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Resumo:

Este retatdrio descreve uma 'Impiementacéo eficiente de um

resolutor de Equa¢bes Diferenciais Ordindrias pura métodos
cfclicos do tipo Adams. . £ construfdo com sucessivas aplicagdes
de estratégias para métodos implifcitos, linha a linha do sistema
de equagles de diferengas correspondente. Atguns preditores do-
tipo Adams estdo disponfveis, bem como o ajuste automdtico de
passo. Discutem-se estratdgias para estimativas de erro tocal e

0 software gerado €& testado para métodos de ordem baixa, com
custo computacional reduzido.

Palavras—chave:

Resolutor para edqua¢des diferenciais ordindriaas baseado em
métodos cfclicos, ajuste de passo, estimativas de erro local.

Abstract:

This is a report on the deveiopment of an efficient
impiementation of a numerical solver for cyclic methods of Adams
type. It is buitt by means of successive appiications of

strategies for implicit methods, row by row of a systems of
difference equations. Several Adams predictors are available and
adjustable step size is provided. Strategies for error
estimation at egach step are also discussed, feading to a
.computationally inexpensive package, which is tested for . some
low order methods.

Keywords:

Sotver for c¢yclic methods, asdjustable atep size, local error
estimation. ‘



1 Introduction

The main problem refers to solving an Initial Value Problem {IVP) given by
y’:f[:z;’y) ’ xe[a,b] (1)

with y{z = a) = y(zs) = y» making use of an efficient numerical algorithm.

Within classical references for Numerical Solution of Ordinary Differential Equations
(ODE) [1][2] one finds discussions that highlights Adams-Moulton implicit methods as
those which provide less function evaluations, together with good precision requirements.
Such class of multivalue methods offers much less function evaluations than one-step meth-
ods such as Runge-Kutta [3] for orders greater than one, and has coeflicients smaller than
Adams-Bashforth’s explicit formulae {1}{3], leading to reduced roundoff errors.

Cyclic Methods (CM) are constracted through (p-cyclic requires p equations) k-step
linear systems, formed by k-valued linear difference equations, each of them referring to
multiple previous values (k in the firsi equation), whose solution generates an estimate
for the solution of the IVP under consideration at some grid point (seee.g. [4]). These
methods may provide fairly good properties of adequacy to power series to high orders,
being of interest both theoretically[4] and practically since few iterations can provide low
computational cost with good convergence {e.g. Donelson-Hansen’s method, 3-equation,3-
value, with order of convergence 6).

The solver 3o be presented finds one new value per row, row by row, leading to p
estimates that will be input for the next iteration of the cyclic method. We shall restrict
ourselves to the study of k = p methods. ‘ '

As an example for 3-equation, 3 valued method we have

by b ab-ysios = Ao B fijt o+ 85 faivs)
Q- ysier too 0 Pajos = h-{B%- fsjpit -+ 0Bs- foj-s}
oyt 0l ysj-s = h{BE- fjyet oo+ By foi-s} (2)

where f; means f(z;,¥;), ¥; is the numerical approximation to y(z;}, and z; denote grid
poiunts of the discretized domain. Referring o eqs(1), it is to be noticed that the complete
‘step of the cyclic method there expressed will first find an estimate of y;; making use of
the first equation. After this an estimate for gsj41 will be searched that uses the recently
found ys;. Calculating ys;42 in an analogous way one has the beginning of a process that
improves those estimates for ys;, Ysj41 20d Y342 through an implicit global procedure build
with individual implicit procedures. It is widely accepted thal some explicit procedure has
to be used when solving for each of the equations, in order to have a preliminar value for
fsiy fai+s and fajio, Tespectively. At such moment Adams-Bashforth formulae will be used.
In subsequent iterations of the cyclic method such values will be updated with the help of

the recently found values for ysj, ysj+1 and Ysit2 substituted within f3; , f3j41 and fsj2,
respectively. This is the general working structure of a PECE method, that is, Prediction
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{ Evaluation Correction }* Evaluation or P { EC }* . Such structure comes up both in
the global method and inside each equation. '

In the continuation of $he process, the equations will be advanced to other grid points,
with superposition of a number of values equal to the number of equations the Cyélic
Method shows, towards the grid point where the solution of the IVP is searched, that is,
the final value of the independent variable.

A Cyclic Method’s iteration will be congidered adequately performed when an absolute
(or relative) error per step is satisfied in the generated values. But this is enough, since
the step size adjustment module that makes the solver an efficient tool will require such
error estimate to check for the possibility of increasing the step size, or eventually halving
it. Some numerical tests of the Solver are performed, using a class of cyclic methods with
k = p, in order to describe performances both of the Solver (DECYC) itself and of the
criteria proposed for local error estimation.

2 Description of the Solver

2.1 Initialization

To start with the first ordinary step some preliminary calculations musé be performed.
Once we are solving an Initial Value Problem, where only z, and yo are available al the
first moment, Runge-Kutta formulae of order g are used to generate the { p— 2 ) values of
v { yo given ) and ( p— 1) values of f(z,y), necessary to solve the first implicit equation,
thus sta.x“smg the whole sweep through the p equations. '

2.2 Steady Btate Step

The standard step of a Cyclic Method is a sequence of implicit difference equation integra-
tions. In each of these equations we adopted PECE methods of at least k previous values
(that is, k -+ 1 values are present in first row, including the one to be found). Prediction
tasks were performed with Adams-Bashforth formulae of order equal fo the order of the
correctors, pr&cnbed by the user, while Correction used the implicit formulae generated
through the o's and f's specified for that row.

* Precision is specified by the user within the parameters passed to the module DECYC,
a8 a tolerance for the residual of the Power Serxes of order ¢ + 1 for an order ¢ method.

2.3 Order Control

One of the facilities of current versions of Numerical Solvers for VP Ordinary Differential
Equatlons is to alter the order of the step, thus offering increased orders when convergence
is not adequately achieved and avoiding computmg efforts (by lowering the order} when
precxsxon does not decrease substantially.



In the implementation considered here this was not possible, since the coefficients and
the order (fixed) are provided by the user in a list of parameters only once, thus remaining
constant throughout the processs of solving the ODE.

Consequently the only degree of freedom left was the Step Size:

‘9.4 Adjustable Step Size

The automatic control of step size is performed through an indirect estimate of the coeffi-
cient for the error term (in the Power Series Expansion) of the CM being performed.

Estimating local errors is the means the software has, in order to adjust the step size
for minimizing global errors without expending oo much compuier time (and avoiding
round-off errors related $o it). The usual way to obtain such estimate is [1]{2] to calculate
periodically(e.g. at each 10 steps[1]) the residual of the Taylor expansion that relates the
grid points at the difference equation. It can be shown [1] that the change in the last
component of a vector a which contains finite differences of y, that is,

Y. y(q)]
q

a= [yah'ylv",

is an estimate, at each step, of
h'ﬁ’_‘ . y(‘s""l)

. g
So the strategy consists of forming the quantities to verify

Cot1 ‘1' -V, l<.5
where - o
°q- ofder of the method
o Cyyy - coefficient of Power Series Residual, of ofder q+1
o ¢ - precision, specified by the user, for maximum local error
o a, - stores the scaled derivatives ofy
o Vagq - backward finite difference

Unfortunately, however, the coefficient of the first non-exact term within the order
consistency amalysis of the cyclic method under consideration, that is Cqyy, is not explicitly
available. This led us to look for alternative ways of controlling step sizes. Next we discuss
some aspects concerning the various trials performed.



2.4.1 Higher Order Runge-Kutta methods

In order to estimate the truncation error appearing when a value is obtained for a certain
v;, such strategy compares it with the result that would be obtained for the same z;,
starting from the last accepted value, that is, y;, for a p-stage {or p-row) method. Here a
(g +1)"™ order Runge-Kutta method would be performed to provide a more accurate value

in which we have stronger confidence.

Despite the fact that such suggestion is frequently brought up for its pedagogical in-
terest (to ilustrate equivalences between Multivalue and RK methods), it did not become
a good choice, and conceptually it would mean a disaster since a common sense solution
would then be to discard such cyclic method, using the RK one. Other important aspect
to consider was that the overhead associated would be relevant, since p RK steps (with at

least g + 1 evaluations of f in each) would be needed.

2.4.2 Internal Control by Doubling

Once the possibility of halving and doubling is deviged as a means of cohtrolling step
sizes(see,e.g.,|5]), a very simple and efficient strategy is to control the difference between
the values y; would have if A and 24 {or L, alternatively) are used to obtain if.

One should notice that this strategy is quite empirical and calculates, al each step
size’s validation, 4 .
| ERRD =y} - 7'
and /or - .
|  ERRH =y} - ¥/l
where tests for modification of step size are performed making use of ERRD, ERRH or
both. : '

The strategies proposed were:

o (a) Doubling (ERRH is not formed); if ERRD is identified as in I, = [0,7 - €),

L=lp-eb-c)orls=[0-¢ 00) it causes the program o double, preserve or halve,
respectively, the siep size. :

e (b) Halving (ERRD is not formed); analogously it selects the correct interval and
chooses the next step size. o

o (c) Mixed (both ERRD and ERRH are formed); in case ERRD is lower than 7- ¢,
step size is doubled while when ERRH is greater than § - € causes step size to be
halved. Qtherwise step size is preserved. ' :

Since the values that are required are stored to be at the program'’s disposal, no extra
calculation is needed $o start the Cyclic Method step which will generate y; with h doubled,

A
y3*. For the Cyclic Step to be performed with A halved(leading to y}), it was necessary
to generate some values for y which were not stored since the z's were not part of the grid
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for A but would be for %, thus making use of an inierpolation procedure such as Newton’s
backward difference fornula or one step of single-valued method such as Runge-Kutta’s(of

order q).
It should be pointed out that the criterion of Step Size Adjustment based on ERRD

appeared to be slightly more convenient than the ones thal used ERRH, alone or in the
mixed strategy. '

'2.4.3 Internal Control with Extrapolation Procedure

After trying to explicitly have the value of Cpyy, that could be done as soon as two steps
of the cyclic method (with different step sizes, of course) had been performed, a slightly
different procedure was adopted.

The coefficient Cyy, and the finite difference which approximates y'r) at a certain
value of £ can be obtained, exact to order ¢, by comparing the various y in the following
expressions. These specify that, neglecting previous errors, we may have errors only due
to higher order innaccuracy, after a CM step is performed, leading to '

b A e,
y = Yo+ O gy (€n)
. (am)e!
= )+ o oy 4 (6)
hyg+i
g’ = y(x;')+0q+1'(%%-m'y‘q+"(€g) | (3)

Here the notation y* means the value obtained as approximation for y(z;) making use of
a step size h while ylet11(¢;) is the (g+ 1) order derivative of function y(z) in some point
of the interval [zf_,2f], thus defined by h.

With such estimates, and making use of the usual assumption [1] that the immediately
higher order derivative varies smoothly in the integration domain, we can build the general

Richardson’s Extrapolation Procedure, which leads to

hll'H (g4 yh _ yeh
o gz ¥ (&)= T

and
e+t

' A
h__ gyl
: /i
Oy VO = T

with first correction term being of order g + 2.
The previous equations give rise to the local error estimation, used to conirol step
size adequacy. Namely, the tests for maintenance, doubling or halving of step size are

performed by checking if

. hq.{.[
LOCAL_ERR = ||Cp41 -

(g +1)!

-yl



is placed in the interval §; = [0, €|, , = (n-¢€,0 €] or 5 = (8 - £,00), where ¢ is
the precision required al each step by the user. Here, the values of 5 and ¢ are chosen to
allow low computational cost (that is, large step sizes), together with satisfactory precision
requirements. In practice the values = 0.7 and § = 1.4 were found to generate good
performance, in agreement with previous works [1][2].

2.5 Termination

Termination is performed as soon as the Solver achieves a region which contains the end -
point of the interval, namely b. The interpolation procedure uses a Newton’s backward
finite difference formula, writien as a Horner’s -algorithm, that leaves the fermination

costless.
That is, it is implemented through

Yo = Penr(7) .
= Yofgmpia] T (8 = B-fgopa]) - {YZ-lg-p]s T-fo-pt1]]
(37 = T-fgmpra) - A lo-prah T-ly-ptils T-la]
{21 = 2-gip) (25 = Bpe2) A{¥[Z-gp-2s 5 Tpma]} -} (4)

Where
' A(q+l)y(x—q+p‘2)

YT—gip-20 3 Tp-a] = hett (g + 1)! ‘

2.8 Schematic Description
The Solver module for IVP’s, named DECYC is now described through a diagram:

o DECYC

- INITIAL

+ VALIDATION
+ INIT
- LOOP {C1}
+ CYSTEP
- ADAMS-BASHFORTH
. CYCLIC-CORRECTION
+ STEP-CHECK {C2}
- HALVE
- DOUBLE
- STEPS
+ RFRESH



- FINISH {C3}
+ ABORT
+ INTERP

In the diagram, the logical conditions C1,C2 and C3 mean:

As

s C1 - verifies if limit number of sieps(provided by the user) and/or if the region which
contains last point of integration were achieved

o C2 - tests if it is time to perform step size adjustment (period is chosen as 3 x k)

» C3 - checks if number of steps exceeded(performing ABORT) or normal end is to be
processed(call INTERP)

a brief description we mention the modules and their functions

o VALIDATION - verifies if the parameters provided by the user allow execution(e.g.
if maximum number of steps permitted greater than one)

o INIT - prepares the environment for performing Cyclic steps, filling y’s and f ’8, via
Runge-Kutta calculations and function f calls

o CYSTEP - performs a cycle of the method, with the coefficients given by the usér,
through an order g prediction followed by one corrective step

s HALVE - generates the value yﬁ with the execution of a CYSTEP with step-size
halved and auxiliary values for y and f ab grid points of the “halved grid” which
were not part of the preseni one ‘

¢ DOUBLE - generates the value y?* with the execution of a CYSTEP with step-size
doubled and the use of some stored y and f values obtained in previous steps

o STEPS - checks for the needlof halving or doubling step-size by performing the
Extrapolation or Relative Error Tests

o RFRESH - put the values of y and f in the right places inside data structure(arrays)
and sets new beginning of Cyclic Interval(zo) -

o ABORT - ends the whole procedure giving control back to calling program

o INTERP - performs Newton’s backward finite difference interpolation with Horner’s

formula To give the approximate final value of the IVP(z;)



3 I‘Jumeriéal Tests

3.1 Preliminaries

In this section we list several experimental results obtained with the Solver DECYC.
The environment in which such runs were performed is VS-FORTRAN in an IBM 4341
machine. We point out that the coefficients used give rise to Cyclic Methods of orders 3
and 4, namely: :

¢ Order 4 3-cyclic 3-valued method

ay = az =of=1
a=a;=a;=0
al = a§ = g = 13668442334
a{ of = of = 0.4243045877
al = ag = af = ~0.0574603543

fi = ﬂ{ pi = 0.535
B = 0.5800884664; i1 = —0.3615511793

Bl = 0.0784994759
f2 = 0.5443459196; 57 = 1.3326552905
B? = —0.9593846175; A2 = 0.2384695021
B = 0.8889666672; 52 = 0.4868124281
b = 1.9481223276;
B = —1.6090840082; 2 = 0.4407995814

e Qrder 3 3-cyclic 3-valued method

ay=at=o;=1
al=aj=a; =0 =0
ai‘, = a§ = —18.0/11.0
au_a;~ -2.0/11.0
a, = o3 =00/110
=3.0,00 = —4.0
ﬂg =T = 6.0/11.0
B; = B} = f; = 0.0;
R=F=F=F=
pi =P = —4.0/3.0
BY = 2.0/3.0
B=F=F-

In what follows we respectively name the above methods 4 order and 3¢ order .
We also make use of a pair of results to confirm the use of only one sweep through the
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cyclic methed !, since an Implicit Multivalued method of order g in whose predictive step
an Explicit formula of order r has been used needs g — r +1 corrective steps to provide a
stable result in terms of error estimation(see [2}). ' :

The values RATIOD and RATIOH refer to the multiplicative factors that serve to
force halving or doubling of step size, respectively(or « and §). Moreover, the MAXITE
is used as an upper bound for cyclic steps to be performed and serve to calculate the first

slep size estimate. .
About criteria used it is necessary to state that the options were DOUBLE, HALVE

and MIXED, all performed with Extrapolation Procedure or pure Relative Error calcu-
lation. :

The measure of Computational Complexity is, as usual|1}{2], the number of function
f(z,y) calls(NCALLS), while FINAL ERROR is measured as the relative error to the
exact value. That is, FINAL ERROR carries contributions from the amount of roundoff

generated after satisfying the local requirements (Precision).

3.2 Results for f(z,y)=1-y

In this section we report some results obtained for y(z) = 1~ ¢7* in z; = 20, through an
integration starting from o = 0. The parameter MAXITE serves as an implicit specifi-
cation of the first step size to be used within the method, that is, it will provide the step
size which would generate exactly MAXITE iterations if there were no step size controls.
As such facility is active, step size will initially be doubled several times (for a smooth
integrand) unsil a region of values is reached where step sizes do not change abruptly.

3.2.1 Order 3-Halve Cri’cerion-Extmpolation':-.
RATIOH = 1.4-RATIOD = 0.7-Precision:10~*
[ MAXITE } NCALLS | FINAL ERRORj

200 311 0.1693 x 107°
250 329 0.7990 x 107°
300 347 0.2470 x 1077
400 373 0.9464 x 1077
500 391 0.1286 x 107°
1000 459 0.1467 x 1078

'We made use of Adams-Bashiorth's formulac of order g within Prediction.
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3.2.2 Order 3-Halve CriterionnExtrapolatilon
RATIOH = 1.4-RATIOD = 0.7-Precision:10~°
[ MAXITE | NCALLS | FINAL ERROR i

300 527 0.6954 x 1078 |
400 565 0.1127 x 107®
500 521 0.3269 x 10°%
700 607 0.6986 x 107%
1000 589 0.3182 x 1078

3.2.8 Order 3-Halve Criterion-Extrapolation
RATIOH = 1.4-RATIOD = 0.7-Precision:107°
- [MAXITE | NCALLS [ FINAL ERROR |

500 1381 | 0.1057 x 10°°
700 1461 | 0.1214x 10°°
1000 1381 | 0.1186x 10°°
5000 1585 | 0.7406 x 107°
10000 1653 | 0.7386 x 10°°
15000 1633 | 0.1164 x 10°¢

3.2.4 Order 3-Double Criterion-Extrapolation
RATIOH = 1.4-RATIOD = 0.7-Precision:107°

MAXITE | NCALLS | FINAL ERROR |
500 1047 | 0.1833x 10°°
700 041 | 0.4501 x 10°°
1000 1047 | 0.1665 x 10°°
5000 1127 0.3049 x 107°

3.2.5 Order 4-Mixed Criterioz‘l-Extrapolatidn“
 BATIOH = 10.0-RATIOD = 0.3-Precision:107°
[ MAXITE | NCALLS | FINAL ERRORJ

1600 459 0.3062 x 1077
1500 503 0.8521 x 107°
2000 527 0.4547 x 107°
5000 627 0.3569 x 107°
6000 639 0.1750 x 107°
8000 663 0.5608 x 1077
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Summarizing these results we must emphasize some aspects as, for example, that com-
paring the values obtained for the various tables 3.2.1, 3.2.2 and 3.2.3 global precision
remains relatively stable while computational cost increases with the lowering of local er-
ror allowed (sce,e.g., the cases when MAXITE = 1000). The stability of global precision
is probably due to the smoothness of the function y(z) under consideration.

By comparing tables 3.2.3 and 3.2.4 one will certainly comsider that the Doubling
criterion is more effective than the Halving one. For similar global results (both not
reaching maximum local requirements) the computational cost is 40% higher in the latter.

For all five tables above it is a remarkable property the fact that NCALLS remains
stable in each table. This means that the step size control module is working adequately
since changes of orders of magnitude in initial step size affect only slightly the number
of function calls. Tkat is, the global cost is nearly independent of initial step size, for a
certain local precision.

3.8 Results for f(z,y) = -y, 2o =0 and z; = 10
RATIOH =14, RATIOD =0.7 '

3.3.1 Order 3-Double Criterion-Extrapolation- Precision:107*

[MAXITE [ IMAX | FINAL ERROR |

100 3 0.190 x 107!
200 3 0.126
160 2 0.180 x 107!
200 2 0.120

Table 3.3.1 ilustrates that it is useless to increase the number of corrections of the
implicit method to the improvement of the global result, provided that the condition
discussed n 3.1 18 satisfied.

3.3.2 Order 4-Double Criterion-Extrapolation- Precision:107°

| MAXITE | FINAL ERROR |
500 0.5330 x 10~*
550 0.3732 x 1072
600 0.2713 x 1072
700 0.1603 x 10~
800 0.1904 x 1071
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3.3.3  QOrder 3-Double Criterion-Relative Erroxr .
| PRECISION(]O"‘) ] MAXITE [ FINAL ERROR_[ NCALLS}
4 100000 | 0.5900 x 1072 » 1553
5 10000 0.1268 x 102 1887
5 100 0.1277 x 107¢ 1863
6 1000 0.2856 x 10~ 2579
7 10600 0.1806 x 10~* 6455
3.3.4 Order 38-Halve Criterion-Relative Error
[ PRECISION(IO‘?) ] MAXITE } FINAL ERROR l NCALLS ]
4 10000 0.1162 x 107! 1177
5 100 0.5693 x 107* 985
5 10000 0.1268 x 1072 1887
6 1000 0.2956 x 10~° 2579
7 10000 0.1496 x 1073 3383
3.3.5 Order 4-Halve Criterion-Relative Error
fPRECISlON(IO“P) ] MAXITE { FINAL ERROR j NCALLS J
4 160600 0.3382 x 10! 973
5 10000 0.4447 x 107 849
6 1000 0.5727 x 1073 - 811
7 100 0.9518 x 101 985
3.3.6 Ozrder 4-Double Criterion-Relative Error
| [ PRECISION(IO"") ] MAXITE } FINAL ERROR ] NCALLS ]
4 100000 0.1624 x 1077 1145
5 10000 0.2339 x 107° 1177
6 1000 0.4336 x 10~* 1355
7 100 0.3163 x 1074 1863

3.4 Some Remarks

Through an inspection of previous tables we can select pairs of results which adequately
ilustrate the facts that: v

e It is convenient to adopt the number of corrections of the implicit method as one,
‘since the limitation is at the method’s order, and would not be overcome by increasing
the number of corrective steps, once predictor and corrector have the same order

(table 3.3.1).
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o The results obtained through extrapolation are very poor in relation to those ob-
{ained with pure relative error evaluation, when working in a problem which deals
with small absolute values(¢~?), although they both work well with y =1 —¢7?

o It is clear that in some cases the halving criterion behaves badly in comparison with
the doubling one. Among the reasons for this may be that it reuses values stored from
a step that is being checked, and specially that the interpolation which calculates
the intermediate necessary values is of the same order g of the global method.

o Important to notice that the value of MAXITE affects in a smooth way the number
NCALLS, that is, computational effort.

4 Conclusion

The implementation of a Solver for Cyclic Methods appeared to be an important
environmen$ for the proposal of mechanisms of step size control in IVP solvers.

“Some of the results, when compared with others in the literature {1}, bring evidence
§o the fact that we should apply cyclic methods of higher order to have a chance
to compete against conventional Adams formulae, since the Computational cost per
successful cyclic step is quite high for the global order we adopted.

A brief overview of the Tables of results will highlight the fact that the best overall -
performance is achieved when the Solver is set for use with the criterion of doubling
alone, and moreover, with error control being made by considering pure relative error
analysis. _

A possible reason for the failure of the halving criterion is that the one-step method
used for generating the interpolation to new grid points was of order ¢. This, together
with the order of consistency of each equation being at most g, and the restriction
made that only one cycle should be performed(that required the Solver to reuse values
obtained in the step to be checked) generates errors of order at least g+ 1{eventually
lower). Unnecessary to say that the failure of the halving criterion led to innadequacy
also for the mixed method, though some combinations of ratios for doubling and
halving stepsizes performed reasonably. ’

Although the validity of the scheme given by the Extrapolation procedure became
clear, its practicity is still dependent of the relative distance to the values being
measused, that is, it has to be considered as a first attempt to achieve a complete
and robust criterion for Step Size Control. We suggest that this direction may be a
source for forhthcoming studies and will lead to a stronger tool for the solution of

IVP’s.
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