ones (p1p, < 1 ). It is easy to see what occurs as a consequence of the algorithm’s
locality: in a single step one grid point can only inform its nearest neighbors about its instantaneous
value. For the true solution to be reached (representing a “thermalization” of the dynamical system
“of interacting particles) this “information” executes a random walk{23] around the lattice in such a
way that it must move to and from the boundaries until equilibrium is attained (this takes the time
of order L? since the average distance in ¢ time steps of a two dimensional random walk is V)[13].
As the discussion above states the question of eritical slowing down(lor more details see [13)),
it is time to mention one of the possible remedies which comes with case for those familiar with,
Renormalization Group concepts ([181.[21]). That is: do not deal with all lenght, seales at once, but
define inatead a sequence of problems in which each lenght seale, beginning with the smallest and
working towards the largest, can be handled separately. Such ideas were (even previously to the work
of Wilson[24]) used by Iedorenko[12] to develop an algorithm that is called the Multigrid Method,

for the solution of linear system problems.
It is interesting to notice that in-the above expression for p(Mpy) the shortest wavelenghts, that

is p1,p2 & 1 will provide

L+1
= 1-w(l-(1-3- (&) + 1 (&) -..) (34)
o(1) |

p(Mps) = 1—w(l - cosi)

That is, the highest frequencies (shortest wavelenghts) components of the error (cf, e = zF — T)
will decrease in a number of steps that basically independs of L. Pratically what happens is that such
high frequency components of the error vanish in a few iterations, leaving only longest wavelenght
modes with significant crrors. But long wavelenghts are adequately modeled in a coarser grid, hence
the strategy of transferring the approximate solution to a coarser grid, where they are dealt with
requiring much less computational effort (since the number of sites-or gridd points-will be much less

9



than in the finest grid ). After solving such a coarser grid problem the solution is transferred back to
the finest grid, where the first step to proceed with the iterative search for the solution is to smooth
the selution brought from the next coarser grid, diminishing the high frequency errors in very few
smoothing steps. '

2.3.1 MG algorithm

The algorithm can be set in more precise terms. The goal is to solve equation(1), where H is a
non-singular lincar opcrator from an N-dimensional real vector space U to another N- dimicnsional
real vector space V. In order to specify the algorithm, consider now:

(1)°A sequence of coarse-grid spaces Uy = U, Urt—1y Unpezy .oy Upand Vg =V, Vg, o, oo
Here, dim Up = dim V; = Ny, for 0 <1 < M, and N Nps > NM 1>...>Ng .

(2) Restriction (or ‘averaging” ) operators I} : Vi — Vi_y forl <! < M.

(3) Prolongation (or “interpolation” ) operators II_,:U_ - U for 1SISM

(4) Coarse grid operators If; : Uy =V, for 0<I<SM-1. Of course Hys = H. Each of the
operators Hy is assumed to be non singular.

(5) Basic (or “smoothing”) iterations & : Uy x Vi = Uy for 0 < [ < M —1. The role of &
is to take an approximate solution a} to the equation Hzp = b and compute a new (hopefully
better) approximate solution @} = §(xz},b) . In general & has two ingredients, namely 6P and
& 05 which may be the same but need not be

(6) Cycle control parameters (integers) v >0 for l < | < M, which control the number of
times that the coarse grids are visited,

The MG method is then defined recursively as

10



Procedure MG(l, z,b) |
comment : takes an approximate solution z to the equation Hiz = b,
and overwrites it with a better approximation '

z — §PRE(z,b)
if { > 0 then
d — —I"'(Hiz - b)
P e ()
for j =1 until 9, do MG (I —1,v,d)
T e—z+I 2
endif
2 — 8F°S(a,b)
End

This constitutes a single step of the multigrid algorithm. In practice these steps would be repcated
several times, as in other iterative process, until the error las been reduced to an acceptably small
value. »

The advantage of multigrid over traditional iterative processes is that, with a suitable choice
of the ingredients I!=%, I!_,, H; and so on, only a few (maybe five or ten) iterations are nceded to
reduce the error to a small value, independent of the lattice size L. This contrasts favorably with the
behavior of the damped Jacobi iteration, that requires O(L?) iterations.

The MG algorithm above can be regarded as consisting of three main steps (Hackbush{15)):

(1) Pre-smoothing. A few itcrations of the basic smoother (e.g. damped Jacobi) to the given
approximate solution. This produces a better approximate solution in which the high frequency
(short wavelenght) components of the error have been reduced significantly. llm low-frequency (long
wavelenght) components are, however, still large.

(2) Coarse-grid correction. The residual IIjz — b; is computcd and transferred to the next
coarser grid (level I — 1 ) using the restriction opcrator [[='. Then the result, d, is used as the
right hand side of the auxiliary equation H;_yz = d , which is solved approximately by v; iterations
of the Multigrid algorithm at level I — 1 (recursive definition) with an initial guess ¢ = 0. The
approximation v to the solution is transferred back to grid [ using the prolongation operator I,
aid is used to correct the approximate solu.i‘ion z . The goal of this coarse grid correction is to reduce
significantly the low-frequency componuxts of the error in « (hopdully without creating large new
high-frequency error components).

11



(3) Post smoothing. A few more iterations of the basic smoother are performed (this is to
protect against any high-frequency errors which may inadvertently have been created by the coarse-
grid correction step) .

2.3.2 Practical Considerations

Most commonly one uses a uniform factor of 2 coarsening between cach grid & and the next coarser
grid Q_; . The coarse grid points could be cither a subsct of the fine grid points or a subset of
the dual lattice. In the first group is standard coarsening which chooses the coarse-grid points
jumpirig one grid point and picking the next, in all directions the problem is being solved. In the
second group a frequently used coarsening is the red-black (checkerboard) which divides the grid in
a checkerboard fashion, selecting one of the colors as only fine grid points, while in the other color
the coarse and fine grid points coincide. -

If the coarse grid points are a subset of the fine grid points, then the most simple restriction
operator is the trivial restriction, defined as

(Il"—lml)v = (xl-l)v Yo e Qi C Y (35)

where here (1) is the value of the variable at grid point v.

However this restriction becomes in general too crude, thus some kind of local averaging (or
“coarse graining” ) is needed, in order to accentuate the low frequency components. Tor a coarse grid
like those whose grid-points do not coincide with fine grid points, block averaging is the natural
choice(that is, an average is taken using the fine-grid points closer to the coarse-grid point under
consideration). For a coarsening such as the standard one, the “nine-point restriction” (or “full
weighting”) is commonly used, performed with the nine-point-cell of which the coarse grid point is
the center (see figure 4), '

The coarsening becomes different, and computationally much more expensive, in case the lincar
operator deals with discontinuous coefficients in the domain (2 of discretization(2].

If the coarse-grid points are a subset of the fine grid points, trivial prolongation may be
performed.That is:

| (L-yzim1)o = (21)s : (36)

in case v € Q- (and zero otherwise). In order to improve such prolongation operator, other
schemes may be tried: for example, when a nine-point cell is used the counterpart of “full-weighting”
restriction may be used, with the same weighting scheme, yelding one of the simplest schemes, named
piecewise linear interpolation; while the “block averaging” concept will yield the plecewise
constant injection that also weights equally the nearest neighbors.



Given a prolongation operator one can always define a restriction operator to be its adjoint (trans-
pose), and vice-versa. For trivial prolongation the adjoint is trivial restriction, and for piecewise-
constant injection it is block averaging, and so forth.

The most frequent choice of Hj is ’

Hi_y=IFUH I R o (37)

One note that for certain problems, the adequate consideration of boundary conditions add some
additional grid lines (or planes, if in 3—(11111cnuons) and gives risc to altered right-hand-side of the
resulting lmcar system to be solved (sce,e.g.,[5]), in case of Neumann or mixed Neumann-Dirichlet
boundary conditions.

All classical iterative methods for the solution of lincar systems can be used ab this moment.
The most usual are Jacobi (or damped Jacobi), Gauss-Scidel (depending on the ordering of the grid-
points its performance may be increased, that is, lexicographhic or red-black will exhibit different
pérformances ? ), SOR - successive over-relazation-iteration or Conjugate Gradient. But some of the
iterative methods will turn out to be too expensive, since they handle many frequencies together
(e.g.,CG method), while others such as SOR will work well because the long-wavelenghts are not
specially under consideration at the smoothing step (in general the optimal w for SOR will only be
known after testing). Long wavelenghts are dealt with by moving from one grid to a coarser. But
high frequency errors may still be present and can be handled by simple Gauss-Seidel(GS).

It is observed that the total number of relaxation steps employed in 6777 and 6/°°% (both being
performed through GS) matters more than each of the numbers 1nd1v1dually.

In the coarser grid the number of grid point is small enough, so some direct method is used (e.g.,.
LU decomposition). -

The parameters v, that drive the Multigrid algorithm are usually chosen to be y = v =1 (called
V-cycle) or 4 = v = 2 (called W-cycle), forall grids 1 =1,2,.,.M insucha way that at level {
one iteration of the MG algorithm requirea one visib Lo geid £y visits o grid {1, 4% visits to grid
{ — 2, and so forth. Thus, ¥ determines the degree of emphasis placed on the coarse-grid updates. ~

2.3.3. Computational Cost

In order to estimate the computational work (cost) required for one iteration of the multigrid al-
gorithm, one sets W} to represent the computational cost (as usual, it is measured in number of
arithmetic operations) for handling the smoothing, restriction, prolongation, and residual computa-
tion. For a factor-of-2 coarsening in d dimensions, it comes

'“ Wy 2=y, S (38)

2In fact red- black ordering enables the use of vector and parallcl processing since it does not couple grid-points of
ihe same color for the moest usual nearest neighbor operators

13



giving a total work for one MG iteration of

0
work(MG) = T MW,
- =M
0 (39)
~ Wy I (72—‘!)1‘{_!
=M B
< Wil =274 if  y<2 ‘

Thus, provided that 4 < 2¢ | the work required for one entire multigrid iteration is no more than
(1 =271~ times the work required for Pre and Post-smoothing (say, using Gauss-Scidel) iterations
on the finest grid alone, irrespective of the total number of levels.

For certain classes of operators I and suitable choices of the coarse grids, restrictions, prolon-
gations, coarse grid operators, smoothing iterations, and cycle control parameters, it can be proved
[15][20][13], that the multigrid iteration matrices M, satisfy a uniform bound

IMlj<sC<t, (40)

valid ‘irrespective of the number of levels. Thus, a fixed number of multigrid iterations (maybe some
five or ten) are sufficient to reduce the error to a small value, independent of the lattice size L. That
is, critical slowing down has been eliminated.

The efliciency of the multigrid method arises then from the combination of two key features,
namely

e The convergence rate for M;. This means that only O(1) iterations are nceded, independent of
the lattice size.

e The work estimate above means that cach iteration requires only a computational cost of order
L? (the finest-grid lattice volume).

It follows that the complete solution of the lincar system Hax = b requires asymptotically a
computational cost of the order of finest grid’s number of sites (grid points).

2.4 Attempts to merge MG and CG

Looking forward to making usc of both CG and MG concepts, two main groups of attempts were
performed. CG methods were used as smoothers for the MG method[6] and MG cycles were imple-
mented as preconditioners for CG iterations [4][19].
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Sometimes the use of CG as smoother may not decrease the global MG cost. This is the case in
problems with smooth solutions on a sequence of uniform grids. IHowever, if the cocflicients of the
partial differential equation and the solution are rough and the grids are irregular or not uniformly
refined, CG will be convenient for its adaptive nature. That is, as CG does not handle preferably on
the high frequency errors (as do conventional smoothers), it will provide an improvement over GS
or SOR, for example, leading to reduced global cost (in [6] Poisson’s equation is solved to illustrate
these aspects).

In [8] a two dimensional Tinear elasticity pmhl( m is presented, whose solution through a ﬂtnndzud
multigrid algorithm with GS relaxation led to poor reduction factors (= 0.6 per unknown per step).
With the use of a MG cycle as preconditioner for CG, the PCG thus generated showed reduction
factors of 107" in 7 steps. As the MG employed is only a preconditioner, the problem to be solved
does not have to be exactly the same. Thus it is possible to work on simpler problems which could
then be solved simultancously to take advantage of parallelism (sce,e.g.[9]).

3 MGCG algorithm

3.1 Basic concepts

The goal here is to merge the philosophy underlying MG with the convenience of finite termination
and low cost per iteration offered by CG method. On such grounds one proposes an alternative
algorithm, hopefully with an attractive asymptotic rate. A rather different emphasis is adopted, in
comparison with those of the previous section. The MGCG method to be described is an unique
dircction strategy, instead of “back-and-forth” recursive defect correction strategy[10]{14](15]. It is
analysed under a geometric (vector spaces spanning) point of view and further applied to a simple
elliptic boundary value model problem with continuous cocflicients.

One initially consider the basic CG ideas, namely the suceessive generation of subspaces with
increasing dimensionality. In addition one build a bridge from one subspace to the one with immedi-
ately higher dimensionality. This has the important underlying assumption that the initial estimate
is crucial to the efliciency of the CG algorithm, and the links between pairs of grids are constructed
through usual MG prolongation and restriction operators.

3.2 Description of MGCG Algorithm

The algorithm can be described in very few steps, namely the one-way loop from the coarsest to the
finest grid, with the smoothing and grid to grid transportation inside its scope.
That is,
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Procedure MGCG (H b, T, m,x)

Initialize z' = 2°

Loopl:=1tom : ,
Solve through a few steps of Conjugate Gradient to improve !
Transport to next finest grid, initializing 2, 2! « Izt
Relax v times to improve z'~! as solution of [I''2!~! = -1

Endloop

Solve through Conjugate Gradient to improve z™

Fnd of MGCG

The tasks of the algorithm are summarized below:

o In the list of parameters the data structures for b, H and I where constructed before the call
for MGCG. It contains, respectively, the vectors b',1 = 0,- -+, m, the matrices H',1 =0,-+-,m, -
which represent the right hand side vectors and the matrices of the various levels’ linear systems,
and the transport operators I7_;,7 = 1,---,m from one grid to the next finest. ‘

o The initial problem to be solved should produce a good initial estimate for z°. This will
decrease (see (28)) significantly the cost of improving it.

o The relaxation step is a way of obtaining a more locally (in the context of short wavelenghts of
previous sections) accurate estimate result in a given level, having started with a cruder vector
estimate transported from the next coarser grid. The optimal value of v is, then, to be found
for each problem in order to lower the overall computational cost.

o The Conjugate Gradient method is implemented, at cach level, as a usual minimization pro-
cedure, but starting from a good initial “guess” which comes from a next “coarser problem”
that mimics the propertics of the present grid’s problem.

o Transportation of variables from one grid to the next finer may follow all prescriptions that ap-
pear in the MG literature, and we initially adopt bilincar interpolation. Any costless procedure
will be convenient for the performance of the global algorithm.

3.3 Theoretical Aspects

In this section a result is proved that states the finite termination of the MGCG algorithm, once the
algorithm proposed has been presented as a generic procedure.
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Using the same notation as Polak[22] to start the description of the result concerning MGCG one

set: ‘
° I,I\\(,:“ or I'*! - transport operator from vectors in RM to RN+,

o IF=1f, ~.1}::; o IMVifi<kand I = IE, = If*' in case i > k.

Theorem. Consider a sequence H™o ... HNr of matrices in RV*Ni (§ = 0,... k) and transport

operators such that :
I Iyt ottt

Suppose, N v
v Iy = (13, )" = Iy, )

(as suggested in [7]), and all JI7 arc positive definite matrices. For ¢ =0,1,2,--+ let

and
Pkl = Tk Bl o
where _—
= o H
and - e
B = Tk41Tk41 - The {-Hk+11k+ Pk} .

| e E e (I o)

Then '

orlin=85-(nm)
{IEp} {1 pi) = 65 (pill'pi)
and r;=p;=0,Vi>mwithm <d—1( Ng,-+,Ng).
Proof -
First part: One proves by induction that after d iterations, null vectors are generated.
il gy = 0, then pygr = 0 (vin the way of obtaining pyyy)
if prg1 = 0, one must prove that rppqp - (174 p,) = 0. But as rg = py, it follows that

Iipory == pollg {re = agll®py)] .
(3p0) - (I370) = PP (13po IEH py)
= poro = i (Iopo 1511°p)

= 0
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Here it was used the fact (IF wg) - (IF1v) = I,'C“HI,’:“wk U) = Wy Vg
Suppose that {1]]-“/11-} rip =0,V j€el, --,m-1] (Induction Hypothesis). For j = m:

I prans = - (rm = am )
= MmTm — (—Ym(,om 117”[)7’1) (50)
= (A B JT 1Pt} T — G (P ™)
S Py Z:,‘::’III‘H“" /’m”mp"l = 0.

Pm

Tere the induction hypothesis was used at the last line. This ends the first part of the proof.
Second Part: One now proves the lollowing Orthogonality Relations:

ri Lry = 6i; - (i) | (51)

and

T¥pi H*pi = 85 (p:dl'pi) (52)

By induction, suppose that for some natural 0 <k <m
(Fr)-ry= (Hpo) - (Hp) =0,¥i# ], 0<i,j <k (53)

letie {1,---,k=1}. So

Tkt {I:-k-l-lr,'} = ]k—H{T;\ - aLI:Ikp;,} {jk+17‘;} .
:‘ (]k+1 ) {Ik+l7, } Ok ]A+111k ) (Iik+1,‘»i
(hip‘) pkfkfkkpk (I;:-H hrk ) (1§+1T‘;) (54)
= "o 11'~pk (]kHHk/’k) : j;kﬂ{/’a' = Bicaliipina} =0,

since IV H p, IF1p, = H"p;, I¥p; = 0 (hyp.).
It is also true that

res I pr = {re — cax H*pi} - pic = riepic = mam = 0.
Similarly,
pear (I 5 ) = (ragn + By o) - ("m”kﬂk) : {(If“f-{kﬂk) IFry)

rp HE Ly

. : 99
= Tr41 (Ii:HIIAPk) - T+1 (11A+11"+1 (/’kllk/)k) =0, ( )




since H* = If, ¥ IE*Y, That is, for 0 <i <k —1 onc has

prar - () = {rwen + Belb ™ i} - (I Hpi)
= repr (7)) (56)
= rep - FY =5 —rd} =0,

sincei <k —-1and o430 ,2=0,--,n.

Therefore, one concludes that r;i;rj =0= ,o,-IJ‘:ij]- fori+#jand 0<z,j < k. As each pair of
such vectors is orthogonal to cach other, and they arc all non-zero, its total number cannot exceed
d, that is m < d.

L Bud of Second Part,
This completes the whole proof!

For practical reasons the implementation of algorithm MGCG will perform some Conjugate Gra-
dient iterations before moving to the next finer subspace. Thus, several successive values of N; are
equal to it. For this group of, say, p values Ni, Niq,- - ,Niyp-1 there is a simplification in that
I,':H =Tt =] Ik=1,---,i+p—2and the matrices H* also remain the same.

With the above, MGCG becomes a true generalization of conventional CG, allowing simultane-
ously multilevel calculations.

4 Concluding Remarks

Further efforts will be performed which will check the extension of applicability for this MGCG
method in particular through the solution of elliptic model problems with discontinuous coefficients,
which come up, e.g. in neutron diffusion[2] or Petroleum Reservoir modelling [5]. Also, it should be
tested in some hyperbolic problems.

In most complex applications the strict use of our MGCG algorithm should be tested together
with some Domain Decotuposition techniques(e.g.[9]). In the regions where smooth variations of
coeficients characterize the problem our method can be more effective, since it provides low cost for
the global procedure,

It is worth remarking, finally, that a new proposal for a mixed Conjugate Gradient + Multigrid
Method was performed, making use of many interesting features of both classes of methods, which
his to be submitted to many tests, in order to evaluate its applicability in general problems.
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List of Figures

Figurel- Two dimensional distortion measure,j -

IL-Jk

Figure 2: The new scarch direction(d**!) is obtained combining
the previous one(d*) with the present gradient(g**1).
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Figure 3- The gradient ¢* is orthogonal to all g € Ty_y,
in order to minimize ||h]| € Sk-,.
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Figure 4- Stencil for “full weighting”
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