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Abstract

A graphics-based language known as extended systems modeling language (ESML), which
“is an extension of the data flow diagram notation for representing control logic in models
of real-time systems, is analysed and summarized aiming at a rigorous interpretation of
ESML symbols and their combinations. Based on elementary and compact or “high-level”
Petri nets (PN), for which a succint introduction is given, formal foundations for ESML, in
particular for its transformation schema (TS) notation, are proposed. Translation principles
as well as examples of usual transformation and flow patterns are presented in TS notation
and. PN notation. The obtained PN models can be executed due to their formally defined
“token game” which includes concurrency of events and values as tokens. This permits a
rigorous analysis of the dynamics of real-time systems with signals, prompts and data flows
of various kinds included in a single formalism. The conclusions list general features of the

approach relevant to its application and indicate further research tasks.

keywords

concurrent systems, data flow diagram, Petri net, real-time systems, state/transition dia-
gram, systems design, systems modeling, transformation schema

1 Introduction

Several efforts have been undertaken in recent years to equip Data Flow Diagrams (DFD)
with extensions for modeling real-time systems [12, 9, 3, 11, 1]. In general, such a systemisa -
subsystem of a comprising system including an external environment with complex dynamics
which is monitored and controled through reactions of the real-time system.

To the best of our knowledge, [1] is the latest proposal in this direction. It presents an
Extended Systems Modeling Language (ESML) combining features from several independent
attempts for representing control logic. Networks of active and passive elements, known as
Transformation Schemas (TS), are used as integrated system models in the sense of modeling
both data flow and control flow structure. A TS is thus, at the same time, a DFD and a
CFD or “Control Flow Diagram”. The TS notation is intended to be a system modeling
language for (real-time) systems. It includes graphic notation, formation rules and a way
of determining the behaviour of the modeled system through “a formalism for token-based
- execution” which is based loosely on the execution of Petri nets [9].

Approaches like ESML address system modeling on a level considered “natural” to the
problem at hand or “abstract” when seen from an implementation point of view. Start-
ing from such a level is certainly more promising than to begin system construction with a
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_ programming language which entails the well-known results like lack of understandable doc-

- umentation, poor reliability of the system, costly maintenance and virtually no possibility to
modify the system. Graphics-based languages support the development of systems in partic-
ular at theinitial stages of investigation, analysis and design by facilitating comprehension
of the problem to be solved and communication with people from the application area.

In a paper on graphics-based languages for modeling software systems [10], the “lack
of rigorous, enforceable definitions of the meanings of symbols and symbol combinations in
the graphics-based languages” has been identified as one of the major problems encountered
by system developers. One way to incorporate formal methods into the process of system
development without giving up the benefits gained from informal and semi-formal languages
like ESML is to establish principles for the transition from a more intuitive model in terms
of these languages to a rigorous model with a formal semantics. This requires two things:
First, a mathematically founded, fairly general model for systems and processes which al-
lows to represent all dynamic properties of a system and to explore them by execution or
formal analysis, second, mapping rules which define an at least intuitively evident correspon-
dence between an informal model and its formal counterpart. A recent proposal for such an
approach is presented in [4]. Preferably, such a technique of formalization should support
visualisation by conspicuous symbols with a rigorous interpretation and should also allow to
consider parts of the system as autonomous modules. Moreover, a well-defined connection
with other system modeling languages (e.g. ERD - Entity/Relationship Diagrams, PDL -
Program Design Language) should be possible.

The present article attempts to show that Petri nets (PN) can be useful for defining a
rigorous interpretation of graphic symbols and their combinations and demonstrates how
the mapping can be done in the case of ESML as the “source language”. Independently of
these authors, a partial approach to specifying control transformations through Petri nets
is pursued in [5]. If such an effort were done for several graphics-based system modeling
languages, comparison of their expressive power would become easier and cross-fertilization
among these languages as advocated in [10] would be encouraged.

For the reader less familiar with ESML, concepts and terminology of Transformation
Schemas are outlined in Section 2. A succint introduction into elementary and compact or
“high-level” Petri nets is given in Section 3, however confining itself to the features needed
in this paper. Section 4 gives a first account of translation principles from ESML models
to PN models, which are then applied in the subsequent Sections 5 to 7. These sections
illustrate by means of examples drawn from other sources, how frequently occurring ESML
constructs (Transformation Schemata and State/Transition Diagrams) can be “converted”
into formally defined executable PN diagrams. Section 8 presents some conclusions from
this exercise and suggests further research tasks.
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2 Outline of the Transformation Schema Ap’proach

2.1 Elements of a Transformation Schema

The basic elements of a general transformation schema (TS) are “transformations”, “flows”
and “stores”. For reasons explained in Section 4, Principles of Translation, we shall use the
terms operational activity and control activity instead of “flow transformation” and “control
transformation”, flow connection instead of “flow” and store connection instead of “store™.

With these elements a transformation schema can be constructed being a network where
the nodes are activities and the arcs are connections. The present section outlines the main
properties of TS elements, the principal TS formation rules and the dynamic properties
expressed with transformation schemas.

- 2.1.1 Activities

Activities are the active elements of a TS. An activity models processing actions upon the
content of surrounding passive elements which connect it with other activities. Examples of
content are flow values, store values and control information. They are used or consumed as
input to the activity or produced as output from the activity.

There are two categories of activities according to their purpose:

® A control activity models a portion of controlling work inside the system and determines
when, and for how long, other activities will execute their actions.

¢ An operational activity models a portion of operating work inside the system, which

* consists in processing information, material or energy. This includes actions such as
accepting, manipulating, producing, storing, transporting and retrieving flowing or
stored values within the system and monitoring or monitoring-controling values of the
external environment, either in an uncontrolled way or under the control of a control
activity. '

Activities may also be classified according to their level of aggregation:

& A primitive activity is considered as a functional unit which is not further detailed in
another TS.

¢ A non-primitive activity represents the aggregation of several activities and has a
lower-level detailing TS. '

, Applied recursively, this aggregation process, which obeys an “equivalence principle” (i.e.,

the Jow-level TS is a model which may replace the non-primitive activity), aims at reducing
the complexity of schemas containing an excessive number (more than 10) of activities.

As a rule, a non-primitive operational activity may aggregate operational and control
activities whereas a non-primitive control activity may only aggregate control activities.

2.1.2 Connections

A TS should be thought of as a network of inscribed nodes denoting activities, interconnected
by two categories of also inscribed directed arcs denoting connections.
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Flow connections

- Flow connections establish causal relationships between the connected activities, expressing
that the production of an output by the origin activity, which defines the content of the
flow connection, causes the destination activity to immediately respond when this content
reaches it. )

A flow connection or flow, for short, may be further classified according to its kind of
content:

¢ A non-value-bearing flow (also called control information flow) has no value content.
That is, each instance of the flow conveys the same control information, designated by
the unique flow inscription.

o A value-bearing flow (also called data information, material or energy flow) carries a
value content. That is, each instance of the flow conveys a possibly different. value for
data information, material or energy.

A non-value-bearing flow is either a signal or a prompt. A signal serves to indicate an
occurrence of an event which is important for the control behaviour of the TS. A prompt,
which comes with a standard interpretation, models control imposed by one activity on
another activity. An input prompt is one of the following:

— trigger prompt: triggers an activity, which cannot be reset during execution;
— enable prompt: permits the execution of an activity;

— disable prompt: aborts the execution of an activity;

activate prompt: combines the functionality of an enable and a disable prompt;

= suspend prompt: interrupts the execution of an activity;

— resume prbmpt: continues the execution of an interrupted activity;

— pause prompt: combines the functionality of a resume prompt and a suspend prompt.

A value-bearing flow, associated with data information, material or energy, conveys,
respectively, data information, material or energy values which are made available to or are
provided by activities. Value-bearing flows are further classified according to the structure
of their content:

— A non-structired flow carries atomic values only.
— A structured flow carries structured values of arbitrary complexity.
Another classification of flow connections is by their dynamic properties:

® A continuous flow carries content (data information, material or energy) made available
permanently in a given time interval.

e An intermittent flow carries content (control or data 1nformatlon material or energy)
made available occasionally at discrete points in time.

Finally, flow connections are classified according to their level of aggregation:
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o A primitive flow is not further decomposed inside the TS model.
¢ A non-primitive flow is decomposed in a lower-level TS.

‘A non- primitive continuous flow may represent an aggregation of a set comprising con-
tinuous and intermittent flows whereas a non-primitive intermittent flow represents an ag-
gregation of a set of intermittent flows only.

Store connections

Store connections establish non-causal relationships between the connected activities, ex-
pressing that the destination activity has an independent access to the content made avail-
able by the origin activity.

So a store connection or store, for short, is a repository which may have an associated -
capacity and whose content possibly has an internal structure. It may be further classified
according to persistence of its content:

o The content of a non-depletable store (data informatioh) is only used, not consumed,
l.e., it persists after any input access (which may only occur at discrete points in time).

o The content a depletable store is consumed when accessed for input. More precisely,
content of a depletable store is organized as FIFO (queue) or LIFO (stack) whose items
— associated to signal, data information, material or energy content —— are consumed
when an input access is made. In the case of material or energy content, this may
occur continuously in time.

As with flow connections, also store connections are classified according to the structure
- of their content: '

o A non-structured store holds atomic values only.
o A structured store holds structured values of arbitfary complexity.

In order to avoid unnecessary terminological variety in the definition of the representation
language, we are not considering terminators as basic elements (as original ESML does).
Terminators are used to represent active and passive entities situated in the immediate
conceptual neighbourhood of a system modeled in terms of a TS. They specify the m'ceractmcr
environment external to the modeled system.

As the concept of system is recursive, we may consider the modeled systern and the
external (interacting) environment as components of a comprising system which may, in turn,
be modeled in terms of a larger TS. In such a case, the active terminators will be represented
by activities and the passive ones will be represented by flow and store connections; no other '
concepts will thus be needed.

When ESML is applied in systems modeling, the graphical symbol used to represent active
terminators (usually called “external entities”) is different from the one used to represent an
activity. But this should be understood as an aid to make a conspicuous representation of the
system border. Passive terminators (stores shared by the system and some external entity)
use the same graphical notation as the ones used inside the TS to represent store connections.
These terminators and the flows input to and output from the system characterize the
interface between the modeled system and the external environment. '
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2.2 Principal Formation Rules for a Trénsformation Schema

Viewing a TS as a network of activities interconnected by flow and store connections, a
syntactically Vahd TS must obey formation rules which are summarized in the sequel.

A notation for TS elements (slightly different from that used in ESML) is presented in
Figure 2.1. The term descripior stands for a legend which concisely describes the function-
ality of the activity or the content of the flow/store connection. The term id is intended for
a unique identification of the activity or store (in the case of flows the descriptor acts also
as an identifier). The lowest field of an activity symbol is reserved for a possibly necessary
comment, trace identifier, etc.. Only primitive control activities are considered in this paper
since there is no functional distinction from non-primitive ones.

OPERATIONAL ACTIVITY CONTROL ACTIVITY

primitive non-primitive primitive

id

descriptor

VALUE~-BEARING FLQNS . NON-VALUE-BEARING FLOMWS
(DATA INFORMATION, MATERIAL, ENERGY) (CONTROL INFORMATION)
intermittent flow: (interMittent) signal flow:
descriptor descriptor
continuous flow: (intermittent) prompt flow:
descriptor
triggepr
enable
disable
suspend
DesSume

activate (E/D painr)
pause (S/R paxr)

ones’ IIEIDIS!RIMP

NON-DEPLETABLE STORE DEPLETRBL.E STORE
(DATA INFORMATION) (SIGNAL, DATA INFORMATION, MATERIAL, ENERGY)
id descriptor © |id || non-signal id || signal
descriptor 1 descriptor

Figure 2.1: notation for the basic TS elements
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Figures 2.2, 2.3 and 2.4 are intended to represent graphical “blueprints” for syntactically
correct TS constructs. In each of these figures, any primitive activity can be substituted by
a non-primitive one, but not vice-versa. Also, not all shown connections need to exist.

Interconnection of activities by flows is shown in Figure 2.2. Firstly, we consider opera-
tional activities only. In this case, if a non-primitive activity receives a signal or produces a
prompt flow this means that the activity comprises at least one control activity. Secondly,
- we consider control activities only. If in this case the intention is to model hierarchical con- -
trol, a prompted control activity cannot send prompts back to the sender of the prompt,
neither directly nor indirectly. The last group of flow constructs combines, in each of them,
operational and control activities.

FLOWN CONNECTIONS BETHEEN FLOW CONNECTIONS BETWEEN
OPERATIONAL ACTIVITIES OPERATIONAL AND
| 'CONTROL ACTIVITIES
(" ﬁiﬂiﬁ?
................ .-
(i T ( *\
................. x
.../
(9
FLOWM CONNECTIONS BETHWEEN (::::j

CONTROL ACTIVITIES

Figure 2.2: activities interconnected by flows

Interconnection of activities by non-depletable stores is shown in Figure 2.3. When only
operational activities are involved, an input from the store models a non-destructive use of
the store content (reading of stored value(s)) and an output to the store models a change of
the store content (insertion, deletion or modification of stored value(s)). When only control
activities are involved, an input from the store models a non-destructive use of the store
- content (reading of stored value(s)), while an output to the store models a modification of

stored value(s). Note that the store may only contain data information. o
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NON-DEPLETABLE NON-DEPLETABLE
STORE CONNECTIONS STORE CONNECTIONS
BETWEEN ' BETMEEN

OPERATIONAL ACTIVITIES CONTROL ACTIVITIES "

| |

data inforwation v . data information

NON-DEPLETABLE STORE CONNECTIONS
BETHEEN OPERATIONAL AND CONTROL ACTIVITIES

Rulny

data information data information

Figure 2.3: activities interconnected by non-depletable stores

Interconnection of activities by depletable stores is shown in Figure 2.4. When only
operational activities are involved, the content of the store may be data information, material
or energy. In the case of time-discrete access, input from the store models consumption of an
integer number of units of store content, output to the store models production and storage
of an integer number of units of store content. In the case of time-continuous access, input
from the store models continuous consumption of store content, output to the store models
continuous production and storage of store content. When only control activities or both
operational and control activities are involved, the content of the store is a signal which
indicates the occurrence of some event or the availability of some resource (i.e., a particular
case of an event). In the latter two cases, the four ESML constructs include an abstraction

of a kind of semaphore control mechanism which is modeled in the framed diagram of Figure
2.4.
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DEPLETQBLE , DEPLETABLE :
STORE CONNECTIONS STORE CONNECTIONS
BETHEEN : BETKEEN ' _

- OPERATIONAL ACTIVITIES CONTROL ACTIVITIES

data inforaation/
material/energy

data information/
material/energy

DEPLETABLE STORE CONNECTIONS
BETHEEN OPERATIONAL AND CONTROL ACTIVITIES

.....

-
1 event/resource includes at least
one control activity

Figure 2.4: activities interconnected by depletable stores
event = occurrence of some event, resource = availability of some resource



Towards a rigorous interpretation of ESML 10

2.3 Dynamic properties

Taking into account the possible interactions between activities, further features of activities
are distinguished, which concern their dynamic properties.
The control mode of an activity is one of the following six combinations:

¢ standing (with or ‘without a pause prompt): The activity can perrnanently perform
actions, it can neither be triggered nor be enabled/disabled;

o triggered (with or without a pause prompt): The activity starts to perform actions
immediately after having received a trigger prompt. The actions of a triggered activity
terminate “naturally” (i.e., without intervention of a control activity).

o enabled/disabled (with or without a pause prompt): The activity can only perform
actions after having received an enable prompt and before having received a disable
prompt. A disabled activity “forgets” any intermediate results and starts anew when
next enabled.

These features are depicted in the following two figures. Figure 2.5 represents the possible
changes of state owing to input prompts by means of a transition table, which is an enhanced
version of the table found in [1]. Figure 2.6 displays the same changes of state through
Transition/State Diagrams. '

" DISABLE.

| TRIGGER |

CURRENT STRE

STANDING  pro-ececnccmccnnan

NOT SUSPENDED.
NOT ENABLED _

¥ IF NiJH SUSPEND/RESUME, OTHERWISE NOT SPLIT / NOT PRESENT
R box witout an outgoing arc mweans "NO EFFECI™,
The dashed arc means return to NOT TRIGGERED without.external control.

Figure 2.5: changes of state owing to input prompts: Transition Table

An activity with a pause prompt may be suspended and resumed by a corresponding
prompt, once its execution was initiated, i.e., once it can perform actions. In all the above
three cases, a suspended activity “remembers” its intermediate results and the system con-
text and picks up where it left off when it receives a “resume prompt”.
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standing activity: © triggered activity: ‘enal

: led activity:
i | { R
| acrivs ] [Nor tRiGeraEd| [ Mor ENaBLED
! trigger } {done] enable Ldisable 1
) Y ’ :
‘disable
[ TRIGGERED | | ENABLED |
» | \
suspend resuse suspend resuse suspend resume
j \ , | ,
| SUSPENDED | | SUSPENDED | | SuSPENDED |

Figure 2.6: changes of state owing to input prompts: State/Transition Diagrams

The stimulation mode of an operational activity indicates the way it is caused to perform
actions. An operational activity is : :

e trigger stimulated, when, not having intermittent flow(s) as input, its actions are ini-
tiated by an instance of a trigger prompt.

o enable stimulated, when, having continuous flow(s) as input, its actions are initiated
by an instance of an enable prompt. '

o value stimulated, when:

— not héving continuous flow(s) as input, its actions are initiated by an instance of
. an intermittent (value-bearing) flow;

— having a continuous (value-bearing) flow as input, its actions are initiated by the
(re-)start of the output production of an activity which is at the origin of that flow
connection whose destination is the value stimulated activity under consideration;

e time stimulated, when, having neither continuous nor intermittent flow(s) as‘input its
actions are initiated by the arrival of “point(s) in time” specified as a built-in value
stimulation which is a special type of value stimulation.- :

Figure 2.7 illustrates these features by showing, through the use of State/Transition
Diagrams, the various ways operational activities may be activated and deactivated.

The details of a time-discrete interaction depend on whether or not a non-zero output
delay has been associated with the activity. An output delay is interpreted as the amount
of time between the establishment of the conditions for producing output and the actual
production.

The salient element of a ‘TS, upon which the more complex aspects of the modeled
dynamics rely, is the control activity. In ESML, there are two manners of specifying the
behaviour of a control activity, both correspondmg to a finite automaton with output.
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STANDING TRIGGERED ENABLED/DISABLED
ARCTIVITY ACTIVITY ACTIVITY

i { | {

| 1D LI | | NoT TRIGGERED | |  KOT ENABLED . |
a 0R $ trigger l [done) enable l disable ‘
i ione1 1
one
| 1 DLE | |disable
1 - } .
: a OB disable
PROCESSING ¢ OR b OR |
(done)
4 \ ’
suspend .
= — [ Processine | [ PROCESSING |
[ ) )
suspend resume suspend resune
| \ Y
| SUSPENDED | [ SUSPERPED | | SUSPENDED ]

Figure 2.7: activation and deactivation of operational activities (a: continuous flow
production (re-)start, b: continuous flow production (re-)end, c: intermittent value-bearing
flow arrival, d: point in time)

The first one, called a Moore-type automaton and represented in tabular form (known
as Activation Table), is characterized by the absence of input signals and prompts. Rather,
each state of the control activity, which normally reflects a situation that prevails in the
external environment, is specified by a combination of input values only (of continuous flows
or stored elements). They remain constant during a certain period of time (this is the time
duration of the state associated to this value combination). It is this combination of input
values that determines the output of the control activity. Each change of the input values
provokes actions of the control activity which may consist in sending signals and prompts
and modifying values of stored elements. It is also admitted to only change the internal state
without producing output. : '

The second way, called a Mealy-type automaton and represented by a State/Transition
Diagram, differs from the previous one in that the changes of state of the control activity
are determined by the arrival of signals and possibly by prompts and input values, which
are values of comtinuous flows or stored elements accesssed by the control activity. These
modeling elements characterize conditions for a change of state. A state is specified by a
descriptor (a piece of text that indicates the modeled external environment situation). This
automaton can produce the same kind of output as those of a Moore-type.
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3 Elementary and Co'm‘pact Petri Nets

Data and Control Flow Diagrams as well as State/Transition Diagrams are the principal
modeling tools of the ESML approach. Their usefulness could considerably be increased if
one could base their interpretation on formally defined semantics which reflects the dynamic
properties.— the behaviour — of real-time systems in a precise and unique way without
showing unnecessary details.

Dynamic systems modeling on any level of abstraction is the most common application
area of Petri Nets (PN). Their structure as well as their dynamics are formally defined. |
Hence, if we manage to express ESML constructs in PN terms, we have a formal semantics
for ESML models of real-time systems.

We assume that the reader is familiar with elementary (one token per place) nets called
C/E-Systems in [6]. Formally, a net is a triple (S,T; F) where S and T are two non-empty
disjoint sets and F' C (S x T) U (T x S) is a set of ordered pairs representing adjacency
of S- and T-elements. An S-element, also called a place (represented by a circle), models a
local state or condition, a T-element (represented by a box) in the setting of its adjacent
places (a subset of F') models a local transition or event. In a PN diagram, adjacency of two
net elements is represented by an arrow from the first to the second component of the pair.
Figure 3.1 shows a PN diagram (PND) modeling two conditions and two events.

M)
A

M)
S

Figure 3.1: PN model of two conditions and two events

‘Whether a condition holds or not is indicated by a token (a black dot in the circle):
presence of the token at a place models that the condition is holding, absence the contrary.
A distribution of present and absent tokens over the whole net is called a markz'ng of the
net.

For system specification use we prefer to see a T-element and its setting as a whole and
call it a link, since the places corresponding to the conditions involved in an event are linked
to model the event. In a PN diagram, a box with its ingoing and outgoing arrows or ares
and surrounding circles represents a link, while the arcs represent the dranches of the link.
The PN of Figure 3.1 has two links with two branches each.

The dynamic aspects captured by a PN model are expressed by its links. A link deﬁnes a
particular change of the marking of its places. In a (usual) PN with two kinds of arrows, an
occurrence of the change turns present tokens absent and absent tokens present. A change
can only occur if it is enabled. The change defined by a link is enabled if and only if at all
entry places of the link the token is present and at all exit places the token is absent. This
is the familiar transition rule for Petri Nets with single-token places.,

Ease of modeling can considerably be enhanced by introducing two further kinds of
branches (represented by special arrows) which are obtained from a particular foldmg of

-ordinary branches, i.e. without modifying or extending basic semantics of elementary nets
- [8). With respect to a glven place, one of these arcs expresses that the condition modeled -
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by the place ceases to hold and, coincidently, starts to hold — the presence of the token
is “restored”. Of course, these aré two different holdings of the same condition. Such a
construct is also referred to as a “side-condition”. The other arc expresses the contrary:
absence of the token is “tested” (see Figures 3.3 and 3.4 below). It resembles what some
authors call an “inhibitor arc”. , |

With these new arrows we distinguish the following four kinds of branches: altering entry
branches, altering exit branches, restoring entry branches and restoring ezit branches. Now
that we have more than two kinds of branches, the F-relation can no longer be formalized as
FC(SxT)U(T x S). Rather we use branch labels f = {a-entry,a-exit,r-entry,r-exit}
to label branches according to their kind.” A branch label indicates the way in which an
S-element is connected with a T-element or, in other words, the way in which a place
participates in a link.

Figure 3.2 summarizes the drawing conventions for branches we use in net diagrams.

a-entry: (O———————od{"]
r-entry: O——— |
a;exit: D——-——-———-O
r-‘exiéz H
Figure 3.2: representation of labeled branches

The meaning of the four branch labels should be evident from the example given in
Figures 3.3 and 3.4. The change defined by the link with three entry places and two exit
places is the transition from the marking shown in Figure 3.3 to the marking shown in Figure
3.4. Note that the places with restoring branches do not change their markings.

Figure 3.3:mmarking before change Figure 3.4: marking after change

Non-value-bearing flows shall be modeled with elementary nets. For the notions of con-
currency, sequentiality, conflict, process etc. the reader is referred to standard PN literature
(e.g. [6]). For nets with restoring branches as basic elements, some of the standard net-
theoretical concepts have to be adapted in a straightforward way.

Value-bearing flows, in order to support visualization and at the same time keep their
models in a manageable size, require a compact form of Petri Nets which is achieved by
attaching formal annotations to place, link and branch symbols [2).

This allows to collect the possible values of a considered flow into a set which is assigned
to a place of a compact net. The set of possible values is called the domain of the (compact)



Towards a rigorous interpretation of ESML 15

place. Each element of the domain represents a place of an underlying elementary net. For
example, the compact place p shown in Figure 3.5 represents the four elementary places
depicted in Flgure 3.6. '

p @O 06
‘{1a27374} | . (P73) O @ (p,4)
Figure 3.5: compact place Figure 3.6: underlying elementary placeé

The domain of a place is defined by its annotation (attached to the circle, e.g., place p
in Figure 3.5 is annotated with the term {1,2,3,4}). The example shows also that presence
of the token in the elementary place corresponding to a particular value (e.g. place (p,4) in
Figure 3.6) is represented by writing that value in the compact place symbol.

Compact places call for compact links. In the same way as a compact place comprises a -
set of elementary places, a compact link comprises a set of elementary links and thus defines
a set of changes. How are they defined? Annotations of the individual branches (attached
to the arrows) and of the link as a whole (attached to the box) specxfy the set of underlying
elementary links as will be explained in the sequel.

For the purpose of this paper it is sufficient to consider terms as branch annotations
which denote ezactly one element of the domain of the branch’s place (in general, subsets of
the domain are considered). A link annotation is a formula in terms of the variables used in
the branch annotations. The underlying links defined by the compact link result from the
evaluation of the formula. Each assignment of values — drawn from the respective domains
— for which the formula yields True represents an underlying elementary link whose places
are those elementary places which correspond to the assigned values (remember Figure 3.5
and its expansion Figure 3.6).

Given the compact net of Figure 3.7 we get the elementary net of Figure 3.8, since y = 3,
z =35 and y = 4, z = 7 are the only combinations which meet the above requirements.

(p,1)
O

®2) 63 (5,4)
O .
P O {1,2,3,4}

y
11E;|2y—1=z/\x>3 v O O ' O
T - (2,4) (9,9 (a,6) (q,7) (q,8)

O O O | etc.
q é {n | n natural number } (1,1) (3,2) (g,3)

Figure 3.7: compact net ) ~+ Figure 3.8: elementary net

The “token game” of a compact net'is thus defined in terms of its underlying elementary
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So, w1thout necessarily suggestlng this termmology for use with ESML, we shall use the
terms

— operational activity instead of “flow transformation” or “data transformation”,
— control activity instead of “control transformation”,

— flow connection instead of “flow”,

— store connection instead of “store”.

Roughly speaking, branches with a common place will represent a flow connection or a
store connection, a link will represent a control activity or an operational activity. Similarly,
given a State/Transition Diagram (STD), a place will model a state, a link will model a
transition. This seems to be a quite obvious set of translation principles.

In the world of DFDs, activities with input flow connections are sometimes assumed or
required to react “immediately” as soon as an input flow has been produced. Apparently,
this rule is intended to allow for “time-free” models in the sense of disregarding actual
time and duration of flows and activities. However, we do not think that time-free modeling
implies or requires “zero-time” interpretation of flow connections. Rather, the idea is to hide
actual time relationships between activities without ignoring that any implementation of a
flow connection is a technical construct which causes the receiving activity to react “without
delay”, i.e. without a delay additional to the one given by the physical implementation.
In other words, arrival or change of an input flow. causes the destination activity to start
(or continue) within a non-zero time span which depends on the physical properties of the
implementation. Although a functional model will not reflect non-essential time aspects of
the object system, one should keep in mind that in any implementation the effects of activities
can only propagate with finite velocity. Consequently, we shall base our translation from
ESML to PN on the principle that an “essential” model should disregard actual time values
as far as they are not relevant for the considered functionality without assuming them to be
 zero.

As opposed to input flow connections, activities with input store connections are not
assumed or required to react immediately as soon as an input content is available. So,
the production of an output content by the emitting activity does not cause the destination
activity to react immediately or, in terms of 1 2], “has no immediate effect on” the destination
activity. From an 1mplementat10n point of view the interpretion is obvious: Arrival of an
input content establishes only one of usually several conditions which enable an activity,
but it doesn’t cause it to operate. The store content remains available for any period of
time. Of course, it can’t be accessed earlier than permitted by the physical properties of an
implementation of the store connection. In other words, an additional delay is techmcall)
possible, though not required. ‘ ‘

Our approach to translating ESML connections into PN diagrams is to omit any timing
on the level of functional modeling, i.e. not to represent time related properties of flow and
store connections. This does not preclude other dynamic properties from being captured by
PN constructs, e.g. loss of information if the destination activity is not ready or production
of some error signal when a flow arrives before a particular store content became available.
Where time is considered relevant for a model one can model the course of time by means of
PN constructs with a formal condition/event semantics (see e.g. [7]). Where it is important
to model that an activity should not be considered as an instantaneous transition from one
state to another, a “first event” and a “last event” could be introduced in order to capture
the notion of duration.
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net. However, it is only in special cases that reference to the underlying net becomes neces-
sary. In most cases, a diagram of a compact net allows to directly visualize the d;» namics of
a system.

For the purpose of this paper we can adopt a further restriction: no more than one
value can be present at any place (in general, several values are allowed). In the model of a
value-bearing flow, presence of a value means that this is the current value or content of the
modeled flow. -

Occurrence of a change means that the values (like “high-level tokens”) at each altering
entry branch disappear, at each restoring entry branch remain present, at each altering exit
branch appear, and at each restoring exit branch remain absent (same principle as with
Figures 3.3 and 3.4). .

As an example, consider the preceding compact net (Figure 3.7) where link 1; defines
two changes (see Figure 3.8). Let 3 be the current value in place p (place (p,3) with token
present). If value 5 is absent from place q (place (q,5) with token absent), then that one of
the two changes is enabled which turns value 3 absent in p and value 5 present in q. When
this change occurs, 3 disappears from p and 5 appears in ¢ — or, in terms of the underlying
net (Figure 3.8): the token becomes absent in (p,3) and present in (g,5).

Due to their “elementary net semantics”, compact nets can easily (and formally) be
combined with elementary nets. It seems to us that it is this feature which provides a
powerful tool for real-time systems modeling, since it allows to combine control flow and
data flow in a natural manner. We shall try to substantiate this claim in the following
sections.

4 Principles of translation

In the sequel an attempt is made to underlay ESML diagrams with a formal semantics based
on Petri Net Theory. It is not our intention to propose any extension or modification with
respect to ESML, but to show common dynamic features of ESML constructs by using a
uniform and mathematically founded notation for systems with concurrent processes, i.e.
Petri Net diagrams (PND).

As the reader might have observed in section 2, we use a slightly modified terminology
because, to our mind, the terms “flow” and “control” in connection with “transformation”
do not adequately reflect the interpretation intended in ESML. They are even prone to
misunderstanding, for both kinds of transformation represent activities of flow processing.
Thus, for the purpose of this presentation, we suggest a terminology which stresses what is
specific by referring to the organizational functions those activities have in a system. While
“control” indicates influence over some other activities which are then controlled, the latter -
are activities in the sense of units of work in which data, material or energy is processed
under the control of control activities. We propose-to contrast them with control activities
by calling them “operational” activities.

Moreover, we are not comfortable with the use of “flow” in the sense of a system com-
ponent. Strictly speaking, a flow is an act of flowing or an uninterrupted movement or
continuous transfer of something or the like. But it is not a medium through which a flow is
achieved. It seems therefore more appropriate to allude to the purpose of a “flow” which is
to connect several activities in the sense of a generahzed channel. The term connection has
been chosen to reflect this meaning.
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A refinement of an ESML control activity like the STD of Figure 4.1 is represented by
a PN diagram with a basic structure as outlined in Figure 4.2. It goes without saying that
the concrete PN diagram will depend on the details of a given STD.

— L 7

| | | S
Figure 4.1: State/Transition Diagram '
schema Figure 4.2: PN diagram schema

The variety of features dealt with in ESML is clearly not captured by these schematic
examples. They rather should outline the general idea of our approach to a formal ESML
semantics. We shall use combinations of elementary and (simple) compact nets in order to
reflect the dynamics of ESML constructs, 1.e. their execution rules. Sections 5 to 7 elaborate
on the functional characteristics of various kinds of flow connections, store connections,
control activities and operational activities.

5 Connections between activities

5.1 Flow connections

The following examples are to illustrate the proposed translation of ESML connections into
PN constructs. In particular, one should take into account that the connected activities are
not shown in a complete functional context where usually several flows enter into or originate
from a considered activity. In Figure 5.2, for instance, link u alone would not suffice if the
task were to model an activity which produces a signal whenever the temperature exceeds a
given value. Not only would it be necessary to add a further branch from u to an elementary
place (as e.g. in Figure 5.7, left arrow) and attach an annotation, say, t > 30 to the box, but
also had one to provide further PN constructs to ensure that only after the temperature has
dropped below the limit a situation of exceeding will be signalled anew.

Value-bearing flows:

A value-bearing flow connection (“data flow” in [12]) is modeled by at least two links with a
common compact place. The domain of the place is the set of possible flow values. Remember
that, in the context of this paper, we impose a restriction with respect to the presence of
values in a place: No more than one value can be present at any time.

For a flow connection with continuously available values the correspondence is shown in
Figures 5.1 and 5.2. '
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temperature
tenperature n 12} ty t 2
- [k © ‘ (]
t #£ i, {n|IsTempVal (n)}
Figure 5.1: TS of a value-bearing Figure 5.2: PND of a value-bearing

continuous flow connection ‘ continuous flow connection

The small box within the symbol for the place temperature stands for a particular value
drawn from the domain of that place which is defined by the place annotation {n | IsTempVal (n)}.
Place temperature pertains to two branches of link m whose symbols are drawn one over the
other according to the drawing convention depicted in Figure 5.3, which is also used for
branches without annotations.

i~ “ 0
stands for
31

CF =0
t,

Figure 5.3: double arrows

Overlaid symbols for altering branches should, however not be confused with symbols
for restoring branches.

Link m models an activity which modifies the current value of temperature, i.e. which
causes the old value to disappear and the new value (different from the old one) to appear in
place temperature. Link u models an activity which uses the current value of temperature,
~i.e. which reads the current value without changing or consuming it. The initial value of
temperature is either given by an initial marking of the net or produced by another activity
not modeled in the example. Remember that a missing link annotation (as with link u) is
equivalent to the formula True. This is to say, that the set of events defined by the link is
not further restricted. |

For a flow connection with intermittently available values the correspondence is shown in
Figures 5.4 and 5.5.

aircraft number
P n n S

L4 ©- 1]
{z | IsAircraftNr (z)}

Figure 5.4: TS of a value-bearing Figure 5.5: PND of a value-bearing
intermittent flow connection intermittent flow connection

Link p models an activity which produces an aircraft number, i.e. which causes a value
drawn from the domain of place aircraft number to appear in that place Link ¢ models an
activity which consumes the aircraft number, i.e. which reads it and causes it to disappear.
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Non-value-bearing flows:

A non-value-bearing flow connection (“event flow” in [12]) is modeled by at least two links
with a common elementary place. The distinction between “signals” and “prompts” is
expressed by the way the places are linked.

For a signal the correspondence is shown in Figures 5.6 and 5 7.

P overflow c

..... t{!f!{!e:'... ] ® -]

Figure 5.6: TS of a non-value-bearing Figure 5.7: PND of a non-value-bearing
' (signal) flow connection " (signal) flow connection

Link p models an e.ctivity which produces a signal indicating the occurrence of an over-
flow. In other words, the token in place overflow turns present which means that condition
overflow holds. Link ¢ models an activity which consumes the signal, i.e. which “reads” it
and causes it to disappear. In other words, the token in place overflow turns absent which
means that condition overflow no-longer holds. Here we have an example of a potentially
misleading place designation. It is not the condition “overflow exists” which is modeled by
overflow but, strictly speaking, the condition “overflow has been indicated, no activity has
responded so far”. :

For a prompt the correspondence is shown in Figures 5.8 and 5.9.

Y=x |+ Gem

—

e 31

RNpp— p (T, (), (D), (S), (R) &
v 1]

Figure 5.8: TS of a non-value-bearing Figure 5.9: PND of a non-value-bearing
(prompt) flow connection (prompt) flow connection

Link p models an activity which produces one of the five possible prompts (of course,
only one of the five place designations (T) ... (R) is attached to a place modeling a prompt).
Presence of the token in a place (T), for example, means that a trigger prompt has arrived or,
more precisely, that the condition “trigger has arrived, but was not yet responded” holds. In
Section 6.2 we shall see that activities modeled by hnks ¢c; are more complex than suggested
by Figure 5.9.

The purpose of a non-value-bearing flow- connection is to control the destination activity.
As soon as the latter actually reacted, the condition which ceased to hold can start anew
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to hold, since the reaction on signals and prompts is always “destructive”: presence of the
token is consumed because the condition does no longer hold for the intended purpose once
(it has “done its job”.

5.2 Store connections
Non-depletable stores:

A non-depletable store is a repository for a value-bearing flow content. It is modeled by a
compact place. Its “value” (content) is usually a complex information object (not shown in
this presentation). The initial content of a store is either given by an initial markmg of the
net or produced by another activity not modeled in the example.

For a non-depletable store connection the correspondence is shown in Figures 5.10 and

5.11.
r—l] airspace status ,
u
S2 s
® - (]
x_n_ {a|IsAirspaceStatus (a)}

alrspace UPDATE (31, )

status

Figure 5.10: TS of a non-depletable store Figure 5.11: PND of a non- depletable store
' ‘connection . ‘ connection

Unlike the model of a flow connection with continuously available values this model
specifies modification as being a function of the current value. In the example, a new item
n is obtained from somewhere, and link m models an activity which modifies the current
store content (see annotation beneath box m): the new status s, which is to appear in place
airspace status is defined to be the result of applying an operator UPDATE on the the
old status s; and the new item n. Link u models an activity which uses the current airspace
status, i.e. which reads the current content without changing or consuming it. Of course, u
is assumed to be activated by some further condition not shown in the example.

Depletable stores:

A depletable store (“buffer”) is a repository for a value-bearing flow content or for several
copies of a non-value-bearing flow content. The latter case will not be elaborated on in this
article. A depletable store connection for value-bearing flows is modeled by a compact place
whose content, is accessed according to an internal organization (FIFO or LIFO).

For a depletable store connection the correspondence is shown in Figures 5.12 and 5.13.
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requests
« . L -©-

h {q|IsRequestList (¢)}
' ' 12 = 12 =

LASTINCL (L,q)  FIRSTEXCL (1,)
A g = FIRSTEL (1)

Flgure 512: TS of a -depletable store Figure 5.13: PND of a . -depletable store
connection : connection

Link m* models an activity which modifies the current store content by adding some item
to it. In the annotation of link m*, we assume an operator LASTINCL which includes a
request ¢ (obtained from somewhere) as the last element in a list of requests. The list I, which
is to appear in place requests as its new marking is defined to be the result of LASTINCL.
Link m™ models an activity which modifies the current store content by removing some item
from it. In its annotation, we assume an operator FIRSTEL which yields the first element
of the list of requests /; and another operator FIRSTEXCL which excludes that element
from the list. The list /; which is to appear in place requests as its new marking is defined
to be the result of FIRSTEXCL , while request ¢q excluded from the old list appears in some
place not shown in the example. (Remember that the scope of a variable is a link rather
than the whole diagram.) The underlying organization of the store connection is assumed
to be of type FIFO. There are, of course, many ways of modeling a FIFO organization, in
particular when concurrent access to both ends of a queue is desired or required.

6 Control activities

ESML distinguishes two modeling levels for control activities:
e the level of “transformation schemata”,
e the level of “transformatio.n specifications”.

While the transformation schema of an ESML model shows the causal relationships between
control and operating activities, the specification of a control activity gives a detailed descrip-
tion of its logic. We'll restrict ourselves to the use of State/Transition Diagrams (STD) for
specifying control activities, although this is not the only representation allowed in ESML.

6.1 Transitions between states of c611trol activities

Figure 6.1 shows a TS for a control activity CF1 with value-bearing (a and b) and non-
value-bearing (signal s,) input and with value-bearing (c) and non-value-bearing (signal s,
prompt A) output. :
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[ STAIE 1

| SWIE2 |

Figure 6.1: TS of control activity CF1 with  Figure 6.2: STD specifying the behaviour of
flows and non-depletable stores control activity CF1

A specification of the behaviour of CF1 is given by the STD shown in Figure 6.2. The
transition will occur only if the three input conditions hold together, i.e., the signal s; is
present and a = 71 and b > 35 are both True, and if the activity is in STATE 1. The signal
will be lost, if any of the three other conditions does not hold when it arrives.

The PN depicted in Figure 6.3 provides a formal definition of the dynamics expressed by

- the previous STD.
STATE 1 ))
{

:z:=71/\y>35/\u=\3[ |

852

O~
)]

O
COu

STATE 2 (')

Figure 6.3: PND for Figures 6.1 and 6.2
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Figure 6.4 shows a TS for a control activity CF2 without value-bearing input, but with
two independent non-value-bearing inputs (signals s; and s;).

| SIEL |
sl s2
L4 $ 29 53
) (E)Ql L ]
J v

LsatE2 | |smIE2 |

Figure 6.4: TS of control activity CF2 with  Figure 6.5: STD specifying the behaviour of
non-value-bearing flows control activity CF2

A specification of the behaviour of CF2 is given by the STD shown in Figure 6.5. There
are two mutually excluded state transitions. If both signals are present and the activity is in
STATE 1, a conflict exists between the two possible transitions. The STD does not specify,
which one will occur. A signal will be lost, if the activity is not in STATE 1 when it arrives.

The PN depicted in Figure 6.6 provides a formal definition of the dynamics expressed by
the previous STD. o

. /LSTATE 1

s3
(™
(E)

STATE 2 S) (‘) STATE 3

Figure 6.6: PND for Figures 6.4 and 6.5

Figure 6.7 shows a TS for a control activity CF3 without value-bearing input, but with
‘two independent non-value-bearing inputs (signal s; and stored control information s,).
Control information s, is supposed to be obtained from a depletable signal store.
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| smIEd . l
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o sz [ STATE 1
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TELE | 1 STATE 2 |
Figure 6.7: TS of control activity CF3 Figure 6.8: STD . Figure 6.9:
with non-value-bearing flows specifying the abbreviation for the
and depletable store behaviour of CF3 STD of Figure 6.8

A specification of the behaviour of CF3 is given by the STD shown in Figure 6.8. In this
case, signal s; will not be lost if there is no item in the control store when it arrives. Rather,
CF3 will enter in an intermediate waiting state WAITING ON s, until s; has arrived. If upon
arrival of s, signal s, is already present, the transition from STATE 1 to STATE 2 occurs in
one step. However, the signal s; will be lost, if the activity is not in STATE 1 when it arrives.

As this is a rather common structure in control activities, we propose in Figure 6.9 an
abbreviated representation, using [...] to indicate optional presence of s, upon arrival of
Si.

STATE 1

(D)

STATE 2

Figure 6.10: PND for Figures 6.7 to 6.9
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The PN depicted in Figure 6.10 provides a formal definition of the dynamics expressed
by the previous STD (the place wt models the state WAITING ON s;).

6.2 Prompts and control activities

On the level of transformation schemata, six basic structures are distinguished with respect
to “input prompts”. For the sake of visualization, the net diagrams show only those parts
of an assumed complete net which define the reactions of a control activity to incoming
prompts. For the other dynamic aspects see the preceding subsection.

Notice that the net models of prompted control activities conceive the transitions defined
by a transformation specification as forming a sequential process. Concurrency is possible
* between control activities rather than within a control activity. Each PN diagram shows an
initial marking which models a possible initial state of the activity.

It should be emphasized that the PN models were designed to show the basic functional
components of input prompt processing in control activities. This is to say that certainly
more streamlined or more elegant PN models can be constructed for specific ESML diagrams.

Standing control activities

The ESML diagram of Figure 6.11 (a transformation schema) characterizes a control activity
without any input prompts. Its meaning is specified by the PN diagram of Figure 6.12.

idle

Figure 6.11: control activity without input
prompts Figure 6.12: PND corresponding Figure 6.11

The PN model shows that a standing control activity without input prompts is always
enabled to be performed. The state represented by the token in place idle can not be
distinguished from a control point of view. It simply indicates a kind of internal home state
of the activity.

Adding a suspend and a resume prompt to a standmg control activity we get the ESML

‘diagram of Figure 6.13. Its semantics is formally specified by the PN diagram of Figure 6.14.
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idle - | not suspended
L\
(s)
(s)
(s)
(s)
Figure 6.13: control activity with a pause :
(s/R) input prompt Figure 6.14: PND corresponding Figure 6.13

The PN model results from adding a suspend/resume “module” to the previous model.
For the sake of readability, place (S) is represented several times. Multiple representation
of the same net element (place or link) is merely a graphical convenience. An equivalent
diagram is obtained by drawing only one symbol with usually many arcs. At any instance,
a suspend prompt (token in place (S), i.e. in all symbols representing (S)) and/or a resume
prompt (token in place (R)) can arrive. This is indicated by the dangling arcs entering
the place symbols. The two places suspended and not suspended in the middle model the
situations of being suspended or not suspended. Initially, the PN model has a token in place
not suspended and in an arbitrary place of the cycle.

The model shows how a suspend - resume sequence works, in partlcular, how a resume
prompt causes the suspended activity to continue from where it left off. It also shows
that a suspend prompt disappears if the activity is already suspended and a resume prompt
disappears if The activity is not suspended. Note that the places suspended and not suspended
are complementary to each other.

Triggered control activities

The ESML diagram of Figure 6.15 denotes a control activity with a trigger prompt. Its
semantics is specified by the PN diagram of Figure 6.16.
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triggered

&9)
not triggered

Figure 6.15: control activity with a trigger
: input prompt Figure 6.16: PND corresponding Figure 6.15

The PN model shows that a triggered control activity has three special states: place not
triggered models the “home state” of the activity, place (T) the arrival of a trigger prompt
and place triggered the state after having responded to the trigger. At any instance, a
trigger prompt can arrive (token appears in (T)). A trigger prompt is discarded if the
activity is already triggered and has not yet reached its natural termination (token in not
triggered). Each step within the activity requires the token in triggered. Only the last
step causes the token in triggered to disappear.

A more complex structure arises if we consider a control activity with a trigger, a suspend
and a resume prompt as specified by the ESML diagram of Figure 6.17. Its semantic is
specified by the*PN diagram of Figure 6.18.
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triggered and -
(s) " suspended (R)

triggered and

not suspended

(s)
""""""""" (s)
Figure 6.17: control activity with a trigger :
and a pause input prompt Figure 6.18: PND corresponding Figure 6.17

The PN model results from adding the already known suspend/resume module to the
previous model of a triggered activity. As there is some interference between responses to a
trigger prompt and responses to suspend /resume prompts, two additional links and three link
extensions (additional branches) are necessary to reflect exactly and completely the possible
interferences. For example, a suspend prompt reaching an activity which is not triggered will
simply disappear (see link with the two places (S) and triggered and not suspended). The
same happens if a trigger prompt reaches the activity in the state triggered and suspended.
If a triggered activity is suspended, a resume prompt allows it to continue exactly where
it was suspended. In order to visualize the dynamics captured by the model the reader is
invited to “animate” the model by playing the token game with real pieces.
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Enabled/disabled control activities

A control activity with an enable and a disable prompt is specified by the ESML diagram
of Figure 6.19. Its semantics is defined by the PN diagram of Figure 6.20.

not enabled
(e)

(E) | (D)

en-1

(D)
en-n
-- d\ T
__________ /
- [
(»)
Figure 6.19: control
activity with an activate
(E/D) input PTOTHPt Figure 6.20: PND corresponding Figure 6.19

The PN model shows that there are three states of special interest: place not enabled
models the initial state and the state resulting from responding to a disable prompt, place
(E) models arrival of an enable prompt, and place (D) of a disable prompt. For the sake of
readability, place (D) is represented several times. At any instant, an enable prompt and/or
a disable prompt can arrive (token appears in (E) and/or (D)). A token in one of the places
named en-... (“enabled”) means that the activity is enabled. For the sake of simplicity the
current states of an enabled activity have been concentrated in single places en-1, en-2,
en-n without loss of generality.

When playmg the token game recall that arrlval of a disable prompt is reflected in the
model in that a token appears in all place symbols with name (D). However, only one of the
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changes defined by the links which connect a place en-..., the place (D). and the place not
enabled will be enabled and will remove the token from “its” place en-... and (D). The next
enable prompt will then enable the change which causes a token to appear in place en-1.

The most complex structure arises when the two “binary” prompts are combined. The
- ESML diagram of Figure 6.21 specifies a. control activity with an enable, a disable, a suspend
and a resume prompt. Its semantics is defined by the PN diagram of Figure 6.22.

" not enabled

(o)
® )
en-1
§
)
1 -
|
(D)
en-n
- - \
---------- d
e s rH
|
(D)
Figure 6.21: control
activity with an activate
and a pause Thput prompt Figure 6.22: PND corresponding Figure 6.21

The PN model results from extending the previous one. This time, however, embedding
the suspend/resume module requires an individual complementary place to each place with
en-... in order to allow for a later continuation of execution due to a resume prompt. These
complementary places are named with ensus-... (“enabled and suspended”). For the sake
of readability, places (S) and (R) are represented several times. This is also true for link
1 which links (R) and all places ensus-... in order to discard a resume prompt arriving
when the activity is not suspended. At any instance, any combination of the four prompts -
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can arrive (token appears in one or more places of the set (E), (D), (S) and (R)). If there
is a conflict, e.g. a suspend and a disable prompt arrive simultaneously and the activity is
enabled, the model does not prescribe a decision concerning its resolution. Whether the
next state of the activity is “enabled and suspended” or “not enabled” is not determined
by the model. The reader is encouraged to “run” the model by manual simulation with
physical tokens in order to explore the various eflects resulting from concurrent prompts.
Four dangling arcs indicate that a token can arrive at any moment unless there is still a
. token in the place.

7 Operational activities

This section illustrates the use of PN diagrams for modeling some basic structures of oper-
ational activities by means of examples. They are all drawn from Volume 1 of {12]. We do
not include examples with suspend/resume prompts since they would not add new aspects
compared with the foregoing section. :

Standing operational activities

Figure 9.1 of [12] shows a model of a standing operational activity with intermittently avail-
able value-bearing input and output flows Aircraft Number and Aircraft Status and a non-
depletable input store Airspace Status It can be translated into the PN diagram of Figure
7.1.

aircraft aircraft

number status
n c

—@ 03 O~
find s{ ¢=STAT (n,s)
aircraft
status

airspace status

Figure 7.1: PND for a standing 6perational activity

In this PN diagram, aircraft number, airspace status and aircraft status are compact
places. The operator STAT is assumed to return the status of an aircraft with number n
from the airspace status s. The annotated link find aircraft status specifies all legal
combinations of , s and c, i.e. all combinations which yield True (recall that the values of
n, s and c are drawn from the domains of the respective places). Each legal combination
represents a change defined by the link. In this and the following examples, all compact
places are supposed to have their domains suitably defined. Thus no formal annotations
(terms) are given with the place symbols.

The arrival of an aircraft number enables the activity to produce an aircraft status.
However, due to our restriction with respect to the number of values in a place, an aircraft
number or an aircraft status can only appear in a place if the place is empty.
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Triggered operational activities

Figure 9.5-A of [12] shows a model of a tfiggered operational activity with a continuously
available value-bearing input flow Temperature and a non-depletable store Temperature His-
tory. It can be translated into the PN diagram of Figure 7.2.

triggered

(™

record
] temperature value

hy | 2= APPEND (t, ;)

temperature ¢

ha

© temperature history

Figure 7.2: PND for a triggered operational activity

In this PN diagram, places (T) and triggered are elementary places as in Figures 6.16
and 6.18, while temperature and temperature history are compact places. The expansion
of the double-headed arrow with two annotations is given in Section 5, Figure 5.3. The
current temperature value is continuously available in temperature (except, of course, at the
moment of its change). Output (a new temperature history) can be produced not until after
the activity was triggered. The new temperature history h, is defined to be the result of
applying the operator APPEND on t and the current temperature history h, (“appends”
t to hy in some way). Recall that the arrival of a trigger prompt is reflected by a token in
place (T). This enables the activity to enter the state triggered and subsequently to record
the (current) temperature value in the temperature history. When this occurs, the token in
triggered turns absent. : :

Figure 9.5-B of [12] shows a model of a triggered operational activity with a non-
depletable input store Airspace Status and an intermittently available value-bearing output
flow Airspace Status Report. It can be translated into the PN diagram of Figure 7.3.

triggered
airspace
¢y P
status
produce , Teport
airspace status [
. report s1 T=ASR(s)

@© airspace status

Figure 7.3: PND for a triggered operational activity -
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This diagram, with compact places airspace status and airspace status report, shows
an activity modeled by the link produce airspace status report. Once triggered, it can
produce a report r which is defined to be the result of applying the operator ASR (“airspace
status report generator”) on the airspace status s.

Enabled/disabled operational activities

The following three examples show typical configurations of connections with enabled /disabled
operational activities without suspend/resume. _ »
Figures 9.2, 9.3 and 9.5-C of [12] show a model of an enabled /disabled operational activity
with intermittently available value-bearing input and output flows Aéircraft Number and
Aircraft Status and a non-depletable store connection Airspace Status. It can be translated

into the PN diagram of Figure 7.4.

not enabled

(E)

aircraft aircraft
number status
N O—
find s 4 ¢=STAT (n,s)
aircraft
status

© airspace status

Figﬁre 7.4: PND for an enabled/disabled operational activity

This PN diagram shows three compact places aircraft number, airspace status and
aircraft status. The places (E), not enabled, (D) and enabled are elementary places as
in Figures 6.20 and 6.22. The dynamics expressed by Figure 7.4 includes the following
processes: A token appears in (E) and causes the activity to become enabled (token in place
enabled) or, as expressed in [12], “the processing of the prompt causes the token on the
Enable flow to be removed, and a token to be placed on the transformation itself to indicate
that it is currently enabled”). If the aircraft number (value in aircraft number) had arrived
before the token was in enabled, it would have been discarded. As long as the activity is
enabled, placing a token on (D) results in the removal of both tokens (viz. from (D) and
enabled). The resulting marking of the activity model (token in not enabled only) shows it
is currently disabled. Notice that for an occurrence of £ind aircraft status it is not only
required that enabled is marked but also that a disable prompt has not arrived (see restoring
exit branch to (D)). The aircraft status is defined to be the result of applying STAT on the
airspace status s and the aircraft number n. '

Figure 9.4 of [12] shows a model of an enabled/disabled operational activity with a
continuously available value-bearing input flow Temperature and output flow Heater Level,
which can be translated into the PN diagram of Figure 7.5.
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" not enabled.

(E)

- initiated

temperature

heater
level

(re-)start
maintain temperature

Figure 7.5: PND for an enabled/disabled operational activity

Since the links continue and maintain temperature haVe the same annotatxon, the for-
mula

h=HL(t,c)A h#z

is not repeated in the diagram and applies to both links (but nevertheless should be evaluated
independently for each link).

This PN has the two compact places temperature and heater level as well as five el-
ementary places (E), not enabled, (D), enabled and initiated. A continuously available
value-bearing output flow is produced while a token is present in place enabled and a disable.
prompt has not arrived (see restoring exit branch to (D)). In Figure 7.5, the special problem
is, that “output is prohibited as long as the transformation is disabled” [12]. This requires a
construct for removing the value from the place heater level together with the token from
enabled and a construct which models that “when the transformation is enabled ... it may
begin producing output values”. The latter is specified by the link (re-)start. The new
value of the output flow heater level h is defined to be the result of applying HL on the
(new) current temperature ¢ and some constant c¢. The previous value of the output flow z
is used for specifying that a new value must be different from the old one.

Figure 9.5-D of [12] shows a model of an enabled/disabled operational activity with a
continuously available value-bearing input flow Temperature as the only value-bearing flow
connection and a non-value bearing flow Overrun. It can be translated into the PN diagram
of Figure 7.6~
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not enabled-

temperature overrun
—’@ ) ﬁO"
t>30

detect temperature overrun

Figure 7.6: PND for an enabled/disabled operational activity

Figure 7.6 shows one compact place temperature and the five elementary places (E),
not enabled, (D), enabled and overrun. Place overrun is also said to model a “signal”. The
model is quite simplistic as has been stated in Section 5.1. The present model allows to
produce a signal whenever the token has been removed from overrun and the temperature
continues to be more than 30. With a further link and additional places one could specify
that a (new) overrun can only be signalled after the temperature had dropped below the
level of 30 and exceeded it anew.

8 Conclusions

The complexity of real-time systems and the degree of comprehensibility required for con-
structing dependable implementations call for rigorous modeling tools when informal and
semi-formal models can no longer provide the desired additional insight and confidence in a
system under development. Formal languages can provide the necessary rigour. Can they
also support intuition? High-level system models are or should be developed, discussed
and analysed by professionals of the application area rather than of computer science. A
graphics-based modeling language with a rigorous interpretation could provide a formalism
which stimulates comprehension of a model rather than to hinder it.

The results reported in this paper are expected to supply evidence that a modeling
language like ESML should be complemented with a formalism for static and dynamic system
modeling which at the same time supports intuition. Petri nets, tailored to the applications
addressed with ESML, have proved useful as a formal and graphical language for this purpose.
Their use is demonstrated through examples taken from ESML and TS literature.

Not surprisingly, the graphical symbols for functional units in ESML models and PN
models contribute considerably to visualization of system structure and system behavior. In
particular, when concurrency of system events cannot, or should not be excluded, a control-
lable simulation of the system model becomes of utmost importance, since it is usually this
way that a designer can explore the interaction of partially independent subsystems which
constitute the system at hand ~ provided that the model doesn’t exceed a manageable size.
Applications showed that for this purpose the essential behavior of the object system, i.e.,
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- the system to be monitored and controlled has to be modeled together with the real-time-
control system. : »

Increasing size of the models requires modularization. Hlerarchlcally structured models
consisting of hundreds of “blueprints” have to be edited and updated consistently, while they
must also be amenable to execution through all levels of the hierarchy. Software packages for
ESML models and for PN models are commercially available which meet these requirements.
Obviously, executability of models has become one of the principal motivations behind future
attempts to progress formal system modeling for engineering applications. .

Further research will have to include a variety of methodological efforts among which
the followmg seem to be the most relevant with respect to engineering applications. Petri
nets offer a number of high-level modeling constructs which have not been shown in this
exercise, e.g., places with several items, several copies of the same item in a place, state
constraints, transition constraints, synchronic distance, etc.. An in-depth analysis of typical
real-time system modeling needs could reveal the potential benefits of those constructs to
modeling system structures in engineering environments. In a next step, a collection of basic
PN constructs for real-time control and PN macros for frequently occurring ESML patterns
could be developed along with drawing and lettering conventions similar to other graphics-
based modeling languages. For the practitioners who have to solve problems rather than to
develop tools, a collection of “recipies” would be instrumental for translating from ESML
into PN, for improving the expressive power of “raw translations”, for analysing the obtained
PN models or for drawing conclusions in order to feed them back into the ESML models.
All these endeavors should, in the long-term, contribute to an integrated methodology which
covers the stages from mforrnal to formal system modeling and analysis. In addition, such
a collection could provide heuristics for assessing the relationship between a system model
and the real world counterpart.
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