o T T T P RS

Series:Monografias em Giéncia da Computagédo,
No. 21/81

LINEAR RESOLUTION, DEFINITIONS AND FUNCTIONS

Roberto Lins de Carvalho
Newton José Vieira

Departamento de Informdtica

e s R s R R RS e A R O A T R wse SHRREES

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENYE, 225 - CEP-22453
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE ENFORMATICA

Series: Monografias em Ciéncia da GComputagdo, No. 21/81 .
Editor: Carios J. P. Lucena November , 1981

"LINEAR RESOLUTION, DEFIN!TIONS AND FUNGTIONS x

Roberto Lins de Carvalho *x%
Newton José Vieira xxx

X This work has been sponsored by Secretaria .de Ci&ncia e
Tecnologia of Presidéncia da Repdblica Federativa do Brasit
and SERC under GR/G24844.

¥ PUGC Rio and LNGCGC
X%% Universidade Federal de Minas Gerais.

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentaglo & Informaglo
PUC Rio ~ Departamento de Informdtica

Ruza Marquds de SHo Vicente, 225 - Gdvea

22453 ~ Rio de Janeiro, R.J

Brasil

Tel.s (02408529-9384 'Telem=31078 Fax=(021)511~5é45>
E~mail:rosaneainf.puc~rioubv

Abstract:

in this paper we anaiyse the use of definitions and functions in
the context of proof procedures hased on the resoiution principle
(particufarly linear resolution). By leting the proof procedure
"knowing™ what formulas are definitions and what opredicates
denote functiona!l retations, . it can take advantage frem this in
order to improve its performance.

Linear Resolution, Definitions and Functions

Roberto Lins de Carvalho*
LNCC-CNPq

Newton José Vieira
Universidade Federal de Minas Gerais

October 31, 1991

Abstract

In this paper we analyse the use of definitions and functions in the
context of proof procedures based on the resolution principle (particularly
linear resolution). By leting the proof procedure knowing what formulas
are definitions and what predicates denote functional relations, it can take
advantage from this in order to improve its performance.

1 Introduction

In this paper we analyse the use of definitions and functions in the context of
proof procedures based on the resolution principle (particularly linear resolu-
tion). By leting the proof procedure knowing what formulas are definitions and
what predicates denote functional relations, it can take advantage from this in
order to improve its performance.

Definitions, being non-creative axioms, are susceptible to special treatment.
This has implications in the naturalness of deductions and in the efficiency of
the inference engine.

We start, in this work, with a logic without equality. A restricted use of
equality to deal with the functionality of some functional relations is then pro-
posed. :

In sections 2 and 3 we present the essencials about linear resolution and
theory of definitions, respectively, in order to set the framework for the later
sections.

In section 4 we analyse some problems that arise when the proof procedure
don’t recognize definitions as such, and suggest a special treatment for defini-
tions.

*Supported by SERC under GR/G24644

In section 5 we present some approachs to the problem of functional relations
and related treatment of the equality relation in special situations (such as the
use of functional relations in the context of definitions).

In section 6 we present some conclusions, and in section 7 we list the refer-
ences.

2 Linear Resolutidn |

Linear resolution is a refinement of resolution [Robinson 65] that was proposed
independently in [Loveland 68] and [Luckham 68]. In linear resolution any
resolvent is obtained from the previous resolvent and an input clause or another
resolvent, except the “first” resolvent, which is obtained from a selected input
clause and another input clause.

Linear resolution produces linear deductions. It is customary to present a
linear deduction as a sequence S of clauses

Ci,...,Ca

where a sequence of input clauses constitutes a prefix of S, and every other
clause Cj is obtained by resolving C;_; against some clause C; for j < i. We
call this prefix the basic prefiz, and the last clause of the basic prefix is the above
mentioned selected input clause. A linear deduction of O (the empty clause) is
called a linear refutation.

Linear resolution is complete when the selected input clause C' is such that
S — {C'} is unsatisfiable.

One special kind of linear resolution is lnear input resolution. In this case
one of the premises in any application of resolution is always an input clause.
Implementations of linear input resolution are usually more efficient than im-
plementations of irrestricted linear resolution. However, linear input resolution
is not complete, as can be seen by the following example.

Exemplo 2.1 The set of clauses

P(z) V Q(z)
=P(a) Vv Q(b)
=Q(y) V R(y)
—R(z)

is obviously unsatisfiable. But if we lake ~R(z) as the selectec input clause
(without this clause the set is satisfiable) we can not obtain a linear input refu-
tation.

A linear refutation is:
1. P(z) v Q(z)
2. = P(a) VvV Q(b)
3. ~Q(v)V R(y)

4. ~R(2) : (selected input clause)
5. =Q(z) » (from 4 and 3)
6. P(z) (from 5 and 1)
7. Q(b) | (from 6 and 2)
8. O ' (from 7 and 5)

" In the context of answer ezxtraction [Green 69] resolving two resolvents im-
plies in general an answer with more than one disjunct. This is the case in the
example: the answer to 3zR(z) is R(a) V R(b).

In question answering systems where answers with more than one disjunct
are not required, linear input resolution can be appropriate.

One of the more efficient technologies to implement linear input resolution
is that based on the usual implementations of the PROLOG language. But the
same technology (with adaptations) could in principle be used to implement a
complete linear resolution based procedure: the model elimination procedure
[Loveland 69]. Proof procedures similar to model elimination, but without the
“ordered clauses” restriction imposed by model elimination and related proce-
dures (SL-resolution, for example [Kowalski 71]) are proposed in [Vieira 87]. In
this later work, it is given special attention to the problem of answer explana-
tion. The possibility of efficient implementations, as well of natural explanations
of deductions, which are essential in knowledge processing systems, justify our
preference on using linear resolution in first place as a vehicle to expose our
ideas.

3 Definitions

From a logic point of view, definitions must meet some requirements. Such
requirements give some properties to the defined symbols that distinguish them
from the other symbols (the primitive symbols). Few proof procedures take this
into account. It is our purpose to call attention to a possible use of definitions
to decrease the amount of work done in proving theorems.

One of the requirements that a definition must meet is that it be possible
to eliminate the defined symbol from any expression in which it appears. This
requirement, known as the requirement of eliminability, implies that definitions

must not be circular. More, it implies that whatever can be said with the help
of defined symbols can be said without this help.

More formaly, a formula « introducing a new symbol of a theory satisfies
the requiment of eliminability if and only if: whenever 3 is a formula in which
the new symbol occurs, then there is a formula v in which the new symbol does
not occur, such that (o = (8 < 7)) is derivable from the axioms and preceding
definitions of the theory.

Another requirement that a definition must meet is that any formulas not
containing the defined symbol that can be proved, can be proved without the
help of the definition. In other words, a definition must not increase what can
be said without the help of the definition. This requirement is known as the
requirement of non-creativity, and implies in particular that if a given theory is
consistent, then if we add a definition to the theory it will remain consistent.

More formaly, a formula o introducing a new symbol of a theory satisfies
the requiment of non-creativity if and only if: there is no formula § in which
the new symbol does not occur such that (a =) is derivable from the axioms
and preceding definitions of the theory, but § is not so derivable.

Then, in a certain sense, definitions are non-creative azioms while other
axioms of a theory are creative azioms.

In the following definitions we will show standard forms of making definitions
according to the type of symbol to be defined (predicate or function symbol).
Such standard forms were devised to meet the above two requirements.

Definition 1 A formula « introducing @ new n-ary predicate symbol P is a
definition of P in a theory if a is of the form

Vi Vo .. Ve, (P(z1,22,- .. ,2n) < ¥(21,22,...,2n))

and the following restrictions are salisfied:

(a) z1,23,...,2, are distinct variables;
(b) ¥(z1,z2,...,2,) has no free variables other than z1,za,...,2n;
(c) ¥(z1,22,...,2,) is a formula in which the only non-logical constants

are primitive symbols and previously defined symbols of the theory.
In clause form the definition of a predicate symbol has the form:
P P
Dy u D

where Df (positive part of the definition) and DP (negative part of the defini-
tion) of P are:

° Df = —'P(ml)xZ’-")xn) \ S\Il(z;,zg,...,:c,.)

o DF = P(z1,22,...,%0) V S-y(z1,02,...,8n)

Definition 2 A formula o iniroducing a new n-ary function symbol f is a
definition of f in a theory if o is of the form

Vz1Vzo .. Ve, Vy(f(z1,22,...,24) =y & ;b(:cl,mz,...,:c,.,y))

and the following restrictions are satisfied:

(a) z1,22,...,2n,y are distinct variables;
(b) ¥(z1,z2,...,2n,y) has no free variables other than z1,za,...,2n,Y;
(c) ¥(z1,z2,...,2n,y) is a formula in which the only non-logical constants

are primitive symbols and previously defined symbols of the theory.

(d) Yz Vo .. Vo, 3ly(Y(21, 22, . .oy, y))} is a formula derivable from the
azioms and previously defined symbols of the theory.

4 Linear Resolution with Definitions

In this section we will analyse some problems that might occur when we don’t
recognize or use definitions in a special way. We will do so in the context of linear
resolution by means of examples. For that purpose we will use in the examples
the following definitions concerned with the elementary algebra of classes:

I VaVy(z =y & (z CyAyCa)) (definition of “=")
Il VaVy(z Cy & Vz(z €2 = 2 €Y)) A (definition of “C”)
III VaVyVz(z € (zNy) & (2 €z Az €Y)) (definition of “z € (z Ny)”)?
IV VzVyVz(2 € (zUy) © (z €2V z €Y)) (definition of “z € (z Uy)”)

The corresponding clauses are shown bellow:

Ll -z2=yVzCy L1l =z€(zNy)VzEr
12 -z=yVyCz III.2 -2 € (zNy)Vz €y
13 z=yv-zCyV-yCxz IIL3 z€(zNy)VzE2V-z €Y
1I.1 —m:gyv-wzészey IVl —z€(zUy)Vz€zVzeEy
II.2 zCyVf(z,y) €z ' IV.2 ze(zUy)Vz €
IL3 zCyV-f(z,y) €y IV.3 z€(zUy)V-z€y

The positive part of the definition of = D7 is given by the clauses I.1 and
1.2 and the negative part D= by the clause 1.3.

Lugtz(¢(z))” is a notation for “Iz(¢(z) A Vy(P{y) = v = z))".
2This is not definition of “N”, and the next definition is not definition of “U”,

The concepts represented by the symbols =, C, N and U are redutible to
the primitive concept €, as can be seen by the definitional structure depicted in

ﬁgure 1.
o= /Vwa(x=y®(x<;y/\y§w))

in

[]

2

-]
i
<L < <C
888
<C <C <C
Qe
< <>
won 8
el
mme
==l
CD:S
o a ~
WN
tgnm
NNR
mm i
g 8N
<>M
N ne
Mm m>~
@ @
T
o,

€ € — Theory: Va(z € V)
Vz(-z € 0)

Figure 1: Definitional Structure

In the following example we show a proof of a simple theorem, using the
above definitions as axioms.

Exemplo 4.1 Using linear resolution we can prove the theorem

Va(z C z) (1)
One possible proof is:
1. ~ACA : (skolemizing the negation of (1))
2. f(AJA)e A : (from 1 and I1.2)
3. ACA (from 2 and I1.3)
4. O (from 3 and 1)

When a proof procedure process example 4.1, the first “doubt” appears when
it tries to choose a clause to resolve against clause 1 (mA C A). Here it has two

possibilities:

(a) to choose clause I.1 or L.2; or

(b) to choose clause I1.2 or IL3.

Any choice will produce a “boomerang efect” in terms of the definitional
structure: the choice taken in example 4.1 (clause I1.2) provokes a first walk
one level down and then one level up (returning to the previous level), and as
can be seen bellow, choosing clause 1.1 will cause a first walk one level up and
then one level down.

/ C N U e "ACA /
A RV
VAR -f(A,A)eA/

Figure 2: Boomerang effect

1. nACA (skolemizing the negation of (1))
2. ~A=A ' (from 1 and I.1)
3. mACA (from 2 and 1.2)

This last sequence is obviously innocuous, as it must be: the definition of
“=" as there is not any creative axiom involving “=", could not help to prove
a formula not involving this symbol.

The “boomerang effect” can cause the possibility of having a lot of clauses
as candidates to resolve against the last resolvent. In example 4.1 clause 2 could
be resolved against I1.1, I1.3, II1.3, IV.2 or IV.3, and any other clause from a
definition that has “€” in its body: the walk one level up could be made in
the wrong direction. In other words, the symbols in a connected definitional
structure are interwoven in such a way that all concepts involved are potentialy
reachable. In terms of a resolution based proof procedure, this might imply that
it can make a lot of fruitless deductions.

Another aspect to be considered in example 4.1 is the specific refutation
encountered. From the human point of view, it is not natural (the boomerang
- behaviour is not natural). A more natural refutation would be:

1. ~ACA (skolemizing the negation of (1})
2. f(A,A) € A . ' (from 1 and I1.2)
3. ~f(A,4) €A (from 1 and I1.3)
4. 0O (from 3 and 2)

where clauses 2 and 3 are the result of applying the definition of C in the
context of clause 1. In this simple example, applying the definition produces
contradiction immediately.

In fact the latter refutation could not be achieved by a linear resolution proof
procedure. '

The difficulties above can be better appreciated by considering the next
example. '

Exemplo 4.2 Using linear resolution we can prove the theorem

VaVyVz(z CyAyCz =2z C 2))]
One possible proof is:
1. ACB (skolemizing the negation of (2), 1st clause)
2. BCC (skolemizing the negation of (2), 2nd clause)
3. ~ACC (skolemizing the negation of (2), 3rd clause)
4. f(A,C)e A (from 3 and I1.2)
5. ~ACyVf(4,0)€ y (from 4 and II.1)
6. f(4,C)€B (from & and 1)
7. -BCyV f(A,C)ey (from 6 and II.1)
8. f(A,C)eC (from 7 and 2)
9. ACC (from 8 and IIL.3)
10. O : (from 9 and 8)

From this (yet simple) example it is apparent that a proof procedure will
have a good chance to get lost in a lot of fruitless deductions. And it can be
seen that the cause of this is the failure to recognize that what matters is to
apply the definition of C to clauses 1-3. This is what was made (implicitly) in
the refutation shown in the example, but in such a way that the application is
not immediately apparent to a human being.

The natural manner to apply a definition is (remembering the eliminability
requirement):

(a) to translate an instance of the defined concept in order to work in a inferior
level of the definitional structure; or

(b) to derive an instance of the defined concept in order to work in a superior
level of the definitional structure.

An alternative to (b) is to translate the other available concepts and to work
in the actual level of the considered concept. Thus, the approach (a) is sufficient;
in principle we could use the radical procedure of translating exaustively all
available concepts and working in the primitive level.

In a proof procedure it is important that the above mentioned translation be
made in a controlled way (by necessity). If this is the case, we will have solved
our two problems: :

e increased efficiency; and
¢ more natural (inteligible) deduction.

In [Carvalho 74] a translation system based on the theory of definitions is
proposed. Deductions are essentialy linear deductions with provision for transla-
tion of defined symbols that appear on the theorem to be proved. The process of
translation is exaustive in the sense that the system works (by linear resolution)
on the primitive level.

A translation system for our fragment of set theory is shown bellow:
T.1 ¢t = 12) = ¢(ts C 12) U ¢(t2 C 1)
T.2 ¢(~ty =12) = ¢(~t1 C12) V é(t2 Cty)
T.3 ¢(t1 Cta) = (-2 €t1)VP(z €1a) -
T.4 ¢(—t1 C 1) = ¢(f(t1,t2) € 1) U d(—f(t1,12) € 12)
T.5 ¢(i3 € (t1 Nty) = ¢(ts € 1) U ¢(t3 € t3)
T.6 ¢(—t3 € (t; Nty) = ¢(—ts €11) V ¢(—t3 € 1)
CT.7 ¢tz € (t1 Nty) = P(ts €41) V ¢(t3 € 1)
T.8 ¢(—t3 € (t; Uts) = ¢(~t3 € t1) U d(—t3 € t3)

The process of translation is exaustive in the sense that the complete trans-
lation of the original query is obtained in terms of the primitive predicates (€,
in the example), the inferential system works (by linear resolution) on the prim-
itive level. As an example we show bellow a possible proof of the formula(2) of
example 1.2:

1. ACB (skolemizing the negation of (eq2, Ist clause)
2.BCC (skolemizing the negation of (eq2), 2nd clause)
3. =A g_ C (skolemizing the negation of (eq2), 3rd clause)
4. ~z€ AVz€EB (translation of 1)

5. z€BVzel ' (translation of 2)
6. f(A,C)eA (translation of 3, 1st clause)
7. -f(4,C)eC (translation of 3, 2nd clause)
8. ~f(4,C)€B (from 7 and 5)
9. =f(4,C) € A ' (from 8 and 4)
10. O (from 9 and 6)

This example shows that even if we simply translate all defined symbols to
the primitive level, efficience can be increased, as only the definitions effectively
involved are used; other definitions are kept idle in the data base.

Possible extensions to this approach can be visualized as we consider the
possibility of using the definitional structure to guide the translations in more
complex situations. The definitional structure is not enough in most situations,
and the complete translation may generate sets of clauses of non manageable
size. For example if the sentence to be proven includes = the we may have an
combinatorial explosion, as shown in the following example:

Example 4.1 Let (a) be se sentence: VaVy¥z(z N (yU2) = (zNy)U(zN z))

Skolemizing the negation of (a):

-~AN(BUC)= (ANBYU(ANC))
which can be translated to:

~AN(BUC)C(ANB)U(ANC)) V-(ANBYU(ANC)) < AN(BUC)
which can be translated to the following set of clauses:

2.1 f(I,IN €AV fILI) €A

2.2 f(I,II)e AV f(IL,I)e AV fIL,LI)€C

2.3 f(I,I) e AV fII,Iye BV fUII,I) € A

2.4 f(I,IN e AV fUII,I) € BV fII,[)€C

2.5 f(I,II)€ AV~f(II,I) € A~V f(II,I) € B

2.6 f(I,1I) € AV ~f(II,I) € A~V f(II,I) €C

2.7 =f(I,1I) € A~f(I,IT) € BV fII,I) € A

2.8 ~f(I,1I) € A~f(I, Iy € BV f(II,I) € AV f(II,LI)€C

2.9 ~f(I,II) € A~f(I,1I)e BV f(I1,I) € Bvf(II,L)e A

2.10 ~f(I,II) € A~f(I,II) € BV f(IL,I)€ BV f(II,LI) € C

2.11 =f(I,II) € A~f(I,II) € BV~f(II,I) € A~V f(I1,I) € B

2.12 ~f(I,1I) € A~f(I,1I) € BV~f(I1,I) € A~V f(II,]) € C

2.13 ~f(I,1I) € A~f(I,I) €CV fII,I) € A

10

2.14 ~f(I,1I) € A~f(I,IT) e CV f(IL,I) € AV f(II,I) €C
2.15 ~f(I, I e A~f(I,IeCv fUI,I)e BV f(IILI) e A
2.16 ~f(I,II) e A~f(I,II)e CV f(II,I)e BV f(II,LI) e C
2.17 =f(I,1I) € A~f(I,II) e Cv~=f(II,I) € A~V f(II,LI) € B
2.18 =f(I,II) € A~f(I,II) e Cv~f(II,I)€e A~V f(II,LI) e C
2.19 f(I,I)e Bv f(I,II)eCVvfIL,I)e A
2.20 f(I,LIN)e BvfI,INeCvf(II,I)e AV f(II,I) e C
2.21 f(I,I)e Bv f(I,I)e CVv fIL,LIye BV f(II,LI) € A
'2.22 f(I,LIeBvfI,IeCvflIl,IyeBvV f(II,LI)eC
2.23 f(I,II)e Bv f(I,II)eCv~f(II,I)e A~V fII,I)e B
2.24 f(I,II)e Bv f(I,LIT) e CV f(I,LI) € A=V f(II,LI) e C

where

I=An(BUCQC)
II=(ANB)U(ANC))

this example shows that the use of definitions is not enough, we have to control
the combinatorial explosion. One way to do this by the use of Communication
Predicates [Carvalho 74]. The use of communication predicates allows us to split
a unsatisfiable set of clauses which is a disjunction of two sets of clauses with
variables in common, in such way that we cut down the number of clauses gen-
erated by resolution. The result bellow [Carvalho 74], justify the introduction
of communication predicates: ‘ '

Teorema 4.1 Let S = S1 V Sy be a set of clauses, z1, z2, -+, T, be the
set of variables common to Sy and Sy, and P a new n-ary predicate symbol. S
is unsatisfiable if and only if Sy V P(z1, -+, &a) U =Pz, --+, 25) V So is
unsatisfiable. o

Notice that if Sp is a satisfiable set of clauses, for instance the proper axioms
of a theory or definitions represented by Dy and D_ we can split Sy or the set
of clauses obtained by the negation of the theorem to be proven and the above
. result prevails. In the proof procedure we have to be more careful.in order
to maintain refutation - completeness. In [Carvalho 74] a refutaiton-complete
strategy called P-refutation was presented. The next example illustrates the use
of this strategy. :

4.1 Example

The translation system T.1,---T.8 can me modified by éubstituting:
CT.1 ¢(—ty =t3) = ¢(—ty Ct2)V P(ty,13)
CT.2 ¢(P(t1,t2) = ¢(-t2 C 1)

11

by T.2, obtaining a different translation system. Notice that by the translation
rule CT.1 the translation stops in the predicate P.

Deductions, now, consist of translations followed by linear deductions up to
the point where a clause containning only occurrences of the communication
predicate P is found, and a new translation followed by linear deductlon So
the last example can be worked out as follows:

Step I: Partial translation of the predicate C to the level of the primitive €:

/ « (I,11) /
2.1 f(I,II)e Av P(I,II)

2.2 fI,1I) € BV f(I, 1) € C v P(I,1I)
2.3 —~f(I,II) € A~f(I,1I) € BV P(I,II) o
2.4 - f(I,IT) € A~f(I,II) € CV P(I,1I) La i @m

S ﬁ — plane

Figure 3: Partial reduction to the primitive level

Notice in the picture that the predicate P is originally in the same level or
plane as C and the dashed line means that the ground literal P(I, IT) was not
translated to that plane but transfered without modifications.

Step II: Linear deduction

2.5 ~f(I,1I) € BV P(I,1I) (from 2.1 and 2.3)
2.6 f(I,II) e CV P(I,IT) (from 2.5 and 2.2)
2.7 =~f(I,II) € AV P(I,II) (from 2.6 and 2.4)
2.8 P(I1,II) (from 2.7 and 2.1)

Step IIL: Translation of P(I,II)

2.1 fIL)eA 2.4 fII, e BV f(II,LI)eC
2.2 fIL,I)e AV f(ILLI)eC 2.5 ~f(II,I)€ A~V f(II,I)€ B
2.3 fII,))e BV f(II,I)e A 2.6 ~f(II,I) e A~V f(II1,I)eC

12

Step 1V: Linear deduction

2.7 -~f(II,I)e B (from 2.1 and 2.5)
2.8 fUI,)eC (from 2.7 and 2.4)
29 ~f(II,)e A (from 2.8 and 2.6)
2,10 O (from 2.9 and 2.1)

Note: The result obtained in Step III is, in general, a disjunction of posi-
tive literals in the communication predicate P. After each translation of one of
these literals and subsequent linear deduction, we obtain a shorter disjunction
obtained from the previous one by substitution. O

The use of communication predicates in a definitional theory, like the one
shown in this example, changes the structure of the original theory. This mod-
ification, in most situations [Carvatho 74], improves the overall efficiency of a
deductive system.

5 Functions and Synonymy

In this section we will propose a way to treat functions in certain special situa-
tions. Again we will use examples to expose our ideas.

The examples will be entirely based on the following definition of the relation
“brother”:

VaVy(Brother(z,y) < 3(z = parent(z) A z = parent(y)) (3)
In clause form: '
I —Brother(z,y) V f(z,y) = parent(z)
I1 ~Brother(z,y) V f(z,y) = parent(y)
Il Brother(z,y) V -z = parent(z) V -z = parent(y)
Let us begin with a simple example.
Exemplo 5.1 The formula that assures the symmetry of brother:

VaVy(Brother(z,y) = Brother(y,z)) (4)

can be proved by means of the following refutation:

1. Brother(A, B) (skolemizing the negation of(4), 1st clause)

13

2. —Brother(B, A) (skolemizing the negation of ({), 2nd clause)
3. f(4, B) = parent(A) (translation of 1, 1st clause)
4. f(A, B) = parent(B) (iranslation of 1, 2nd clause)
5. =z = parent(A) V ~z = parent(B) (translation of 2)
6. ~f(A, B) = parent(B) | (from 5 and 3)
7.0 : (from 6 and 4)

As we can see, the use of the logical “=” in example 5.1 is redundant in

the sense that the functionaty condition implicit in functions is not required to
process formula (4).
Let us write (3) as

VaVy(Brother(z,y) <> 3z(Parent(z,z) A Parent(z,y)) (5)
and let us exhibit the functionality condition of Parent:
Vedz(Parent(z, z) A Yy(Parent(y, z) = y = 2)) (6)
Writing formula (5) in clause form:
I =Brother(z,y) V Parent(f(z,y),z)
11 —Brother(z,y) V Parent(f(z,y),y)
111 Brother(z,y) V ~Parent(z,z) V ~Parent(z,y)

Then we have the following proof of (4):

1. Brother(A, B) (skolemizing the negation of (4), 1st clause)
2. —Brother(B, A) (skolemizing the negation of (4), 2nd clause)
3. Parent(f(A, B), A) (translation of 1, 1st clause)
4. Parent(f(A, B), B) (translation of 1, 2nd clause)
5. —~Parent(z,A) V =Parent(z, B) (translation of 2)
6. —Parent(f(A, B),B) (from 5 and 3)
7.0 (from 6 and 4)

14

And the functionality condition was not necessary for this specific refutation.

How could we manage functional relations such that the functionality con-
dition is applied only when required? This is the question we will approach
next. We emphasize that we will not try to preserve completeness, but we will
respect completeness as long as we can (provided that efficiency be considered).
Our intent is to control the combinatorics involved when using equality in the
context ilustrated above. :

The next example involves the use of the functionality condition of Parent.
The clauses for this condition (formula (6)) are:

(f1) Parent(g(z),z)
(f2) ﬂParent(y,x) Vy = g(z)

Exemplo 5.2 The formula that assures the transitivity of brother:

VzVyVz(Brother(z,y) A Brother(y,z) = Brother(z, z)) M

can be proved by means of the following refutation:

1. Brother(A, B) (skolemizing the negation of (7), 1st clause)
2. Brother(B,C) (skolemizing the negation of (7), 2nd clause)
3. =Brother(A,C) | (skolemizing the negation of (7), 3rd clause)
4. Parent(f(4,B), A) . (translation of 1, 1si clause)
5. Parent(f(A,B),B) (translation of 1, 2nd clausé)
6.. Parent(f(B,C),B) - (iransldtion of 2, 1st clause)
7. Parent(f(B,C),C) (translation of 2, 2nd cIauée)
8. ﬂPare.nt(z,A) V =Parent(z,C) (translation of 3)
9. ~Parent(f(4, B),C) . (from 8 and 4)
10. —Parent(g(z),C)V ~Parent(f(A, B),z) (from 9 and (f2))
11. ~Parent(g(B),C) _ (from 10 and 5)
12. - Parent(y,C) V ~Parent(y, B) (from 11 and (f2))
13. -Parent(f(B,C), B) (from 12 and 7)
14. O (from 13 and 6)

15

Clauses 10 and 12 were derived by applying the rule of paramodulation
[Robinson 69], a rule whose applications are difficult to control.

Analysing example 5.2 we note by looking at clauses 7 and 9 that to establish
the theorem it is sufficient to prove that

f(B,C) = f(A, B).

But we know that Parent is functional in the first argument, and so clauses
5 and 6 (with the functionality condition) must do the work. Then we could
produce, instead of clause 10:

10’. =f(B,C) = f(4A, B) (from 9 and 7)

We know that clause (f2) is the clause that must be used to establish the
equality. But things become complicated by the fact that the equality predicate
in clause (f2) makes reference to another Skolem function. What we can do is
to produce:

11°. —~Parent(F(B,C),z) V ~¢(z) = f(4,B) (from 10’ and (f2))

using the rule of paramodulation. But the above equality can be established
only by using clause (f2):

12’. —Parent(F(B,C),z)V ~Parent(F(A, B),z) (from 11’ and (£2))
13’. —~Parent(f(A4,B), B) (from 12’ and 6)
14°. O (from 13’ and 5)

One interesting thing to note is that the later deduction don’t depends on
axiom (f1) (the ezistence condition) but only on axiom (f2) (the unicity conds-
tion). But the Skolem function denoted by g was introduced just to cope with
the existence condition. And, as g appears also in the axiom that expresses the
unicity condition, to use this axiom, we will have to deal with g. This is accom-
plished by clause 11°. This clause in a certain sense is a “transition clause” that
says us that the equality of f(B,C) and f(A,B) depends on the equality of these
and g(x) for some x (in the example, B is used).

A more efficient thing to do in such circunstances is to use the following
formula logicaly equivalente to formula (6), that separates completely the unicity
condition from the existence condition:

Vz3z(Parent(z,z)) AVzVyVz(Parent(z,z) A Parent(y,z) => z=y) (8)
In clause form we have:

(ec) Parent(g(z),z)

16

(uc) —Parent(z,z)V —~Parent(y,z)Vz=y

And so, a proof procedure will obtain one less clause and will be much more
restricted in terms of choices (we preserve the numbering above, but now with
double apostrophes):

10”. -~f(B,C) = f(A, B) (from 9 and 7)
12”. =Parent(f(B,C),z) V -Parent(f(A, B), z) (from 10” and (uc)) .
13”..~Parent(f(4, B), B) (from 12” and 6)
147, O - (from 13” and 5)

Then, if we wish to avoid the use of (logical) equality, but we have to use
functional relations in special situations like that shown above, a good thing to
do is to let the proof procedure know the functionality and use the unicity condi-
tion as exemplified. Such proof procedure will not worry about interpreting the
equality symbol appearing, for instance, in clause 10”7, as “real equality”. That
clause would be derived in a controlled behaviour, because the proof procedure
will know about the functionality of Parent and know about a unicity clause to
deal with it. From that behaviour, we could regard the process of derivation of
clauses 10” and 12”7 as a singlé pass.

Another improvement can be obtained by an automatic management of syn-
onyms. Clauses 4 to 7 in example 5.2:

4. Parent(f(4,B), A) (translation of 1, 1st clause)
5. Parent(f(4, B),B) (translation of 1, 2nd clause)
6. Parent(f(B,C),B) (translation of 2, 1st clause)
7. Parent(f(B,C),C) (translation of 2, 2nd clause)

imply, with the help of the unicity condition associated to Parent, that all its
first arguments are identical. In a functional notation we would have:

parent(A) = f(A, B)
parent(B) = f(4, B)
parent(B) = f(B,C)
parent(C) = f(B,C)

Using “parent(c1)” as a canonical representative for ¢p in “Parent(cs, cl)”we
could collect all synonyms of parent(c;) in a list, and use this list to solve the
negative literals referencing the predicate symbol Parent. Figure 4 shows how
this works for our example. In the first column are presented the clauses in
order of generation, and in the second column is presented the evolution of the
synonymy. v

The next clause generated in example 5.2 is clause 8:

17

4. Parent(f(4,B), A) | parent(A)___.f(4, B)

5. Parent(f(A, B), B) parent(A)., f(A, B)
parent(B)

6. Parent(f(B,C),B) parent&% f(A, B) f(B,C)

parent

7. Parent(f(B,C),C) parent(A) (4,B) f(B,C)
parent(B) -
parent(C)__1t

Figure 4: Lists of synonyms.

8. —Parent(z, A) V ~Parent(z,C) : (translation of 3)
and then z can be substituted by parent(A), producing:
9. —Parent(parent(A),C) (from 8)

an the empty clause is imediatety produced by consulting the synonymy.

In general, if a clause Q(t1,...,tn,u) is entered in the data base (as an
input clause or as a resolvent), where @ is functional in the last argument
and t1,...,t,,u are terms, then u and ¢(¢1,...,t,) are put in the same list
(variables in these terms are standardized apart from other terms). And, if a
clause ~Q(t1,...,tn,u) V 1 is generated, then if u is a variable we apply the
substitution {g(t1,...,%s)/u} to ¢ to obtain the next clause, and if u is not a
variable then the next clause will be ¢ o, where ¢ is the unifier of ¢(t1,...,%s)
and u with terms in the same list (obviously, if ¥ is empty the result is the
empty clause).

A more sophisticated approach remains to be worked when we consider non-
unit clauses with a (positive) literal of the form Q(ty,...,%n,u).

6 Conclusions

In this paper we were concerned with two subjects which are very important
from the standpoint of knowledge processing systems: efficiency and naturality
of deductions.

It is interesting to note that the special treatement of definitions suggested
in section 4 and the special treatment of functional relations suggested in section
5 mimics, in a certain sense, what a human being would probably do in similar
situations. And, in these cases, naturality contributes to efficiency. This is

18

very important, particularly, because proofs by resolution are not very clear
and linear resolution is not very efficient in many situations.

In section 4 we have shown that even if we translate all defined symbols to
the primitive level, efficiency can be increased. It remains to be worked the use
of the definitional structure to guide the translations in more complex situations,
particularly when (possibly many) creative axioms are stated with the help of
defined symbols.

In section 5 we have seen how to construct lists of synonyms so as the proof
procedure can “remember” of identical terms in the process of constructing
a proof. It remais to be worked the processing of non-unit clauses involving
positive literals about functional relations.

7 References

[Carvalho T4 Carvalho, R.L. Some Resulls in Automatic Theorem-Proving
with Applications in Elementar Set Theory and Topology Ph.D. Thesis
Dept. of Computer Sciences University of Toronto, 1974.

[Green 69 Green, C.C. The Application of Theorem Proving in Question-Answering
Systems Ph.D. Thesis, Stanford University, Stanford California, USA 1969.

[Kowalsky 71 Kowalski, R. Kuehner, D. Linear Resolution with Selection
Functions Artificial Intelligence 2 1971 227-260.

[Loveland 67 Loveland, D.W. Linear Format for Resolution. Proc. of the
IRIA Symposium of Automatic Demonstration. Versailles France, 1968,
147-162.

[Loveland 69 Loveland, D.W. Simplified Format for the Model-Elimination
Theorem-Proving Procedure Journal of The ACM, 16, 1969, 349-363.

[Luckham 68 Luckham, D. Refinement Theorem in Resolution Theory. Proc.
of the IRIA Symposium on Automatic Demonstration Versailles, France,

1968 163-190.

[Robinson 65 Robinson, J.A. A Machine-Oriented Logic Based on the Reso-
lution Principle Journal of the ACM. 12(1), 1965 23-41.

[Vieira 87] Vieira, N.J. Mdquinas de Inferéncia para Sistemas Baseados em
Conhecimento, Tese de Doutorado, PUC/RJ, Rio de Janeiro, 1987.

19

