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Abstract:

in this work we introduce a new approach to the study of
semantical systems. Traditionaliy the study of these systems
have covered only those semantical systems whose languages -are
formal and whose models are relational structures. Here, both
languages and models are classes, moreover there i3 no dependency
on foundational considerations, . The concepts of T"theory",
"worlds","semantical consedquences”, "negation” and T"completeness”
are presented from strictly semantical point of view. Some of
the results obtained subsume simitar results found in the Theory
of Models.
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Abstract

In this work we introduce a new approach to the study of Semantical
Systems. Traditionally the study of these systems have covered only those
semantical systems whose languages are formal and whose models are rela-
tional structures. Here, both languages and models are classes, moreover
there is no dependency on foundational considerations. The concepts of
theory, worlds, semantical consequence, negation and complete-
ness are presented from a strictly semantical point of view. Some of the .
results obtained subsume similar results found in the Theory of Models.

Understanding something means to own a system of criteria to evaluate per-
ceived facts. An evaluation system works as a filfer through which concepts
may be generated. Different individuals possess different filters and so per-
ception of reality is something of a subjective nature. Not only do sensorial
observations form an individual’s knowledge, but concepts may be apprehended
by other kinds of perception and deductive processes performed by the human
mind. Knowledge is, therefore, the mental appropriation of sensorial and
extra-sensorial perceptions that can be deepened by the exercise of thought and
experimentation. Concepts, in their turn, will influence the evaluation process
changing the cultural filter and so our perception of reality.

We can say that for a fixed instant of an individual’s development an evalua-
tion system is acting for the immediately following perceptions and such percep-
tions change the system itself re-elaborating the evaluation criteria. The steady
existence and functioning of this evaluation system enables the knowledge ac-
quisilion process to continue, generating configurations or models of reality.

The impossibility of directly communicating different models by the corre-
sponding. sensation causes the necessity for the creation of codes or systems of
meaning. The systems of meaning also result from social acculturation and
their most obvious manifestation ‘is the usage of various forms of language -

*Supported by SERC under GR/G24644



spoken, gestual, written, etc. Such languages emerge from social conventions
which associate objects to particular signs.

We can say that a signal S stands for an object O as if it indicates the
object itself. This relation is indirect, because its interpretation is mediated
by the concept C that we have of the object. The properties of the objects, the
relations among them and the transformations to which they may be subjected
are also coded by signals. '

Ogden and Richards proposed the Meaning Triangle as a representation
of the relations between the objects and their corresponding conceptions in our
minds and the associated signals (symbols).

The triangle expresses that a ref-
erenced object

O (Referent)

impresses our senses producing an
image in our mind

C {Concept)

that can be represented by a sig-
nal

S (Symbol)

that allow us to establish refer-
ences, under a certain conven-
tion.

1  Semantical Systems

Knowledge about a given world, actual or artificial, is formed by the continuous
process of perception and evaluation. This knowleldge can be understood as a
class of all the conceivable configurations of the considered world. Each of these
configurations is called a model. These models can be fuzzy or fragmented, as
our compreehension is limited. The class of models, also fuzzy and fragmented
since we cannot perceive all of its elements, is what we usually call system of
beliefs of an individual regarding a given world. The class of models, because
of its conceptual nature, is situated at vertex C of the meaning triangle.
Regarding a given state of aflairs we may perceive and even conceive dif-
ferent configurations. Each of them has a valuation with respect to a possible
world. This valuation comes from a set of values and a process of evaluation.
By evaluation we mean a judgement given to a configuration (perceived, com-
municated or conceived) related to the world. We may think that the new or
recent configuration is compared to each of the configurations that are already
considered as models or real world configurations. The set of abstract values
can be quite extensive and imprecise, varying with the nature of knowledge or
the state of affairs considered. Therefore we may have a definite set of values,
such as: {fair,unfair} or {def ficient,insuf ficient,regular, good, excellent},
which however not very precise, are well determinate. The most usual ones



{true, false} are taken for granted, despite the extreme difficulties of their un-
derstanding. Nevertheless other sets may be fuzzy or even indeterminate.

We may note that even for definite sets like those mentioned we may still
question the meaning of each element. The degree of indetermination as well as
the complexity of the elements are directly related to the extent to which reality
is understood. Those values are situated at vertex C of the triangle.

After establishing a set of values,
we can proceed to the definition
of the judgement criteria, i.e., the
forms of relating a given config-
uration to a value. The evalua-
tion process, that so far we as-
sume to be carried out by hu-
man agents, is located at ver-
tex C. Although eventually, and
more frequently, such process is
an abstraction, similar to a partial
function, it can also have a sym-
bolic representation whose conno-
tation, instead of being descrip-
tive intentional, is operational or
algorithmic.

Knowledge is coded, classified, structured, transmitted, learned, and im-
proved by its use. Systems of meaning are built - naturally or artificially - and,
in the process, evaluation systems become more elaborated and complex but it
is mainly by the use of language that they can be studied and better understood.

In the following, unless otherwise stated, when we use the word language we
mean the symbolic portion of the systems of meaning. Languages? are composed
of: atoms - that can be sonorous or visual signs individually identifiable, words
- which are temporal or spacial sequences of atoms and sentences - which are
certain temporal or spacial sequences of words.

Thus a language is situated at vertex S of the triangle and frequently it is
learned by a gradual process that never ends. Therefore languages are generally

fragmented and imcomplete.

' Although a language has a symbolic nature it can be fuzzy with no clear
boundary, but still coherent for the social group that uses it. The coherence
we expect is obtained by communicative interaction among the elements of the
social group, and each significant unit is a code, sometimes ambiguous, that is
interpreted generating configurations in the same way as the direct perception
of reality. It is then, something symbolic that by interpretation enables us to
apprehend new configurations or models.

1In this work we will not consider Formal Languages as an isolated object, i.e. we postpone
their study to further development, when the meaning associated to them will, in most cases, -
be relative to their arithmetical interpretation.



The interpretation process is car-
ried out in the same way as the
direct perception of reality, nev-
ertheless the generated configura-
tions are acknowledged as possi-
ble relative to the models we pre-
viously acquired by the process
of acculturation. The use of lan-
guages creates, sometimes, a lack
of contact with reality.

In the process of interpretation, the linguisiic units, that is, symbols, words
‘and sentences are interpreted as objects (real or imaginary, concrete or abstract)
as well as relations or activities among these objects.

Evaluation systems together with languages are called Semantical Systems,
and are made up of 4 components: :

L- A language
M- A class of models

V- A set of abstract values

- An evaluation function

We must note that.by using the word function for the evaluation process
we are making a simplification. We are suposing that the interpretation of a
sentence generates only one configuration and that the underlying evaluation
process produces a definite abstract value. The function ¢ might not be com-
putable, i.e. there may not be an algorithmic way to produce a value for it.

2 Propositional Semantical Systems

4 .
Example 2.1 The propositional semantical system Sn haswthe following com-
ponents:

. Language £% defined by the grammar: G = {SA — p1 | p2| -+ | pn,
S — SA,S — (SAS),S — (SvS8),S — (§=275),8 — (5S¢
5),S — "S}



. Models M5, = (D ({p1,p2,:-+, pa}). In the case of the propositional system
S: ML = {8,{pm},{p2}, {p1, p2}}, which, together with inclusion, form a

lattice. g
. tal int

Models here are considered as sets and
not as individuals or elements of a set. Inet

4
We are interested in the subclasses of
models M. If we consider only the i Hrcett
sets which represent the models above

T il

we do not have a lattice anymore but a
partial order:

Considering all the subclasses we have 2* = 16 subsets of M} , that also
form a lattice regarding inclusion.

the remaining ones are obtained by the union of the above, for instance My =
MoU M, = {0,{p:}}
*. Abstract Values V = {0,1}

. Evaluation Function ¢f = defined by:

eh(pi, M) =1ifandonlyif p € M

@h(~a, M) = 1 - ¢E(a, M)

GE((a AB), M) = @k (o, M).eh (B, M)

h((@vB), M) =maz{ph(a, M), ea (8, M)}

Pﬁ((a = ﬁ),M): maz{l— ‘Pﬁ(a1M)a<Pﬁ(ﬂ1A1)}
eh((a & B),M)=1ifand onlyif ¢} (a, M) =¢5(8, M)

Propositional semantical systems are usually presented in the Propositional
Calculus without explicitly mentioning the models or state of affairs. The eval-
uation function is shown through the use of truth tables that are defined for
the logical connectives. There are various kinds of knowledge that can be rep-
resented by the propositional semantical systems and actually all' the digital
electronics depends greatly upon or at least results from the discipline known as
Boolean Algebra, which is but another syntatical representation of the propo-
sitional semantical systems. The propositional semantical systems have finite
sets of models and therefore there are computable evaluation functions ¢F for
them.



3 First Order Semantical Systems

The first order language is generated from an alphabet, constituted by the
following sets:

V - Variables {z1, 22,-+ yZTn, **+}
C - Constants {a1, a2,+++,an, -}
F - Functions { f1, f2,-+*y fn, -}

P - Predicates {P1, P2,-++ , Pn,--+}
From this alphabet terms and formulas are constructed by induction:

T1 - Variables and constants are terms.

T, - I ty,t2,---,tn are terms and f a function then
f(ta,t2,-++ , tn) is a term.

T3 - The only terms are those expressions which follows from T1 and
T, above.

Atomic formulas are defined by

Ay - If ty,1,---,tn are terms and P a predicate then
P(#1,t2,-+, tn) is an atomic formula.

Az - The only atomic formulas are those expressions which follow from
Aj above.

Formulas are defined by

F; - Atomic formulas are formulas.

Fy - If a and B are formulas then
.= (e VB), (aAB),(c = B)and (o « B) are formulas.

F; If zis a variable and « is a formula then Vz o and 3z a are formulas.
F, - The only formulas are those expressions which follow from Fy , F; and F3
above.
The models are certain mathematical structures like £ =< D, R, ® >, where:

D - Is a set, called the domain of the structure.
R - Is a set of relations on D.

® - Is a set of functions defined on D

For a particular first order language, its interpretation with respect to an ade-
quate structure, is a function I which assigns:

- to all constants @ € C an element ! € D,
- to the functions f € F a function ff:D* — D, and

- to the predicates P € P a relation PT C D»

An interpreted structure £ by I is denoted by £’ or simply by I. The valuation
function ¢ is defined considering not only the sentences of the language, but all
formulas, by the introduction of a valuation of variables s : V — D, which
is extended to all terms of the language by:



a!, for everya € C
s(x), for every x € V

(f(tl 1Tty tﬂ)) = jl(‘g(tl)l ) §(t"))
We will use s instead of § in order to simplify notation. We also define modifi-

cations on s given by:

d _§d ify ==z
sz(y) = s(y) otherwise

With this we can define the s-valuation function ¢,

'¢3(P(t11t21"'7tn)11) =1 &< s(tl)y"'vs(tﬂ) >€ PI
~ps(ma, I)=1~9s(a,I) =1

-os((aAB), I) = ws(a,I).0s(8,1)

s ((a v B),I) = maz{ws(a,I),0:(B8, 1)}
-os((@=B),I)=maz{l - ws(a,I),0s(8,1)}
-ps{(x® B),I)=1ifandonlyif ¢s(a,I)=es(B,1I)

-w,(Vra,I):HdeD wsg(a,l)
'<Ps(3x01,1)= HdGD (psi(a’l)

If o is a sentence, i.e. there is no occurrence of variables outside the scope of a
quantifier V, 3 we can drop s as subscripts of ¢.

The domains D are sets of arbitrary cardinality, and the evaluation func-
tions are partially computable. Both systems, propositional and the first order
language systems, are two-valued systems, ie. ¥V = {0, 1}, and despite the
fact that in the latter ¢ is not computable, they are considered total functions,
ie forall< a, M >€ £ x M the value ¢(a, M) is defined. This, of course
is not the most general situation, but in this work we will consider semantical
systems in which ¢ is total with respect to a certain subclass of £ x M systems
in which ¢ is total and two-valued. This subclass ™1 (V) C £ x M is a rela-
tion that holds between certain elements of the language £ and certain models
of M. The set of sentences of £ is denoted by Tog M= D(e~(V)) C L and

the set of proper models of M is denoted by W(’:,’ﬁ =R V)) M

4 Planes of Meaning

Douglas Hoffstadter, in [Hoff], introduced the concept of Implicospheré as re-
lated to the concept of creativity. Implicosphere can be imagined as a kind
of a fuzzy collection of impressions one has about an object, concept or state,
concrete or abstract. They are like clouds of impressions. This cloud becomes
thicker and more complex as we gain familiarity with such entities. The Im-
plicosphere of a concept includes its conections with other Implicospheres, and
those conections are overlaps between implicospheres.

This is a very important idea because sentences do have meanings. Even
though a sentence can be considered as an assemble of units (words), some of
them carrying no semantical values - without independent meaning- , they might



carry implications which depend more on the context in which they occur. We
could say that sentences, even atoms or just symbols, can generate an infinity
of inferences. Implicospheres are, in a way, theori

By methodological reasons we will
project such implicospheres in an
imaginary plane conceptual plane,
and the corresponding theories in an-
other plane, symbolic plane.
There is yet another plane, which
we will call the real plane, where
the objects, concepts or states actu-
ally happen. These three planes are
connected, directly or indirectly, in a
fashion similar to the meaning trian-
gle.

These theories are formed through interactions inside a social group and they
are conceptual entities which are developed in a very dynamical process. The in-
terplay between the real plane and the conceptual plane is the main trade of the
Natural and Social Sciences. Mathematicians, Logicians and Philosophers deal
mostly with the interplay between the conceptual and symbolic planes. These
planes are not as determined as shown in the presented pictures. As a matter of
fact, knowledge is structured, and concepts varyes in their level of abstraction.
There is a whole infinity of planes, and primitive concepts belong to lower levels
of abstraction, following from them the derived concepts. The separation we
did, in our presentation, in conceptual and symbolic planes is methodological,
and the difference resides only in the degree of development of the semantical
system. If we consider the primitive concepts of a theoretical discipline in a
certain level, then derived concepts are in higher conceptual planes which are
in some sense more symbolic, because they need of symbolic mechanisms such
as definitions or derivation to be understood besides the understanding of the
more basic¢ or primitives.

We will only analyse the interplay between the conceptual plane (CP) and
the symbolic plane (SP). We can say that a certain state of affairs is observed
and acquires meaning through a cultural filter of concepts which are, in general,
already represented in a semantical system. Then we assumne that in a semantical
system

<L, MV, 0>

the class M of models is situated on the conceptual plane CP and the language
on the symbolic plane SP. So, if we consider a subclass A of M, it corresponds
to the understanding of a certain state of affairs in M, that is represented in
the language £ by a subclass 7 of sentences or meaningful expressions of L.



The correspondence between the subclasses ' of Wo’:" Cand the subclasses
T of the language 7% o M have been examined for some semantical systems.
- These studies were dependent on the state of organization or syntatical struc-
ture of the language £, and on restriction imposed on the class of models M.
In the case of the first order semantical systems it is usual to define functions
Mod : TLM — WM .y and Th : WM ol T w M which are defined
consxdermg the whole class of relational structures and the whole first order lan-
guage. Besides, the second function T'h is sintatically defined from the function
Cn. The relation between these functions, after Godel’s completeness theorem,
is given by

Cn(S) = Th( Mod(S))

In this work we define functions Mod, Th without any dependence on syntatical

considerations, moreover we relativize both to subclasses of T oﬁ M and W:: e
In order to-understand, abstractly, i.e. outside syntatical considerations, ‘the

goals and contributions of this work as a general framework to the discussion

of mathematical and computational systems we refer the reader to Tarski’s work

[Tarl]. There Tarski presents four axioms related to two primitives notions: a

set S of sentences and logical consequence Cn as an operator defined on S.
The first axiom is about the cardinality of the set S of sentences:

A;. The set S is at most enumerable.

" This axiom is intuitively reasonable, given that the set of sentences must
fulfill certain requlrements of communication. We could be more rigorous by
saying:

All . The set S is recursively enumerable.

which means that concerning the Deductive Sciences, the languages are formally,
ideally, defined through formal grammars.
Even stronger, would be:

" . .
A, . The set S is recursive.

- which implies the existence of recognition algorithms for the languages of Sci-
ences. .
The second axiom refers to the operational character of the function Cn:

Ay. If AC Sthen A C Cn(4)C S

The third axiom states that once the consequences of a set of sentences are
- obtained no further knowledge can be gathered by re-applying the operator Cn:

As. If A C Sthen Cn(Cn(A)) = Cn(4)



The last axiom states that all consequences obtained from a set of sentences A
must also be obtainable from finite subsets of A:

Ay. If A C SthenCn(A4) = . Cn(X)
X e Fin(A)

‘Despite the series of important results derived by Tarski, from the four axioms
above, their meaning has been overlooked, at least with respect to their gener-
ality, in further research. Here we started with the notion of semantical systems
[Carnl] and we shall prove A, and A3z with the aid of very simple mathematical
tools. By starting with simpler assumptions than the above axioms we shall
attempt to clarify the results obtained by Tarski, as well as some others which
make up the necessary theoretical basis for better evaluating some of the recent
achievements in the field of Applied Logic.

5 - Basic Functions

This section introduces four functions which represent the relationship between
Land M. These functions transpose some concepts which are traditionally
treated in Model Theory to the wider context of a two-valued semantical system.

The first two functions represent projeciions from the symbolic plane to the
conceptual plane, i.e. from language to models or interpretations:

r[L M WM
(a) --- Mod : 2 M x Mook ., Vet

TC M M
(6) --- Cont : 2 M x Mok . Nk

o The function Cont applied to
a set S of sentences in £ and
to a subfamily A of models in
wM ¢ Teturns a subfamily of mod-
0,

els in N.

¢ The function Mod applied to a
set Sof sentencesin £ and to a sub-
family A of models in M returns a
subfamily of models in N.

The application of Mod results in the representation of the particular state
of affairs described by S regarding the world M.

The application of Cont results in the representation of the state of af-
fairs which happens outside the world N, that is, which is contradicted by
S. In the figure we represented the case in which ¢ is a total function, i.e.
Mod (S, N') and Cont(S,N) are complementary. The intuitive meaning of

10



this situation is that all models can be referred by the language 75 so if
00, M

pis a total function no model is left outside linguistic consuleratlon So the
language ’T‘:M has enough expressive power.

The effects of the application of these two functions are interpretative: given
a set of sentences of the language £ of a semantical system S , we generate con-
figurations or models according to our understanding of the evaluation function
. It must be clear that we have not classified ¢ rom the point of view of its
computability or even with respect to its domain, as being a total or parcial
function. Mod and Cont can represent the abstract activity of a mathemati-
cian interpreting a collection of sentences, for instance equations, positively by
Mod and negatively by Cont,

The following functions are also projections, but now from the conceptual
plane to the symbolic plane. They represent formalizations.

wM TE TC
(¢) -+ Th : 2 L x 2" M _, 9°0M
M TL TC
(d) - Absd : 2 @=L x 9l M —, 3'w M

e The function Th applied to a set |
N of models in WM and to a sub-

set of K, a chalect E returns a set

of sentences in X.

¢ The function Absd applied to a

set N of models in W::L and to a

subset of 7% , , adialect Kreturns
o0, M

,
a set of sentences in X.

The application of Th results in a description in K of the state of affairs W
in N. The application of Absd results in a description of sentences in K that
do not occur in the state of affairs W in N. In the following we consider only
bivalued semantical systems S =< LM {0,1},>

Defini¢ao 5.1 Let 8 be a bivalued semantical system, then

"iMod(a,N) = {MeN|p(le, M) =1}

it Cont(a,V) = {M € N|yp(a, M) =10}

iii TRMK) = {a € K | o(a, M) =1}

iv Absd(M,K) = {a € K |p(a, M) =0} 8]

Note: In (i), ---, (iv) we used « instead of {a} and M instead of { M } as

usual in the literature.

11



Example 5.1 For the propositional semantical system Sp.‘

M = {0v '{Pl 1 {p2}v {pl y P2 }}v MOd(pl 1M) = {{P]}{pl ’ P2}}

Cont(p; M) = {8, {p2}}, {p2, (P2 V p1 )} C Th{{pg },£3)

and{"lpz,("\pz vV p1 )}CAbSd({P2}ng) O

Definigao 5.2 Let 8 be a bivalued semantical system, N'C W::L and
KCTE 4y, then 4

(I)---Mod (S, N) = N, s Mod(a, N)
(II) --- Cont(SN) = U, ¢ s Cont(a,N)
(I11) - Th(N,K) = (e x ThOMK)
(IV) - Absd (N, K) = Upcx Absd (M, K) O

We assume here that if { X;} is a family of subclasses of a class X then:

(a1) - 2 € e X ififorall i € 4, z € X;
(az) - ¢ € U;eq Xi iffforsome i € 4, z € X;
(as) « Usep Xi = 0

(ag) - (hieg Xi = X

(as) -  Mieavn Xi =Niea Xi Nhiep Xi

Lema 5.1 Ing}CgToﬁ’M and NQWO’:"L:, then:

(a1) Mod(S,N) N Cont(S,N) = 0

(a2) Mod(S,N) U Cont(S,N) = N

(as) Mod(S,N) = N — Cont(SN)

(b1) Th(N,K) N Absd (N, K) =0

(b2) Th(N,K) U Absd (N, K) =K

(b3) Th(N,K) = K — Absd(N, X) o

(a;) and (b;) are independent from ¢ being a total function. There are im-
portant connections between this lemma and the notions, to be developed, of
consistency and completeness. In the case of the semantical system of first order
languages, ¢ is assumed to be a total function, despite the fact that the class of
models is constituted of structures over very abstract domains.

"The following lemmas show the anti-monotonicity of Mod and Th and the
monotonicity of Cont and Absd relative to the class S of sentences.

Lema 5.2 Let 51,5, C XK C_IT(:M and N(_wac. If S, C S, then
Mod (S2, N') C Mod ( Sy, N). '

2The intuitive justification for the use of ﬂ in definitions (1) and (IIT) and for the use
of | J in definitions (II') and (IV) is that the meaning associated with a class of sentences
is the common meaning, the intersection of classes which represent the meaning of each in-
dividual sentence, this is in agreement with the traditional, classical or otherwise, usage of
comprehension X extension, the same intuitive or at least conventional justification is given
for classes of models.

12



Proof: Immediate from definition (I), page 13. D

The anti-monotonicity of Mod is in-
tuitively justified by the fact that the
extension of a description, i.e. the
collection of objects corresponding to
a description decreases with the in-
creasing of the same description by
the introduction of more details

Lema 5.3 Let N1, N; C N C W/ and ICQT;M. IfMiCN: then
Th(M;,K) C Th(M,K). ’

If we increase the amount of concep-
tual objects, i.e. models, we can say
less (smaller number of sentences)
about their common properties.

The monotonicity of Cont and Absd are shown by:

Lema 5.4 Let S s S2 - TéM and Nl,MQW:QAE If] g S2 then
Cont(S; N) C Cont(S2,N), and if N1 CNz then Absd (N1, K)C Absd (N2, K)
a
Monotonicity of the functions with respect to the second parameter comes from:
Lema 5.5 Let SC K CT~ ,, and WCNCWM ., then:

: L= o0, M = ="0,L

. Th(W,K) = Th(w,:roi M) NK

. Absd(W,K) = Absd(W, 75, )N K
- Mod(S,N) = Mod(S, WX ) n NV
. Cont(S,N) = Mod(S, Wo"::'ﬁ) NN a

13



6 Preliminary results

In all that follows we will consider only semantical systems in which the evalu-
ation function is not a constant function, the reason for this is given by:

Lema 6.1 Let S =< £, M, {0,1}, ¢ > be a bivalued semantical system,
and ¢ a constani function, then:

a).Ifforall< a, M >€T~ x WM. o(a, M) =0 then:
‘ o0, M o0, L

a.1) For all NCWM . Mod(a,N)=§
oo, L

(a.2) For all S C Tog M Mod(S,N)=0

(a.3) For all K gToﬁ M Th(M,K)=0

a.4) For all NCWM . and all K CT* ThN,K)=0
00, L o0, M

(b) . Ifforall< o, M >€ TofM X WOJ:‘L: p(a, M) =1 then:

(b.1) For all aEToﬁlM Mod(a,N)=N

(b.2) For all SC TOS,M Mod(S,N)=N

(b.3) For all K Q’T;M Th(M,K)=K

(b.4) For all NC WoA:,[, C ’T;M and all X Th(NV,K)=K

Proof: Imediate. o
So semantical systems for which ¢ is a constant function are not to be
considered as proper semantical systems, they are pseudo- semantical systems.
Lema 6.2 Let N7, Na, WCNC Wg’ﬁ and Sy,852,S5 gToﬁ,M, then:
(a) Mod(S; USz, N) = Mod(S1,N) N Mod(Sz, N)
(b) Mod(S, N1 UNz) =Mod(S,N;)UMod(S,N>)
(¢) Th(N; UN2,K) = Th(N,K) N Th(N2,K)
(d) Th(W,K:l U’Cz) = Th(W,K:l) U Th(W,Kzz)

Proof: (a),(b),(c) and (d) are imediate consequences of (a; ), page 13, and lemma
7.5. o

Lema 6.3 If/\/(_:Wo’:',ﬁ S, T gToﬁ’M, and Ni, NzQWo’::E then:

(i) Mod(SUT,N)=0 & Mod(S,N)C Cont(TN)

(i) Th(M1UMN2,K) =0 & Th(N,K) C Absd (N2, K)
Proof: from lemma 8.2 (a) and hypothesis (i) Mod(SUT,N)=0 &
Mod (S, M) N Mod(T,N) = 8 & Mod (S, N)C Cont(TN). The proof of (ii)
is the dual of (i). 0
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Note: The last step in-the proof of (i) depends on the complementarity of
Mod and Cont and so on the admission that ¢ is a total function. Also, the
above result is apparently strange in face of hypothesis (ii) which seems to be
unreasonable. It indicates a state of affairs where not even true sentences are
possible. Nevertheless we could admit that the language £ of the semantical
system is inadequate for expressing valid sentences for all states of affairs.

Lema 6.4 Let WCNC W::E and K,'QT;:M, then a € Th(WK) &
WC Mod(a,N)

Proof: € Th(W,K) & « € Nyew Th(MK) & foral M € W, a €
Th(M,K) & foral M € W o(M,a) = 1« foral M € W, M €
Mod(a, V) <& WC Mod(a,N) n]

In the same way we can prove:

Lema 6.5 Let SQICC_;T;;M and M € N C W::C,'then M € Mod(S,N)
& S CTh(M,K). O

Lema 6.6 Let W(_;NQW::‘L: and o EICQ’T;M, then o € Absd(W,K)
< WnN Cont(a,N) £ 0

Proof: « € Absd (W, K) & a € Uy Absd(M,K)
& exists M € Wsuch that @« € Absd (M ,K) & exists M € W :
such that o(M,a) = 0 < exists M € W, and M € Cont(a,N) & W N
Cont(a,N) # 0 ' ‘ o

Similarly we can prove:.

Lema 6.7 Let SC_Z}CQ’TofM and NC Wo’?ﬁ then M € Cont(S,N) if and
only if SN Absd (M ,K) # 0 ' o

7 Semantical Consequence

The concept of consequence is usually associated to the concepts of cause and
effect. To account for the occurence of an event A there exists a sequence of
events By, By, ---, By ,---, ending with A such that for each B; there exists
a sequence Bj, Bs,---, B;_; that accounts for it. In this way, the events
B; are like links of a chain, or generally, like nodes of a tree or of a directed
graph. At an arbitrary point of an explanation this graph could be seen as a
hierarchical structure, that is, a subgraph without loops. This intuitive notion of
an explanation could be a model of what is known as the Hypothetical-Deductive
method.

The causality between consecutive nodes is generally not as simple as a con-
ditional expression such as If < premiss > then < conclusion >, but relies
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upon a wider context to which the concepts (model level) and the symbols (lan-
guage level) representing the regarded situation belong. Thus the notion of con-
sequence must depend on representational features, such as the language avail-
able for the description of the events, and on abstractional features such as the
models that convey only certain aspects of the overall state of affairs. Consider-
ing our notion of two-valued semantical system S=<, M, {0,1}, ¢ >,
to define consequence we must be concerned with the dialect K of £, actually
used to describe a certain state of affairs® A as part of the overall state of affairs
M of 8.

In the previous section we have seen that Mod(S,N) is a subclass of
N which satisfies the class S of sentences of a dialect K of £, which means
that Mod(S,N) is the class of all situations where the events represented by
S occur. Intuitively, a sentence B of K is a consequence of S if whenever all
sentences of S occur-then [ occurs.

Defini¢éo 7.1 CnS(S,N,K)=Th(Mod(S,N),K) a

The projection of S on the con-
ceptual plane generates Mod(S, N},
which is the class of all interpreta-
tions of the classe S of sentences with
respect to N.

The representation or formalization
of these interpretations obtained by

the projection of Mod(S,AN), back /‘
. . : /‘“\ s X

on the symbolic plane, contains more < ModS M)A ) \ { 7.

sentences than in the original class . w :

S. This is the meaning of the conse-
quences of S with respect to A

The following result is more operational and intuitive:
Corolario 7.1 a € CnS(SN,K) ¢ Mod(S,N) C Mod(a, N)

Proof: From the definition 9.1 & € CnS(S,N,K) < o€ Th(Mod(S,N),K), so
from lemma 8.4 o € CnS(S,N,K) < Mod(S,N)C Mod(a, N) o

Exemplo 7.1 In SZ Pz € CaS({p1,(p1 VP2)}{{p1, 2}y {p2,Pa}},LR), however
p2 & CnS({p1, (p1 Vp2)},M5,LR) : O

'e shall Jater discuss the variation of CnS regarding the language K and N .

3In Mathematical Logic the context does not affect the notion of consequence. Instead, the
language must have considerable expressive power (first order languages and its extensions)
and a sufficiently comprehensive class of models (relational structure).
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Lema 7.1 S C CnS(S,N,K)

Proof: By the corollary 7.1 we have only to show that for all a, if a €S then
Mod(S, N) C Mod(e, N), and this is a direct consequence of definition 5.2. O
The dual concept of CnS is obtained by:

Definigao 7.2 CnM(W,K,N) = Mod(Th(W,K), N) u]
Corolario 7.2 M € CnM(W,K,N) & Th(W,K) C Th(M K)

Proof: Similar to corollary 7.1. 8]

" The projection of W on the sym
bolic plane generates Th(W,K),
which is the formalization of the :
classe W of models with respect t
lingK.

The representation or interpretation .
of these sentences obtained by the i
projection of Th(W,), back on i
the conceptual plane, contains mor:
models than in the original class W. =

This is the meaning of the conse- © i
quences of W with respect to KX

Lema 7.2 W C CnM(W,K,N)

Proof: Similar to lemma 7.1. _ 0

8 Behavior of CnS and CnM.

In this section we shall study the behavior of the functions CnS and CnM as
we vary their arguments.

Lema 8.1 SCT = CnS(SN,K) C CnS(TN,K)

Proof: Follows directly from lemmas 7.2 and 7.3. . ]

Lema 8.2 If Ny C N, then CnS(S,N,,K) C CnS(S,N1,K)

Proof: It follows immediately from lemma 7.1 uj

An intuitive interpretation for lemma 8.2 is that the smaller our specific
knowledge of a general state of affairs (world), the smaller the class of conse-
quences we can derive. The class S is a formalization obtained by generalization
or inductive inference from a number of particular pieces of knowledge of a world
of which we have only an imprecise definition. If we want consequences which
are undoubtably acceptable whichever the world A concerning S. To make
sure we do so we must employ CnS regarding the wider world W::,L’ as shown

in the following lemma, whose proof is immediate.
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Lema 8.3 CnS(S,WoJ:L:,}C) = ﬂwg WM,C CnS(S,W,K) ]

The dual results are:
Lema 8.4 IfK, CK, then CnS(SN,K;) CCnS(S,K,K,)
Proof: Immediate. ' v o
Lema 8.5 IfW; C W, then CnM(W; K, N) C CnM(W,,K N)

Proof: Dual to lemma 8.1. o
Lema 8.6 IfK; CK, then CnM(W,K,,N) CCnM(W,K,N)
Proof: Similar to lemma 8.2 m]
Lema 8.7 If N1 C N, then CaM(W,K,N;) C CnM(W,K,N3)
Proof: Immediate. o
Lema 8.8 CnS(S U TN,K)=CnS(CnS(S,N,K)U CnS(TN,K),N,K)

Proof: From lemma 7.1 SUT C S U CoS(TW,K) and S U T CCnS(SN,K) U
CnS(T,N,K), by the monotonicity of CnS (lemma 8.1):

(1) --- CuS(S U T,N,K) C CnS(CnS(S,N,K)U CnS(T,N,K)N,K).
Again, from lemma 8.1 CnS(S,M,K)CCnS(S U TN,K) and CnS(TN,K) C
CnS(S U T,N,K), and so:

(2) --- CnS(SN,K) U CnS(T,N,K) C CnS(S U TN,K)
From (1) and (2) CnS(CnS(S,N,K)U CnS(T,N,K)N,K)=CnS(5 U T\,N,K). O

Lema 8.9 CaM(W; UW,,K,N) = CoM(CnM(Wh, K, M) U CaM(Ws, K, M), K, N).

Proof: Dual of the one before. 0

9 Closure Properties

The results to be presented in this section are corollaries of the previous defi-
nitions and results. Nevertheless, they are essential for the reader to acquire a
geometrical view of the relationships between languages and models

Lema 9.1 Mod (S, N)=Mod(Th(Mod(S,N),K),N)

Proof: From lemma 7.1 S € Th(Mod(S,N),K), so from lemma 7.2:

(1) Mod(Th(Mod(S, M),K), N) C Mod (S, N),

so by lemma 8.2: (2) Mod (S, N') C Mod(Th(Mod(S,N),X),N), therefore from
(1) and (2) Mod (S, N)=Mod(Th(Mod(S,N),K),N). o
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Proof: follows immediately from 7% ¢ = nt W . Th(W, 7% ) o
Corolario 9.4 Toi,M is the largest theory and ch is the largest world.

0

Proof: T2 ¢ =Th(W,'7. T2 o) and W =Mod(T 0, Wi r)- o

The picture shows the relations be-
tween the classes:
- 7;),M and W:::L, given by

L — M L
Tom = TRV 00T pq)

and between the classes:

- W&“”‘C and T;,M , given by
M L M
W0,£ - MOd(Too,M ! Woo,,C)

Despite the facts that, neither every set of sentences S is a theory, nor ev-

ery class of models W is a world, there exists as many theories as there are

subclasses of WM c and as many worlds as subsets of 7% M - Thus, if in
0, oo,

a semantical system S the cardinality of Tog M is v there will be 27

worlds, and if the cardinality of WOJ:‘ C is n there will be 27 theories.

10 True and False sentences

In the last section we defined two very importante classes, 7;)‘: M and W;)M[,'

- ’I:)C M is the smallest theory and its sentences a are true sentences in the

sense that for all models M € W2, o(a, M) =1
- W(')A"L:is the smallest world and its models M are universal models, in

the sense that for all @ € 'Toﬁ Mo p(a, M) = 1. Two other classes are also

important:
- .’FOL = ﬂMGW_O,\o,{ Absd (M, Toﬁ,M ), called the class of false sen-
tences:M
NG = nae T M Cont(a, W) called the class of empty models.O
oo

In this section we will examine the relationship between these classes. For this
purpose we present a few results.

Lema 10.1 Forally € T% \\, v € F& iff Mod(y, W& = 0.
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Lema 9.2 Th(W,K)=Th(Mod(Th(W,K),N),K)

Proof: Dual to lemma 8.1. o
The expressions Th(W,K)= Th(Mod(Th{W,K),M)},K) and Mod (S, N)=
Mod(Th(Mod(S,N),K),N) could be re-written generating the expressions:

(A) Mod (S, N) = Mod(CnS(SN,K),N)
(B) Mod (S, N) = CnM(Mod (S, N),KN)
(C) Th(W,K) = Th( CnM(W,K,N),K)

(D) Th(W,K) = CnS(Th(W,K),N,K)

(A) says that CnS(S,N,K) is the largest class of sentences X that contain
S and preserves its models, this suggests the following:

Definicao 9.1 7 is a theory in K and N iff T=CnS(T,N,K) ‘ 0

Lema 9.3 Toﬁ,/\/( is a theory in Woj‘:,[: and Toﬁ,.M'

Proof: From lemma 7.1 To:,,M = CnS(ch,M,WﬁL,TLMM) o

o0

Lema 9.4 7 is a theory in N and K if and only if there exists Wy such that
T=Th(W,K).

Proof: It suffices to take Wy=Mod(7,N). ' 8]
(C) suggests the following definition:

Definigao 9.2 W is ¢ world in K and N iff W=CnM(W,K,N) a

CnM(W,K,N) is the largest class of models that contain W and preservs its
theory. This, again suggests the following:

Lema 9.5 W::,[, is ain Toﬁ,M and WOA:,»C'

Proof: trivial. u]

Corolario 9.1 W is a world in K and N if and only if there exists Ty,
Ty CK such that W=Mod(Tyy, N) .

Proof: It suffices to take 7y =Th(W,K). o

Corolario 9.2 Wé\,Aﬁ = MOd(Tog,M ) W;:E) is the smallest world

Proof: follows immediately from lng\"C = ﬂTC T M Mod(7, WOA:C) O

Corolario 9.3 Tol,:./\/( = Th(Wo’:L,Tog,JM) is the smallest theory
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Proof: v € 7 iff v € [\, yym Absd (M, TZ y() iff for all M e WA M e
Absd(M,ToiM)ifffor al M € WX o(v, M) =0iffforalM e WY M€
Cont(y,W2) iff Cont(y, W) = WA iff Mod(y,W%!) = ¢ ]

Lema 10.2 L # 0 iff WM. =0

Proof ( —) foﬁ # 0  then there is v € }‘5'3 , by the last lemma
Mod(y, W&') = 6, as W}/ C Mod(y, W&'), thus Wi, = 6.

(e—) W}p =8, Wy, = n"eTofM Mod(a, W&') there is v € TZ 44
such that Mod(y, W%!) = @, so by from lemma 10.1 v ¢ }'OE and so ,’FOL: # 0 0
The last result shows that the existence of contradictions or falses sentences in a

semantical system depends on the non existence of universal models. The next
two lemmas shows the dual situation.

Lema 10.3 Foral M € WX, M € .N'ﬁ/w iff Th(l\l,ToiM): 0.
Proof: Dual to lemma 12.1. ]

Lema 10.4 M # 0 iff TE, =0

Proof: Dual to lemma 12.2. o
There are empty models if and only if there are no true sentences. Relations
between .’Z;’: and Wé"‘ﬁ are more difficult to envisage at this stage of our

developmenf,. In the folhyvoing sections we shall use the notation:

N M N _ oM
'Wo,ﬁ‘wo,ﬁnN’W‘z”’Ww NN

K . _ Tc .
TSy = T DK, Ty = T2 N K

w}

11 Negation

In this section we will present several forms of negation. The relevance of
this study is that through abstract definitions we can distinguish each form of
negation from the others. By doing so, we might be able to discuss certain
mathematical concepts regardless of syntatical considerations.

Definigao 11.1 NegC(a,N,K) = { § € K | Mod(a,N) = Cont(ﬂ,z\/).} '

NegC(S,N,K) = J,¢s NegC(a, N, K) 0o
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As for the propositional semantical systems the above class (a set in this case)
of sentences coincides with the class of sentences logically equivalent to the
negation of . For instance, in the propositional semantical system Si we have
Mod(a, M%) = Cont(~a,MPB), and so NegC(a, ML, L) = {B € L} | ~a =
8}. Note that our definition of negation (NegC) is relative to a certain state
of affairs A, and to a particular dialect K. Therefore, by modifying either
Nor K we change the value of NegC, that is, different classes of sentences
are obtained. Our definition satisfies the following criteria [Ebb] for classical
negation:

For all 7 and all ¢ € L[7] there is a sentence ¢ € L[7] such that
Modi(¢) = Str[r] — Modz(¢)

- In [Ebb], the emphasis is syntatical, so the relativization is on notational con-
siderations, 7 is the vocabulary and £ is a possible extension for the first order
language.

Example 11.1 In Sz we have Mod(p1,{{p1}, {p2}}) = {{m }} =
Cont(p2,{{p1} , {p2}}), an so p2 € NegC(p1,{{p1}, {p2}}, £5). Note thal -p1 €
NegC(p1,{{p1}, {p2}}, £}), then in a sense ~p; is equivalent to pz, i.e. they have the
same models, i.e., Mod(=p1,{{p1},{p2}}) ={p2} = Mod(pz, {{p1 }, {p2}1})

At first the relativization of negation seems strange, but we can consider the
sentence p; - ‘John is married to Ann’ as being the negation of the sentence
p2 - ‘John is married to Mary’ in a world in which Ann and Mary are different
women and monogomy is a certain fact, only one of the two sentences is true.
An important property of the classical negation is that if g is the negation of
« then the class containing both S and « has no models:

Lema 11.1 If € NegC(a,N, K) then Mod({e, 8},N)= §

Proof: We know that: (1) - Mod({a, 8}, N)=Mod(a,N} N Mod(B,N), also
B €NegC(a,N,K) & (2) - Mod(a,N)=Cont(s,N), then from (1) and (2) :
Mod({a, 8}, V) = Cont(8,N) N Mod(8,N) = § a]

Example 11.2 In S, e have: Mod({p1 , p2 1, {{p1}, {»2}}) = 0

If we allow all possible state of affairs to be considered, for instance in the
case of marriage we allow poligamy, the sentences p; and py above will not be
contradictory.

Lema 11.2 NegC(a, WX, K)C NegC(a, N, K)
Proof: 8 € NegC(a, WM ,K) & (1) - Mod(a, WY')=Cont(8,WL!). As

Mod(a,N) = Mod(a, W) N A and Cont(8,N) = Cont(8,WZ') n N, then from
(1), Mod(a, M) = Cont(8,N), thus g€ NegC (a, N, K) o
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Note that if we consider families of models A; and A3, then: If A C A, then
Mod(a,N;) C Mod(a,N;) and If A} CN, then Cont(a,Nz) G Mod(a,N) then
we cannot derive uniform variation of NegC either increasing or decreasing.
On the other hand the variation regarding dialects is more predictable as the
following lemma, shows. ’

Lema 11.3 If K, Ko gToﬁM then NegC(a, N,K1)CNegC(a, N, K,)

Proof: It follows immediately from the definition of NegC. o
We can thus conclude that NegC increases monotonically with the dialect
Kof T oﬁ M- The next result shows that in the semantical systems where

Wét"[’ # 0 no sentence of the language Toﬁ,M admits the classical negation.
Lema 11.4 [fa ETQS,M' and Wy # 8 then NegC(a,ng‘,Tof’M) =¢

Proof: We know that W, =) Mod(S, W) then (1)--- for all S C

seT g M
Toﬁ,M Mod(S, W) # 8, if we assume that NegC (a, WM, Tog,M ) # 0,
then there is a 8 € Toﬁ,M such that # € NegC(a, W2, Toi,M ), so by
lemma 11.1, Mod({«, 8}, WX') = @, which contradicts (1). ]

Corolario 11.1 If aG’Z’oﬁ'M and W(J)‘:C # 0 then NegC(a, WX, K)=0

Proof: It follows from the previous lemmas. O
Another property of the classical negation is that if a sentence f is a negation
of a then « is a negation of 8 . To express it we have the following lemma:

Lema 11.5 B¢ NegC(a,N,lC) & a€ NegC(B,N,K)

Proof: fe€ NegC(a,N,K) & Mod(B,N)=Cont(a N) &

a € NegC(8,N,K) o
At this point of our discussions we must make a conceptual division, regarding
two extreme types of semantical systems:

Symmetrical Those in which for all oze’TofM, for all NC W2 and for all
KCTE p NegC(a, N,K) # 0

Positive Those in which for all « e’]‘oﬁM , for all NCW2!' and for all
KCTE py NegC(a, N,K) =0

There are reasons related to the concepts of completeness and consistency for
considering these extreme types of semantical systems: such systems have typ-
ical metamathematical behavior. From lemma 11.1 we can see that semantical
systems in which Wé\"ﬁ # Qare positive semantical systems.
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The relation between classical negation, false sentences and true sentences in
symmetrical semantical systems is given by:

Lema 11.6 Let S be a symmetrical semanfz'cal sysiem Then
FE = NegC(TFpg, W&, TE )

Proof: From definition 11.1 v € NegC(’]If’ CWELTE W) if and only if
¥y € UaeTCM NegC(’TC , W, TLM) if and only if there is o € ’I('fM

such that Mod(a, W) = Cont(y,W2), as for all a € 75, ; Mod(e, wihy =w,
v € NegC( T‘ WM TE oM ) if and only if Cont(7 WM)~W§,‘, therefore
v € NegC(T o.M , Wéf,‘,’]" m) if and only if Mod(y, W) = 8, then by
lemma 12.1 v € NegC( ’Z’£ G WE, T‘ M) ifand only if v € fo , therefore
FE = NegC(Tf ,wx,T‘M) 0
. Similarly, we can prove:

Lema 11.7 Let S be a symmetrical semaniical system. Then
TM_NegC( Wvof(,TﬁM) a

oo

12 Other kinds of negation

In classical negation, as seen in the previous section, § is a negation of «if
and only if Mod(a, N) = Cont(8,N), this is a very restrictive condition. The
intuitive meaning of it is that the class of situations where « holds is exactly
the class of situations where 8 does not hold. So, the class of situations where
« does not hold is the class of situations where B does hold. If we allow the
class of situations where a does not hold, i.e. Cont(a,N) to be a subclass
of the class of situations where 3 does hold, we are to accept that there are,
eventually, common models for both a and 3.

Definigao 12.1 NegD(a, N, K) = { 8 € K | Cont(a,N) C Mod(8,N) }

NegD (S, N,K) =, s NegD(a, N, K) ‘ g
Is NegD, really a kind of negation? The following lemma is a partial positive
answer:

Lema 12.1 If 8 € CnS(a,N,K) then NegD (o, N, K) C NegD (5, N, K)

Proof: # € CnS(a,N,K) if and only if (1) -+ Cont(8,N) C Cont(a,N), and so by
def ... yeNegD (a, N, K) if and only if Cont(a,N)C Mod(y,N), then from
(1) Cont(B,N) C Mod(y,N), so by def .. 7ENegD (B,N,K) o
another property of negation is given by:
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Lema 12.2 If f€ NegD(a, N, K) then a € NegD (8, N, K)

Proof: g€ NegD(a, N, K) if and only if Cont(e,N) CMed(8,N) if and only
if Cont(8,N) C Mod(a, ) if and only if « € NegD (5, N, K). (]
The following lemma shows that NegD is the theory of the class of models M
that falsifies o, i.e. p(a, M) = 0.

Lema 12.3 NegD (a, N, £) = Th(Cont(a,N),K)

Proof: € NegD («, N, K) if and only if Cont(a,N) C Mod(8,N) if and only if
8 € Th(Cont(a,N),K) (according to lemma 8.4). o
The next lemma shows that the only sentences commom to CnS(e,N,K) and
NegD («, N, K) are the ones in %LN'

Lema 12.4 NegD(a, N, K) N CnS(aN,K) = N

Proof: NegD(a, N, K) N CnS(a,N,K) = Th(Cont(a,N),K) N
Th(Mod(a, N),K) = Th(Cont(e,N) U Mod(a,N),K) = Th(N,K) = TO'CN O

Lema 12.5 If v € NegC(o, N,K) then NegD(a, N, K) = Th(Mod(y,N),K)

Proof: From lemma 11.3 NegD(«a, M,K) = Th(Cont(aN),K), from v €
NegC(a, N, K) we have Cont(a,N)=Mod(y,N) so by substitution we have
the proof. So NegD (a, N, K) is the class of consequences of the (classical)
negations of c. O
From lemma 12.4 7% NC NegD (a, NV, K), this is quite strange, for true sen-

tences are denials of a description «. So we introduce a modification in the
definition of NegD:

NegD(a N, K) = Th(Cont(a,N),K) — N
The intuitive meaning of NegD can be seen if we consider the sentences

p --+ John is a man and ¢ --- John is imortal

then ¢ is a negation (NegD) of p, as ¢ is a consequence of —p.
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Lema 12.6 ]fW")MK: # 0 then for alla € K NegD(a, N, K) =10

Proof: From corollary 11.1 NegC (o, N, K) = 0 then NegD (e, NV, K) —
TSy = CnS(NegC(a, N, K)NK) - T = CuS(BNK) - To'f)v =

K K .
o~ Toxw =1 o
The next negation is easier to accept as such, as we shall see.
Definigao 12.2 NegE(a, N, K) = { 8 € K | Mod(e,N) C Cont(8,N) }

NegE (S, N,K) = | NegE(a, N, K)

a€S

The following is one very clear property of negation:
Lema 12.7 If feNegE(a,N,K) then Mod({a,B},N) =8
Proof: We know that (1) - Mod({ a, #},N)=Mod(a,N) N Mod(8,N), as 8 €
NegE (a, N, K) if and only if (2)- Mod(a,N)C Cont(8,N) then from (1) and
(2) Mod({«, 8},N) C Cont(8,N) N Mod(f, V)= 6, thus Mod({a, f},N)=0 O
The next lemma shows that in any positive semantical system NegE is empty:
Lema 12.8 If W, # 0 then NegE(a, N,K) =0
Proof: Similar to the proof of corollary 11.1. O

Lema 12.9 If S NegE(a, N,K) then a€ NegE(B8,N,K)

Proof: fe NegE(a,N,K) & Mod(a,N)CCont(8N) & Mod(8,N)C
Cont(e,N) & a€ NegE(S8,N,K). o

Lema 12.10 NegC(a, N, K)CNegE(a, N,K)

Proof: g€ NegC(a,N,K) ¢ Mod(a,N)=Cont(8,N) then Mod(a,N)C
Cont(#,N) & B€ NegE(a,N,K) O

Lema 12.11 NegC(a, N, K)CNegD{a, N, K)

Proof: Similar to the proof of lemma 11.11 0
Lema 12.12 NegD(a, N, K) N NegE(a, N,K) = NegC(a, N, K)
Proof: Immediate. ‘ o

Defini¢ao 12.3 NegED (a, N, K) = NegE(a, N, K) U NegD(a, N, K) O
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Lema 12.13 (1) --- NegE(a, N, K)CNegED (o, N, K)
(2) ... NegD(a,N,K)CNegED(a, N, K)

Proof: Immediate. =]
The last kind of negation we will consider is very important. It is the semantical
counterpart of Post’s negation by non demonstrability.

Defini¢gao 12.4 NegF(a, N, K) = Absd (Mod(e,N), K)
NegF (5, N, K) = Absd (Mod(5,A), K) , a]

Lema 12.14 NegF (o, N, K) = T s — CnS(a,N/K)

Proof: Obvious. 0

NegF(O(..A’,K) !

Lema 12.15 If Mod(a,N) # @ then NegE (o, N, K)CNegF(a, N, K)

Proof: B € NegE(a, N,K) ¢ Mod(e,N)CCont(8N) & Mod(a,N)N
Cont(8,N) = Mod(a,N), then if Mod(a,N)# # then Mod(e, N)NCont(8,N) #
#, and thus from lemma 8.6 8€ Absd (Mod(a,N), K)=NegF (o, N,K. O

The figure shows that the de-
fined types of negation form a
lattice regarding inclusion
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13 Complete Theories

Intuitively a theory 7T is complete when it fully describes a certain state of
affairs (Mod(7,N)). This means that its sentences are sufficient to determine
both the situations which satisfies it - its models - and the complementary
situations - its empirical content. Therefore if a sentence a does not belong to
T then if 7 is a complete theory the models which satisfy «, Mod(e,N), do
not satisfy 7, and so these models are among those which do not satisfy 7, i.e.
Mod(e, N) C Cont(TN), or equivalentely Mod(7, ) C Cont(aN). Formally we
have the following (tentative) definition:

Definicao 13.1 Let T be a theory in N and K. We say that T is complete,
in K and N, if and only if for dll €K if o ¢7T then Mod(7,N) C Cont(a,N).
;] ‘

In the case of the first order semantical system the definition above coincides
with the usual one:
T is complete if f for everya, a € T or ma € T

Lema 13.1 7 is a complete, theory in K and N if and only if for everya ¢ T
Mod(7,N) N Mod(a,N) = #

Proof: It is an immediate consequence of definition 11.1. O

The situation presented above
correspond to the case when

Wf['z ®, i.e. there are no

universal models. If there are
universal models (W;\A£;é )]
then this models are in 7 and

Mod(e, Wo":'"c )-

We will also consider the following definition:

Definicao 13.2 Let T be a theory in N and K. We say that T is complete, in

K and N, if and only if for all a €K if o ¢7T then Mod(7,N)NMod(e,N) =

Whe. -
0K
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If W6M£ = ¢ the two definitions coincide.

Lema 13.2 T is complete; in N and K if and only if T is complete, and
N o

Wok = $.

Proof: Immediate. a

We will generally adopt definition 15.2 as it is more comprehensive, but we
can alternatively use definition 15.1 when the semantical system is symmetrical.’

Corolario 13.1 Tof,.’\[ is a complete theory in K and N.

Proof: It follows immediately from both definitions. : ]
The next corollary shows that our definition subsumes Tarski’s definition of
completeness.

Corolario 13.2 T is a complete theory in K and N if and only if for every
a€TE, if a ¢ T then CoS(T U{a}NK) =T 4

Proof: For all « € K, CnS(T U {a}NM,K) = Th(Mod(T U {a},N),K) =
Th(Mod(7, .N')n Mod(e, N),K), if o g T then by definition 11.2 Mod(7,N)N
Mod(a, N) =W}y, s0 CnS(TU{ }NK) =ThWe,K) =T 5 0

Lema 13.3 Let NCWX . and T, and T theories in K CTE. Then if:

T, is complete in X and N, and
71 C T, and
Mod(%,N) # 8

then 7y = B oor =75

Proof: Let us suppose that T # T then there exists « € 7; such that o ¢ 73,
then as 7 is complete in K and A: (4) - Mod(T;, V) N Mod(a, N) = W;V From
hypothesis 2, (5)-Mod(T:,N) CMod(7:,N), and as T; is a theory a’nd a€T;
(6) - Mod(7,N) C Mod(a, N), so, from (5) and (6), Mod(7z, V) C Mod(T;,N) N
Mod(a,N) = W, ey thus Mod(%, M) = w, ok therefore 7 = T’CN o
The previous lemma shows that if a theory is complete then no other proper
theory contains it.
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Definicao 13.3 W is an elementary class in N relative to K (EC‘Q/) iff for
all M eW, Th(M,K) = Th(W,K). o

Lema 13.4 If WY #0  then W)cis ECY.

Proof: For any M € WN T’CNC Th(M,K)= oo.N" ' o
The models of an elementary class regarding a dialect K are undistiguishable
by this dialect. We say that they are equivalent, or more precisely:

Deﬁmgao 13.4 Let M1, M, EW , we say that My is equivalent o M> in
L

K, (Mi=x M) , we say that My is equivalent to Mz in K, (My= x Mz) ifand

only if Th(M1,K)=Th(M,K). a]

; M L —
Lema 13.5 Let S .be a semantical system, N'C Woo,,c and ICQTOO,M. =K
is an equivalence relation in N.

Proof: Trivial. _ a
The following is a very useful little result:

Lema 13.6 Let S be a semantical system, N'C W::ﬁ and K§T£M. ‘Then
for every W € WY (- Th(W,K) = Th(W - W} ,K)

Proof: If & is syminetrical, as Wé‘f}c is empty there is nothing to prove.

In any case Th(W,K) = [})c Th(MK) = (nMGW WN Th(M )C))
ﬂMGWN Th(M,K) = Th(W — W K)

The ne\t result tells us that a complete theory 7 has a nice property with
respect to its models Mod(7,N), which is, we can identify for such theories,
besides Wé‘f i other elementary classes relative to K.

Teorema 13.1 Let NC WME and TeKCTE. T is complete in K and N if
and only if Mod(T,N)— W:fh is ECN

Proof: ( <=) : Let us assume that Mod(T,N) - WN» is ECN So, by definition,
for every M € Mod(T,N) — Wikt (1) Th(M, zc) = Th(Mod(TN') Wi K)
and from lemma 13.6 (2)- Th(M IC) Th(Mod(T,N),K) = T. Suppose that ag
Tthen from (2) for every M € Mod(T,N) — Wé‘_f,c we have that o ¢ Th(M,X),

ie. M € Cont(a,N) and so Mod(T,N) — Wi CCont(a,N) < Mod(T,N) N
Mod(a,K) = Wé‘flc, from this we conclude that 7 is complete in K and N.

(=): Now let us assume that 7 is completein X and A, then we have to prove
that Mod(7,NV) - WY, oK is ECN Therefore we need to show that for every M €
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Mod(T,N) — W¥,. Th(M,K) = Th(Mod(T,N) — W} ,K), but then from
lemma 13.6 we have to show that for every M € Mod(7,N) — W Th(M,K) =
7. As TC Th(M,K), it remains to be shown that Th(M,K) C 7. Suppose that
for some N € Mod(T,N) — Wé‘)f)c Th(M,K) € 7, then there is a € K such that
(4)-a € Th(M,K) and (5)-« ¢ 7. From (5) and from the fact that 7'is a
complete theory in X and A we have that Mod(7,N)nMod(a,N) = W;,GC

As M € Mod(T,N) — W;‘," , we have that M ¢ Mod(a,N), i.e. @ ¢ Th(M,K),
which contradicts (1) above. o
Theorem 15.1 is very important, because it shows that for complete theories T
in a language K, all the properties expressed in K, of a particular model of 7
are properties of all models in Mod(7,NV). This is the meaning of Mod(7,K) —

W(‘;‘,’K being EC%’.

The results presented so far are valid for any semantical system S. In the next
section we will study the case of symmetrical semantical systems.

13.1 Symmetrical Semantical Systems

We saw that for complete theories T Mod(T,N)—W(f{K is EC%, since for

symmetrical semantical systems Wé‘/}c is empty, we have:

Corolario 13.3 Let &S be a symmetrical semantical system. If T is complete
in K and N then Mod(7,N) is an elementary class relative to K in N.

Proof:Immediate after theorem 13.1. 0
The next result shows that the usual (first order) definition of completeness is
subsumed by our definition 13.2.

Lema 13.7 Let S be a symmelrical semantical system. T is complete in N
and Kif and only if for all a €K, if a@T then NegC(a,K,N)CT

Proof: (=) Let us suppose that 7" is complete in A and K.

Then (1) -+ if « g7 then Mod(7,N)C Cont(a,N). As Sis symmetrical
NegC(a, K, N)#8,s0let feNegC(a, K, N) then Mod(a, V) =Cont(8,V),
or equivalentely (2) - -- Mod{8, ) = Cont(e,N). From (1) and (2) Mod(T,N)C
Mod(3,N), as Tis a theory, €T and so NegC(a, K, N)CT.

(<) Let us'suppose now that if o g7 then NegC(a,K,N) CT.

If M e Mod(7,N) then for all ge&7, MeMod(#,N). This holds in partic-
ular for B€eNegC(a, K, N). Thus MeMod(B,N), therefore as Mod(8,NV)
= Cont(a,N), MeCont(a,N), then Mod(7,N) C Cont(a,N), and therefore Tis
complete. - m)
The next two theorems are generalizations of two important results of first order
Model Theory. We will see that they are also very important in our framework.
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Teorema 13.2 Let & be a symmetrical semantical system, M eNC W::‘C,
then Th(M,K) is a complele theory in N' end K. ’

Proof: Let a @ Th(M.,K), then @(a, M) = 0, so (1) - M € Cont(a,N). As & is
a symmetrical semantical system, by lemma 13.7 it is sufficient to prove that
NegC (a, K, N) C Th(M,K). Let € NegC(a, K, N) then (2)- Mod(8,N) =
Cont(a,N), from (1) and (2) we have M € Mod(B,N), and thus g€ Th(M,K).0

Teorema 13.3 Let S bea symmelrical semantical system. If WCWN is EC‘,’(\:[
then Th(W,K) is a complete theory in N and K.
Proof: As W is elementary in K, for all M € W Th(W,K)=Th(M ,K), thus by
lemma 13.2 Th(W,K) is complete in N and K. ]

The relation =y gave us some understanting about the models of a seman-

tical system. There is another relation which will give us deeper results about
models and topological properties of W:(:(ﬁ’ the subjacency relation.

Definigao 13.5 Let KCTES o My, M2 €W -, we say that My is subjacent
to M2 (MiCy M) in K if and only if Th(M;,K)C Th(M2,K). 0

13.2 The relation C

The subjacency relation, T, has several advantages over the notion of equiva-
lence of models. The first of which is given by:

Lema 13.8 Let &S be a semantical system, My, M2 e NC W;:‘C.
M= M2 « M Ty M2 and MaCy M1 '

Proof: Immediate. 0

Example 13.1 If in the propositional semantical systems we consider only the
dialects £} 'P that do not contain negation the notion of subjacency coincides

. . P+
with the C, therefore in the system 83 s

{p1} C {p1,p2}
As a matter of fact we have that: < Mg ,C > is a lattice, as shown below:

IModeh(pw{:.)wu:) m e

{R.n.B}
*

Lattice < M5, C> R B {Bp}




We can see in the lattice < M5, £ > that for each model M € M3, the class of models
of the theory of M are all the models above M, including M itself.

So,
(1) --- Mod(Th({ps 1£21),ME) = {{p1}, {pr, P2} {P1, P2}, {P1,P2,P3 }}
(2) --- Mod(Th({p2 },M5), £8*) = {{p2}, {p1, P2}, {P2,P3}, {P1, P2, Pa }}
Moreover Mod(pz, ME) = Mod(Th({pz },£'"), M5)

Asp; € Th({p1 }, LP’+), we can see that Th({p;} LP'+) is not complete for

Mod(Th({p1 },£5'), M2) N Mod(p2, M5) = {{p1,p2}, {P1,P2,P3}}

So, the question is: which modelsin M} have complete theories relative to the language

p,+
C§'+? A partial answer to this question for the semantical system 83 is that the
only complete theories are those of the models

{Pl,Pz}; {Plv p3}7 {P21 p3}
because above these models there is only the model {p1, p2, p3 } which is the only
one in W(ﬁc for the considered semantical system.
The models in M} are finite. So, one would expect their theories to be complete
becaunse as such they can be completly described by enumerating all of its elements

It is surprising that only few of them are complete. The semantical system 8 was
obtained from Sa by restriction of the language and consequently of the evaluation

Pt
function ¢}. The system Sa is very poor as a declarativesystem as it lacks ezpressive
power.

Let us suppose we want to describe the model { p: } in 8 . A strong, natural
and intuitive candidate would be the sentence p; of L5’ * but then as we just saw this
sentence has other models besides { p; } which we intended to describe (completly).

What seemed intunitive and natural is a mistake generated by reasoning in the
language of proposicional semantical systems and strongly restricting its language.

{0 n}
iR}
Looking at the piece of the lat-
tice containing the models of p;
we can see that {p; } is the min-
imum (relative to C) of them. BB}
i

Pt
The sentence pi A p2 A pa, in 8 , describes completely the top model of the
lattice because this is the only model for that sentence.
One way to strengthen the ezpressive power of the semantical system 8 is

modifying its evaluation function so that it may capture this notion about mlmmum
model. There are some difficulties in this project because this rotion is quite elusive
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as it depends on a complete description of the universe of dlscourse For instance, in

the present case, we know completely all the models of S and the order relation C,
as presented in the last page. Intentional considerations, such as of minimum model

is out the scope of this work.
It is very useful to postulate a representative of the world w¥ o> even when it is empty.

Postulate 1 - We represent by T%, or simply by T, any model in W:,)C4‘ o

Lema 13.9 For any semantical system S Th(T K)= T'CN

Proof: Immediate. o
The need to postulate a bottom model is partially justified by the existence of empty
models in propositional semantical systems. The world wv o0 K is usually not a class
of equivalence, so we can not take one of its models as representanve of it.

Postulate 2 - _LQ/, or simply L is a model which corresponds to WN , in the sense
that Th(L,K)= NTh(W h,lC) 8]

It is important to observe that if we consider the whole language of S then
Th({p1 },£5) € Th({p1, pz },£})

Thus such models are not comparable regarding the notion of subjacency.
The following result shows that < W , £ > is a flat lattice:

Lema 13.10 Let S be a symmetrical semantical system. Then:
(1) foralM e W e LCMET
(2) for aIIM, N e w” ~{L, TYMEZN

Proof: (1) For all M € WX ok Ve have T),C.’\/C Th(M,K)C TKN' (2) follows from
the fact that in a symmetncal semantical system Th(4,K) is complete in K and N,
and lemma 15.3. =)

Lattice < M, C > for symmet-
rical systems

4In the case that WN}C

and is used analagously to F in Classical Logic.

is empty (symmetrical systems), T is the model for contradictions
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. . . r+
In the above lattice as well as in the one we presented for the positive system 83
we can see that the models that possess complete theories with respect to C are the
biggest models immediately below T. The reason for this is lemma 15.3 that is valid

: p+
for any semantical systems. The example 83 serves only as a motivation for the
analysis of the topology of the positive semantical systems relative to L.

Note: Notice that the evaluation function of S: is the same of 8:+ but the topology
with respect to C changed. What remained the same in the two topologies is that
above all the models sits T, corresponding to the whole language as theory. Also, the
level immediately below the top contains complete theories, both in the symmetrical

r+
case and in the analysed case of 8 . As for the general case, it is a matter to be
analysed in the study of positive semantical systems.

14 Conclusions

Applications of the results of this work are already under way and we have been
working in two direction:

Positive Semantical Systems The positive semantical systems are our
bridge to the study of the formal systems. Smullyan’s Theory of For-
mal Systems have been studied within our general framework and we
have improved our understanding of Godel’s Incompleteness Theo-

rem. A report on this subject is being prepared.
Intensional Semantical Systems From the simple fact that all defini-

tions are relative to subclasses of W;‘:L and subclasses of ‘T;: Mo
a natural thing is to investigate what happens when one considers -
worlds and theories instead of general classes of models or sentences.
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