Monografias em Ciéncia da Computagdo
ne 24/91

ACCORD |
A Framework for Diglogue Representation
using Commiiment

Hugo Fuks

Departamento de Informdatica

PONMTIFICIA UNIVERSIDADE CATOLICA RO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453
RIC DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computagdo, N 24/91 ‘
Editor: Carlos J. P. Lucena Dezembro, 1991

ACCORD
A Framework for Dialogue Representation using Commitment *

Hugo Fuks

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In charge of publicationss:

Roszane Teles Line Castilho

Assessoria de Biblioteca, Documentacio e Informagio
PUC Rio ~ Departamento de Informidtica

Rua Marqufs de S53o Vicente, 225 - Gdven

ar483 - Rio de Janeiro, RJ

Brasil

Tel .t (921)029-9284 Telexi31078 Fams{@24)314-5640
E-mailsrosance®inf.puc-rio.br

Resumo

ACCORD é uma estrutura para sistemas de representagdio de didlogos. Seu uso é
proposto para a representagdo de alguns dos aspectos de negociagfio caracteristicos do
trabalho cooperativo. Esta estrutura é dividida em um Célculo de Compromissos e um
Componente de Diglogo Agiio. A modelagem do conhecimento de cada participante sobre o
dislogo e sobre a sua interagdo com os outros participantes, é representada por meio dos
compromissos assumidos durante a conversagdo. Cada participante tem uma carteira de
compromissos onde seus compromissos sdo registrados. O Cilculo de Compromissos foi
desenvolvido para lidar com as consequéncias de ter compromissos. O Componente Diélogo
Acdo dita a etiqueta didlogo, e a maneira pela qual a conversagdo afeta e atualiza as
carteiras de compromissos. As nogdes de cliches, scripts e de padides de raciocinio
cooperativo sdo esbogadas visando a formaggo de estere6tipos de conversagéo .

Palavras-chave

Compromisso; Didlogo; Cooperagiio e Representagéo de Conhecimento.

Abstract

ACCORD, a framework. for dialogue representation systems using commitment is
proposed as a means for representing some of the negotiation aspects characteristic of
cooperative work. A two-tiered framework comprising a Commitment Calculus and a
Dialogue Action Component is developed. The modelling of each participant's range of
information about the dialogue, and its interaction with the others, is represented by
commitments generated during the conversation process. Each participant has a
commitment store where its commitments are placed. The Commitment Calculus is
developed for dealing with the consequences of having commitments. The Dialogue Action
Component dictates the dialogue’s etiquette, and the way that the conversation affects
and updates the commitment stores. The notions of cliches, scripts and patterns of
cooperative reasoning for the provision of conversation stereotypes are outlined. '

Keywords

Commitment; Dialogue; Cooperation and Knowledge Representation.

| ACCTORD o
A Framework for Dialogue Representation
using Commitment

Hugo Fuks
Hugo@inf.puc-rio.br
Departamento de Informatica
Pontificia Universidade Catdlica do Rio de Janeiro
Rua Marqués de Sao Vicente 225
22453 RJ Brasil

Abstract

ACCORD, a framework for dialogue representation systems using commitment is
proposed as a means for representing some of the negotiation aspects characteristic of
cooperative work., A two-ticred framework comprising a Commitment Calculus and a
Dialogue Action Component is developed. The modelling of each participant's range of
information ahout the dialogue, and its interaction with the others, is represented by
commitments generated durmg the conversation process. Each participant has a-
commitment store where its commitments are placed. The Commitment Calculus
developed for dealing with the consequences of having commitments. The Dialogue Action
Component dictates the dialogue’s etiquette, and the way that the conversation affects
- and updates the commitment stores. The notions of cliches, scripts and patterns of
cooperative reasoning for the provision of conversation stereotypes are outlined.

Keywords

Commitment; Dialogue; Cooperation and Knowledge Representation.

1. Introduction

Negotiation permeates many aspects of our everyday life. Normally, the
accomplishment of a task involving more than one party is by means of agreements,
commitments and compromises.

We see the interactional aspects of language as a sound common basis for the
‘structuring and coordination of cooperative relationship among groups of people and
groups of computer systems. People talking to people is by far the best way of establishing
common ground, working together, negotiating contracts and solving conflicts. We believe
that computerised conversational working environments are going to be.extended and
improved in such a way that soon it will be normal practice to see pecple talking to
computer systems, computer systems talking to people and computer systems talking to
computer systems. This is neither to be seen as the use of speech nor the use of natural
language, but we are interested in the usage of conversation primitives to guide thls
process.

But we would like to go even further, extending the conversational framework for the
outer circle of communication among groups of people and groups of computer systems to a
dialogic framework for the inner circle of reasoning, fundamental to the performance of

&
-1-

importance of logics for the programming of computer systems nowadays. Then, we should
remind the reader that logics and dialectics, literally originated from the works of the very
same Aristotle. For reasons that fall outside the scope of this work, dialectics was
associated with rhetoric, which in its turn was associated with bad argumentation
practices. We understand that today we are prepared enough, in terms of theoretical
results and in machinery, to reaccess dialectics and to use it as a sound framework for
automated reasoning and communication.

1.1. Forms of Reasoning

Aristotle divides reasoning - or logics - into two basic forms: analytical and dialectical.
We also identify a third form of reasoning - oratorical - as we present below:

i) Analytical reasoning: It is the form of reasoning that conforms to the laws of formal
logic. The notion of truth prevails here. Results can be demonstrated, i. e. calculated in
accordance with rules that have been laid down in advance.

ii) Dialectical reasoning: It is founded on opinion and concerned with contingent realities.
It is not formally valid but it is only reasonable or probable. It is founded on agreement. It
conforms to the laws of interaction and minimum or immediate consistency
preservation. The parties involved make concessions and commitments to achieve a
satisfactory mid-term position.

iii) Oratorical reasoning: In this sort of reasoning the parties present their cases, leaving
the decision to a third party. It presupposes the existence of a tertius for harmonising
conflicting views.

One could consider examining each of these three forms of reasoning on the basis of the
qualitative aspects of the number of parties involved. Analytical reasoning is related to
one party, the dialectical form is related to two parties and the oratorical form is related to
three parties.

Logics, 'considered in its most meaningful nucleus - which is the theory of deduction'
(Ladriere 89) - and argumentation relate to statements - propositions - in an opposite, but
not conflicting way. While deduction guarantees the passing of truth from a collection of
statements - premises - to those statements - conclusions - that follow from it,
argumentation traverses back along this path providing justification for the conclusions by
making the premises available.

Metaphorically speaking, this path could be seen as a river of implications where
deduction flows downstream while argumentation zigzags upstream. Negotiation seems to
zigzag more than flow. It also comes closer to argumentation for scarcely making use of the
notion of truth. During the negotiation process one is busier in giving support to one's
views of the subject than concluding things about it, especially if one understands
negotiation as the process of compromising and reaching agreement.

We propose the use of dialectical reasoning as a course of action for negotiation.
Argumentation epitomizes it, being the use of debate and methodical reasoning for solving
conflicts. We believe that a dialogic framework is suitable for capturing the relevant
features of argumentation, especially the interaction mechanisms embedded in it.

A framework for dialogue representation systems is proposed as a means for
representing some of the negotiation aspects characteristic of cooperative work. An action
logic presentation is chosen for its ability to talk about actions, that is paramount for
making the interactional aspects of the negotiation process explicit. This way we are able
o talk about straightforward things like questions and answers, which is not easy to do
with other logic presentations.

Concerning the modelling of each party's range of information about the dialogue, we
are more interested in developing a calculus for dealing with the interaction process

-2

‘between different parties’ actions - a pragmatic approach, rather than simulating their
thinking process - a psychological approach. While the latter asks for a highly specialized
theory of belief, the former seeks a much simpler set of rules for coordination and conflict
~ resolution among different parties' interests. 'We work together by making commitments
so we can successfully anticipate the actions of others and coordinate them with our own'
. (Winograd 88). The notion of commitment seems to embody the visible aspects involved in
the negotiation process. Finally, (Hamblin 87) bonds the notions of commitment and
belief: "In short, the concept of belief is an idealization of that of indicative commitment."

Z. A Dialogie Framework

In the previous section we proposed the use of a dialogic framework as a platform for
negotiation to solve conflicts among parties. This section briefly surveys the field and
introduces part of the chosen formalism through examples originating from software
specification. '

2.%1. Survey

The underlying vehicle for defining our framework is a formal account of dialogue. Such
accounts have their roots in a number of different traditions:

the game theoretic semantics tradition in which "dialogue games" are used to
define the meanings of components of a formal language, for example (Lorenz 82);

the foundations of logic tradition in which an understanding of the
communicative context of argument is examined to understand the development of
different logical traditions, notably (Hamblin 71);

the human computer interaction tradition in which representations of dialogues
are developed for design and evaluation of user interfaces, for example
(Schneiderman 82) and (Green 83);

the rhetorical or argumentative tradition in which a model of dialogue provides
the normative base for deciding what constitutes rhetorical "competence”, for
example (Allwood 86);

the natural language processing tradition in which computationally tractable
models are sought to provide a basis for automatically interpreting and generating
dialogues, for example (Carbonel 82);

the distributed artificial intelligence tradition in which computational models of
multi-agent "negotiation" are constructed to integrate diverse knowledge sources,
notably (Erman & Lesser 75), (Smith 80), (Smith & Davis 81), (Kornfeld &
Hewitt 81) and (Lenat 75).

- We have sought to combine the formal apparatus - dialogue formalism - of the
foundations of logic tradition with the approach - cooperation and negotiation - of the
distributed artificial intelligence tradition. We have explicitly rejected the competitive
approach typical of the game theoretic semantics tradition and are not directly concerned
with the discourse level issues that dominate both the natural language processing and
the rhetorical tradition. The descriptive tools provided by the human computer interaction
tradition lack the required expressiveness for the less highly constrained dialogues on
which we have focussed. :

2.2. Hémblm's formalism

Hamblin's formalism for the analysis of dialogue is based on the notions of legality - as
a means of providing the dialogue with etiquette - and commitment. Each party of the
dialogue has a commitment store where its own state of affairs is being registered and

-3

updated through a conjunction of commitments.

Mackenzie (79, 80, 81, 84) extended this formalism with systems DT, DC, DD and
DC+. We have adopted his dialogue system DC as the basis for the design of a dialogic
framework - with a strong cooperative flavour - for negotiation. In the examples that
foliow, DC is introduced using our own notation and with modifications that are spelled
out. The basic concepts nevertheless, were preserved.

2.3, Introducing the formalism

Human organizations, being based on team activity, strongly rely upon negotiation. We
introduce the dialogue formalism through short conversations, which are common in the
office context. The term dialogue, as generally used, refers to a conversation or spoken
interaction between two parties.

Next we apply the dialogic framework to enable a few short dialogues to take place
between two parties. Each has differing perspectives on, and knowledge about, the domain,
as well as a variety of skills, roles and so on. In some cases the perspectives may be based on
underlying contradictions. Below we briefly introduce the context within which our
examples are developed.

A party is a logical participant in the dialogue. We can loosely define a party as an
agent responsible for maintaining a particular perspective. A physical participant in a
dialogue may act the part of or represent many logical parties. For example, a librarian
might be responsible for both acquisitions policy and disposals.

Each party has a commitment store which holds its commitments within the dialogue.
A commitment is the public engagement to a statement that restricts freedom of action.
A commitment to a statement is, in effect, holding yourself out as liable for the
consequences of that statement. As a concept commitment needs to be carefully
distinguished from epistemic notions such as belief, which are essentially private and
which we exclude from our model both on philosophical and technical grounds.

The contents of the commitment store of each party changes as the dialogue progresses.
A party can read from any store. The only way it can alter the commitments of any party,
including its own, is through participation in the dialogue. A specification is the pool of
commitments that result from such a dialogue.

Each party has a working area which is its private sketch-pad or database. It contains
the internal or working statements which do not have the full status of public
engagement. No other party can directly access the working area without permission nor is
there any obligation for the party to maintain its consistency. (Notationally: WA, =
Party_A's working area and WAy = Party_B's working area.)

The dialogue scheme is presented in terms of three important constructs:
(i) Locutions

Consist of a statement and a modifier, represented as locution modifier(Statement).
Statements are constructed in a propositional language which includes negation,
conditional, disjunction and conjunction of statements. 'Since our locution modifiers must
be applied te statements, no problem of the iteration or interaction of locution modifiers
arise here' (Mackenzie 1985). Locution modifiers are as follows:

Assertions. to be read as "It is the case that Statement", notationally
asserts(Sratement).

Questions, to be read as "Is it the case that Statement!", notationally
questions(Statement).

Withdrawals, to be read as "I am not sure that Statement”, or "No commitment to
Statement”, notationally withdraws(Statement).

4

Challenges, to be read as "Why is it to be suppased that Statement” or "How is it known
that Statement”, notationally why(Statement).

Justifications, to be read as "Statement is a justification for the Challenge",
notationally justifies(Statement).

Mackenzie does not have a specific locution modifier named justification. What
Mackenzie calls 'an assertion given as a ground answer for a challenge' and what we call
'justification' above are one and the same thing. We believe that by isolating this
particular instance of 'assertion' - and calling it 'justification' - it is easier to represent -
the nature of the verbal exchanges that occur in a cooperative environment.

Denials, to be read as "I deny that it is the case that Statement", notationally
denies(Statement).

Mackenzie (85) does not grant denial the status of a locution modifier, because denial
only occurs after questions. For reasons that are similar to those given to justification
above, we are treating it as a locution modifier. Mackenzie does not provide us with a
commitment rule for it, and this will be necessary for the example below.

Resolution Demands, to be read as "Resolve this set of statements against this specific
statement", notationally resolve(Set_of_Statements/Statement).

Resolution demand is a special locution modifier that is applied to a set of statements
and not to a single one. Mackenzie (85) presents it in two different forms: The first one
R'T where 'T' is a set of statements and a second one R'T/s where 's' is a statement that
seen together with 'T', indicates the existence of some sort of inconsistency inside the
commitment store. We have stuck to the latter, because in a cooperative environment
fleshing out the contradictions helps the partxes to reach a consensus.

(ii) Dialogue Events

Represented by a triple of the form <Stage, Party, Locution>. Stage marks the progress
of the dialogue: stage, stage+1 and so on. Party indicates the current speaker. A dialogue
is a sequence of such events.

(iii) Commitments

Represented Cpy,,y(Stage, Statements*). Statement* is either Statement and/or
why(Statement). This Yremark is important because of commitment rule Challenge below.
Each party has a commitment store which holds its commitments within the dialogue.
(Notationally: C, = Speaker's commitment store and Cj, = Hearer's commitment store.)

These constructs are used in the rules of the scheme which are divided into three
subsets:

(i) Dialogue rules

Establish the etiquette or rules governing the legitimate shape of the interaction; they
provide a way of maintaining a legal dialogue. For example:

Dialogue rule Question:

- No legal dialogue of length stage+1 contains an event
<stage-1,hearer,questions(Statement)>
unless it also contains an event
<stage,speaker,asserts(Statement)> or
<stage,speaker,withdraws(Statement)> or
<stage,speaker,denies(Statement)>

After the questioning of a statement {(questions(Statement)), the next event must be either the assertion

(confirmation) of that scatement, its withdrawal or its denial (asserts(Statement), withdraws(Statement) or

denies{Statement)).

(ii) Commitment rules
Set out how locutions affect the commitment store of each party. For example:
Commitment rule Withdrawal:
After <stage,speaker,withdraws(Statement)>
C,(stage+1,Statements*) = C(stage,Statements*) — {Statement}
Ch(stagéjrl,Statemems*) = Cy (stage,Statements*)

After a withdrawal the statement is removed from the speaker's commitment store. The hearer's
store remains unchanged.

(iii) Argument forms
Define, syntactically, the form of reasoning permissible within the dialogue and
common to its participants. Our presentation of DC primarily involves modus ponens,
though addition of other schemas to fit various logical tastes is possible. The argument
form mechanism for modus ponens is embedded in the rule below:
Commitment_rule Justification:
After <stage,speaker, justifies(AnotherStatement)>
where the preceding dialogue event was <stage-1,hearer,why(Statement)>
C,(stage+1,Statements*) = C,(stage,Statements*) U
{AnotherStatement, AnotherStatement—Statement}
Cj,(stage+1,Statements*) = Cp(stage,Statements®) U
{AnotherStatement, AnotherStatement—>Statement}

After a justification (AnotherStatement) which occurs as a ground answer to a challenge
(why{Statement)) both views are committed to the ground answer (AnotherStatement) and to the
conditional (AnotherStatement— Statement).

As can be seen, not only was {AnotherStatement} added to both stores, as would be
expected, but also {AnotherStatement— Statement}. If we take {AnotherStatement,

AnotherStatement—s Statement} and apply the modus ponens rule to it, we deduce
{Statement} - exactly what was originally challenged.

The following examples show how the framework can be applied to represent and to
register the type of short conversations that are common in the office context.

2.2.1. Example A

This example illustrates the way people get committed to situations - a meeting in this
case - as a result of interacting with other people. Initially the commitment stores are
empty. The speaker (Party_B) asserts the statement, in this case meeting at 10 am
tomorrow, and so by:

Commitment rule Assertion:

After <stage,speaker,asserts(Statement)>
C,(stage+1,Statements*) = Cy(stage Statements*) U {Statement}
Cy (stage+1,Statements*) = Cy(stage,Statements®) U {Statement}

After the assertion of a statement the speaker and the hearer are both obliged to place that statement in
their commitment store.

The rule Assertion defines an important feature of this dialogue scheme. A party is
committed to anything stated by another party. The placing of the statement inside the
hearer's commitment store is a way to force him to react to it. If he agrees with it, he
hecomes committed to it and to its immediate consequences. The notion of immediacy can
be partly exemplified by the derivation of 's' from "T' using modus ponens only once. If he
does not agrees with it and wants to remove it from his commitment store, this can only be
done by a subsequent withdrawal or challenge.

-6-

The resulting commitment stores are C,{1,(meeting at 10 am tommorrow}) and
Ci(1,{meeting at 10 am tommorrow)). Both Parry_A and Party_B are committed to and
must answer for any immediate consequences of this commitment and other commitments
added in a similar manner.

£.83.2. Example B
~ The working areas are:

WA,: project_manager—member_of_project
system_analyst—member_of__project
programmer—member_of_project
—member_of_project—>member_of_support
—member_of_support—member_of_project
-sproject_manager and —system_analyst—programmer
—member_of_support and —member_of_project—burocrat
—burocrat and —member_of_support—>technical_meeting

WAy: program-—>code
specification—s program
member_of_project—specification
project_manager—report
system_analyst—report
report—specification

Let us now consider a slightly more complicated example illustrating the preparation of
a technical meeting. We start at. a point some way into a set of dialogues with
Ca(n,(project_manager—code)) - Party_A’s commitment store in the previous stage -
containing a commitment to project_manager-»>code [project_manager is responsible for
delivering code]. Party_A, the speaker and initiator of this part of the dialogue, asks
something along the lines of Why is it to be supposed that the project_manager is responsible for
delivering code?

It should be noted that in this setting asking why is a demand for evidence, not for an
explanation. So by: :

Commitment rule Challenge:

After <stage,speaker,why(Statement)>
C(stage+1,Statements*)
Cj, (stage+1,Statements*)

CS(Stage,St‘atémbems*) U {why(Statement)}

Cj, (stage,Statements*) U {Statement}

After a challenge the hearer adds the challenged statement to its own commitment store and the
speaker removes the statement from its commitment store, replacing it by the challenge itself. This is part
of the mechanism that is necessary to avoid the problem of circularity. (Why is the book on loan?, Because it is
out of the library!, Why is it out of the library?, Because it s on ban! and so on).

The resulting commirtent stores are:
Ci(n+1,(why(project_manager—scode)));

Ch(n+1,(project_manager—code)).

Party_B replies to maintain dialogue legality as indicated by:

Dialogue rule Turn-Taking:
No legal dialogue contains an event <stage,given_party, locution>

if it also contains an event <stage-l,given_party, locution> or
if locution ts not properly constructed. ‘

Each party contributes a locution at a time. Each locution must be well formed; that is an assertion,
guestion, withdrawal, etc.

Next , program is given as a justification for the challe_rl}_%e. It is taken from the
statement contained in the working area that program-scode. The resulting commitment
stores are derived according to the rule below:

Commitment rule JustIMP: (Justification for the Challenge of an Implication) -
After <stage,speaker, justiIMP(AnotherStatement)>

where the preceding dialogue event was .
<stage-1,hearer,why(Statementl—Statement2)>
C,(stage+1,Statements*) = C(stage,Statements™) v
{AnotherStatement, AnotherStatement— Statement?2}
Cy,(stage+1,Statements*) = Cy(stage,Statements™) U
{AnotherStatement, AnotherStatement— Statement2}

After an assertion (AnotherStatement) which occurs as a reply to a challenge
(why(Statementl— Starement2)) both parties are committed to the reply (AnotherStatement) and to the
conditional (AnotherStatement— Statement2).

In effect, the rule above treats ‘Statement 1’ as an assumption, and handles the reply to
challenge, as a justification for ‘Statement2’. Mackenzie (85) does not have this locution
modifier. Our inspiration comes from the way Gabbay (85) handles conditionals.

The resulting commitment stores are:
C.(n+2,(why(project_manager—>code) A program A program—>code));
Cp(n+2,(project_manager—code A program A program—>code)).

The continuation of this dialogue generates the argumentation steps - making the
nremises available - required to show why a project_manager is responsible for delivering

the code.

Party_A can challenge either program—code or program. It chooses to chalenge program
because what is there to be chalenged is project_manager— program [Why is the
project_manager responsible for the program?]. Party_A is trying to establish the chain of
reasoning that justifies program—-)codgg . This illustrates Party_A’s strategy, which is a
topic that we are not going to deal within this article. ‘ '

Party_B checks its working area and justifies(specification).
The resulting commirment stores after these pair of dialogue events are:

C.(n+4,(why{project_manager—>code) A program—»code A why{program) A specification A
specification—program));

Ch{n+4,(project_manager—code A program A program—code A specification A
specification—program)).

Partv_A can challenge either specification— program or specification It chooses to
challenge specification because what 1is there to be challenged s
project_manager —specification [Why is the projeci_manager resporsible for the specification?].

Party_B consults his working area and justifies(report).
The resulting commitment stores after these pair of dialogue events are:

C.(n+6,(why{project_manager—>code) A program—code » why(program) A
specification—>program A why(specification} A report A report-sspecification));

-8-

Cp(n+6,(project_manager—>code A program A program—code A specification A
specification—program A report A report—specification)). ‘

Party_A can challenge either report—specification or report . 1t choases to challenge report
because what is there to be challenged is project_manager—sreport [Why is the project_manager

responsible for the report].
Party_B checks its working area and justifies(project_manager).
The resulting commitment stores after these pair of dialogue events are:

C.(n+8,(why(project_manager—code) A program-->code A why(program) A '
specification—>program A why(specification) A report—specification A why(report) A
project_manager A project_manager—report));

Cp(n+8,(project_manager—code A program A program—code A specification A
specification—program A report A report—specification A project_manager A
project_manager—3report}).

This example shows how this framework provides us with the means for representing
the challenge-justify mechanism - making the premisses available - that is common in
cooperative work.

2.3.3. Example C

The working areas are:

WA, project_manager—member_of_project
system_analyst—>member_of_project |
programmer—member_of_project
—member_of_project—member_of_support
—member_of_support—member_of_project
—wprojeét_manager and —system_analyst—programmer
—member_of_support and —member_of_project—burocrat
~burocrat and —member_of_support—technical_meeting
report—specification
—report '
system_analyst—report
system_analyst

WA¢: v package—code
program—code
specification—program
report—specification
~—specification—package
member_of_project—sspecification
project_manager—report
system_analyst—specification

The final example we will consider illustrates a number of features including
progressive verification of one party with respect to another. By looking at WAL above it
should be easy to spot the inconsistency which has been introduced (—report) [It is not the
case that there is a report), as a result of which notice the inconsistency tﬁit may possible
arise between Party_B (which is working on the basis of [system_analyst—sspecification]) and
Party_A.

Partv_B challenges system_analyst—specification.

Partv_A consults his working area and justifies(report) by matching with the
implication report—sspecification.

The resulting commitment stores after these pair of dialogue events are:
C.(n+2,(system_analyst—specification A report A report—specification);
Cp(n+2,(why(system_analyst—>specification) A report A report-—»specification).

Party_B now challenges report and Party_A withdraws it being unable to deny it due to
Dialogue rule Challenge which, substantially abbreviated, states:

Dialogue rule Challenge:

The reply to a challenged statement must be the withdrawal of the statement or it

must be the resolution demand of an immediate consequence conditional of the statement
whose consequent is the challenged statement and whose antecedent is a conjunction of
statements to which the challenger is committed or it must be a statement to whose
challenge the challenger is not committed.

The resulting commitment stores after these pair of dialogue events are:
Ca{n+4,(system_analyst—specification A report—specification);
Ch(n+4,{why(system_analyst-—>specification) A report—yspecification A why(report)).

Next Party_B will force the construction of a chain of reasoning that will help both
parties to verify if they both have the same understanding of the meeting’s preparation.
Some straightforward question-answering follows with the results determined by

- Commitment rule Assertion above and:

Commitment rule Question:

After <stage,speaker,questions(Statement)>
C,(stage+1,Statements*) = C(stage,Statements*)
Cy,(stage+1,Statements*) = Cy,(stage,Statements*)

Questions do not affect commitment stores.

Party_B questions(system_analyst— report) and Party_A answers yes by replying
asserts{system_analyst—report).

The resulting commitment stores after these pair of dialogue events are:

Ca(n+6,(system_analyst—>specification A report—>specification A
system_analyst—report);

Cp(n+6,(why(system_analyst—specification) A report—specification A why(report) A
system_analyst—report).

Party_B questions(system_analyst) and Party_A answers yes by replying
asserts(system_analyst).

The resulting commitment stores after these pair of dialogue events are:

C.(n+8,(system_analyst—specification A report—specification A system_analyst—sreport
A system_analyst);

Cp{n+8,(w hv(w<tem _analyst—sspecification) A report—sspecification A why(report) A
system analyst—-)report A system_analyst).

Party_B questions report, which he is free to do because report is not in Cy. Party_A
denies it, as a result of an inconsistency in its working area.

-10-

‘Commitment rule Denial:

After <stage,speaker,denies(Statement)>
C,(stage+1,Statements®) = C,(stage,Statements*) U [~Statement}
Cy,(stage+1,Statements*) = Cy(stage.Statements*} U {--Statement}

If denial of a statement has been made then the speaker and the hearer are obliged to place the
negation of the statement in thetr commitment store. : '

Mackenzie (85) does not provide a commitment rule for denial, because he does not
grant denial the status of a locution modifier as we said before.
The resulting commitment stores after these pair of dialogue events are:

Ca(n+10,{system_analyst—sspecification A report—sspecification A
‘system_analyst—3report A system_analyst A —report);

Cp(n+10,(why(system_analyst—sspecification) A report—specification A why(report) A
system_analyst-—sreport A system_analyst A —report).

Party_B immediately demands that Party_a, having denied an immediate consequence
of its commitments resolve(system_analyst A system_analyst—report /=report), which is
now inconsistent (using modus ponens we have {system _analyst,
system_analyst—report}freport which is inconsistent with —eport):

Commitment_rule Resolution Demand:
After <stage,speaker,resolve(Set_,of_Statements/Statement)>
C,(stage,Statements*)

i

C,(stage+1,Statements*)
Cy,(stage+1,Statements*) = Cp(stage,Statements*)
Resolution demands do not affect the commitment stores.

Party_A withdraws its previous denial restoring consistency by adjusting = its
commitments according to Commitment rule Withdrawal given in our overview of the
dialogue scheme.

Party_B follows suit by also withdrawing the inconsistency, which if not removed would
now leave it liable to a resolution demand from Party_A, and so the dialogue concludes
witha shared description and discovery of the misunderstanding hidden in WA,.

The resulting commitment stores after these three final dialogue events are:

C.(n+13,(system_analyst—sspecification A report—specification A
system_analyst—>report A system_analyst);

Cp(n+13,(why(system_analyst—sspecification) A report—>specification A why(report)
A system_analyst—report A system_analyst). .

This example shows how this framework provides us with the means for representing
the elucidation-retracting mechanism, which is a helpful way for sorting out
inconsistencies - conflict resolution - that are bound to happen in cooperative working
environment. '

We have previously used this framework to capture in a very idealised way, the
conventional setting of requirements specification in which clients and systems analysts
sit around a table - the clients explaining the requirements, waving documents in the air
and occasionally arguing among themselves while the developers ask guiding questions,
seek clarification, point out inconsistencies and raise unanticipated consequences. In
(Finkelstein & Fuks 89) the examples were based on a small case study concerning
description of an automated travel ticketing system. In that case study various
statements about travel and travel discounts are distributed between working areas of two
parties. In {(Finkelstéin & Fuks 90) the examples were based in the specification of
software to support the preparation and assembly of user manuals for a range of production
tools.

-11 -

4. A Framework for Dislogue Representation Systams

Hamblin (&7) describes the state transformations occurring in the environment (from a
party's point of view), being caused either by deeds - where party is the active agent - or
happenings - where party is a passive observer of the changes that are taking place.We
subsritute Dialogue Events for Deeds and divide the state of affairs into World - a global

database = and Commitment Stores - a-local database.

2

[[

World P World
Happenings
§ ¥
: :
3 3
: g
Dialogue
Commitrant Events Commitment
Store & Store'

We propose a framework for dialogue representation systems - ACCORD, which is only
concerned with the dialogic part of the model. It consists of a Commitment Calculus (CC)
and a Dialogue Action Component (DAC). While the former defines the relationship
between commitments inside individual commitment stores, the latter concerns itself with
the proper ordering of locutions and their effects on the commitment stores.

The figure below illustrates the relationship between CC and DAC. While DAC is busy
with the dialogue process, thus managing the insertion/deletion of commitments in the
commitment stores, CC reasons with the result of this process. CC never generates
commitments, although it might seem to be doing this while inferring the consequences -
implicit commitments - of the commitments - explicit commitments - already in the

commitment stores.

Dialogus
Action LOCUTIONS
Component
Commitment P ¢V explict
Calculus
v | imphck

Commitnent Store

DAC: reasoning as a process
CC: reasoning as a result of a process

3. Commitment

We have been using the notion of commitment in this article without plunging deep
into its nacture. Hamblin's and Mackenzie's formalisms did not provide us with a

-12 -

structured wav to deal with the commitments inside the commitment stores. More
recently, the notion of commitment has been used in computing {(Winograd 88), (Koo &
Wiederhold 88) and (Bond 90) for modelling interaction between agents. However, no
associated calculus was provided to infer the consequences of having these commitments.

In this section the topic of commitment is discussed The few attempts to define a
commitment logic have always characterised it as an offshoot of deontic logic {von Wright
51), (Rescher 58), (Anderson 59), (Castaneda 59) and (Hintikka 71) In these schemes the
notions of permission, obligation and commitment are normally prefixed by some sort of
adjective, for example: moral, absolute, conditional and derived. It is necessary to
understand the way these concepts are knitted together before we can achieve our objective
of an independent commitment logic. '

2.7. Deontic Commitment

Much effort towards a formal understanding of commitment has been devoted to deontic
logics, logics of permission and obligation. However, there are important differences
between these two notions. While obligations apparently ask for immediate responses
(actions), there is a sense of delayed effect embedded in commitments (behaviour). For
example, you are obliged to pay taxes, and you have a commitment to being a good citizen.
In other words, one does not have a commitment to perform actions, but to the achievement
of states of affairs. If one has a commitment to a certain state of affairs, then either one
observes the ocurrence of that state of affairs or retains one's commitment to it.
Eventually that commitment will have to be satisfied. Commitments are of a passive
nature while obligations are of an active kind. People should behave coherently with their
commitments and with the informartion available to them.

The essence of commitment for us, is that if one has a commitment to a certain state of
affairs, one is answerable for the achievement of this state of affairs. Unfortunately our
notion of commitment says nothing about the party's ability to bring it about. ‘

Next we review the notion of commitment trying to provide a calculus for dealing with
it. This time we approach the notion of commitment having in mind that if one is
committed to something, one is aware of this thing - if one has a commitment to do
something then one is aware of the object of one's commitment. At least three important
aspects of commitment will be imported from CL (Fuks, Ryan & Sadler 89) into the new
calculus: its three-valuedness (having, not having and lacking commitments), allowing
commitments to be weakened, and not allowing commitments to be strenghened.

8.2. Revisiting Commitment

Having 2 commitment to bring about a state of affairs (s-0-a), presses one to behave in a
manner consistent with the achievement of thar s-o-a. It is important to see that one is
neither alone nor aware of everything that is taking place on the planet. Thus, we could go
further saying that having a commitment establishes a family of ways for a party to
behave, in a manner consistent with the information available and with the role that that
party performs in its community.

There is a relationship between being in the situation of having a commitment and the
behaviour pattern that follows from it. In that sense, commitment reminds us of belief.
One behaves according to one’s beliefs. But belief. especially in the sense of faith, is not an
operational notion. One can hide one's beliefs or truly need not be capable of expressing
them. Commitments should not only be expressible but also available for public
examination. It is easier to check one's commitments against one's behaviour this way.
Moreover, a wider spectrum of agents are capable of undertaking commitments, human
beings, corporations and governments while beliefs are better used when applied to people.

From the above, it is implicit that there is no commitment without being conscious of

-13 -

the objects of one's commitment. It also implies that there is a difference between not
having a commirment and its absence. While the former involves cognizance and rejection
of some data, not much can be said about the latter. This three-valued aspect of
commitment influences the way that we design the commitment stores in the next
section.

Another important characteristic of commitments - imported from the work developed
on deontic commitment - that we wish to capture in the calculus, is that while it is fair to
weaken commirments it is forbidden to strengthen them..

Given that one is committed to achieve some desired s-o-a, one adjusts one's behaviour
pattern to suit one's commitment. In other words, one's commitments impose constraints
on one's behaviour. One way of describing one's behaviour is by looking at one's structure of
permissions and obligations - do's and don't's. A commitment is an engagement Or
involvement that restricts freedom of action. If one is committed to something, one should
stick to it.

One is tempted to join the idea of having a commitment with that of having a goal,
because in either case, success will be equated with the realisation of that envisaged s-o-a
(goal or commitment). But from a computing perspective, goal is the query that one makes
for 2 datahase; or relaxing it a bit, it is just the final state that is to be achieved. Moreover,
associating commitment with goal, we lose the awareness aspect of the former (it is not
clear if after achieving a goal whether one should keep conscius of the object of one's goal).
Having said that, we feel free to connect commitment with goal, whenever it sheds some
light on our understanding.

Finally, advancing the use of commitment, we are not neglecting other concepts like
intention, belief and knowledge. They all play an important part in the process of
reasoning. But at the current stage of this work, we see commitment as a pragmatic
amalgam for the interaction aspects of all of them. We hope in future work we will be able
to interconnect all these concepts by means of specific axioms andfor rules.

2.3, State-of-Affairs

About general s-o-a Pollock (84) says: "In many ways, states of affairs resemble
propositions. In particular, they are truth bearers of a sort. States of affairs are not
literally true or false, but obtaining and not obtaining are truth-like properties”. He
makes a distinction between transient s-o-a (being a patriot) and nontransient s-o-a (being

a patriot during WWII).

One can become committed to either sort of s-o-a (transient or nontransient). The
latrer fits better within our notion of commitment where one retains one's commitment
even after realising it. Is one going to keep one's commitments forever! No, provided that
there is a mechanism allowing for their retraction. The framework that we develop in the
following sections will cater for this.

One can become committed to actions, for actions promote the achievement of s-o-a's -
from now on we use either form. Having a commitment to paying my debts, boils down to
having a commitment to transferring money from my account to my lender's account. The
obraining of this s-0-a could be asserted after checking that my lender's account was
increased by the same amount of money that was subtracted from mine, securing that it
corresponds to the debt's amount. Commitment to conditionals is acceptable for a
conditional is a constraint on a s-o-a.

2.4, Convarsation, Commitment and Speech Agts

It is not only through utterances of the form I am committed to or | have a commitment to
that one finds oneself having commitments. For example, when your auntie rings you

-14 -

saying that she is coming for dinner on Saturday evening, you had better say 2 clear no
otherwise you are committing yourself to that fact. Moreover, our parties are fat from
being omnipotent. They are fallible and unable to deal with all the matters that comprise
their everyday life. But still they accept and reject statements about the world all the
time. Accepting and rejecting amount to engaging and disengaging. Listening to the
weatherman saying that it is going to snow today, gives you precious data for deciding
which means of transportation to use. Also when you read the memo that says thar the
corporation - your employer - is expanding its activities, even if that expansion has
nothing to do with the role that you perform in the company, you are still engaged in the
expansion although you are not going to play an active part in it.

The notion of commitment also plays an important part in speech act theory, for
example (Searle & Vanderveken 87}, (van Eemeren & Grootendorst 84) and (Searle 79).
Our understanding of commitment does not contradict the one advanced by speech act
theory. We are only dealing with a part of it where statements are left unanalysed.

4, Cammitment Calculus

A Commitment Calculus for dealing with the consequences of commitments inside the
commitment stores is developed in this section. Commitment is used to represent the
parties' range of information in the dialogue. Having a commitment establishes a family
of ways for a party to behave in a manner consistent with the information available and
with that party's role in its community.

Each party has a commitment store, where the unfolding of the dialogue is recorded
from its point of view. Commitment stores are open to general observation, enabling the
parties to anticipate the actions of the others and coordinate them with their own (Winograd

88). -

But what are the consequences of having commitments! How can one determine if one's
or the other's commitment store is inconsistent! Although becoming inconsistent does not
mean the end of times, it may put one in a vulnerable position.

These and other questions were the motivation for designing such a calculus. We are
not interested in giving a definitive meaning to the notion of commirment, but solely
providing a framework within which to operate it. Our treatment of commitment and
therefore its calculus is based on the discussion developed in the previous section.

For the sake of clarity, each party will not only have a commitment store for its positive
and negative commirments - 'C' commitment store (called C) - but also a 'D' commitment
store (called D) as a place for the statements which the party is not committed to. We
decided to design the stores in this way, because it is very revealing about the three-valued
nature of our notion of commitment. The choice for the letter 'D' is because it is the next
letter in our alphabet, and not to make the word discommitment, which fits better for the
idea of lack of commitment. :

4.1. Language
Definition: Language L'
Let L' be the propositional language:
P q - € L' (atomic propositions)
Ife.y € L' then—@, 0 Ay, @ vV, 0y € L'

Notation: Throughout thes rest of this section we are going to use
@. ¥ to range over propositions in L' and
T, Ato range over sets of propositions in L'.

Definition: Language CL
Let CL be the commitment propositional language:

Ifo € L' then g Co. Dy e CL.
Definition: CI' ={Cop | ¢ € T}
Definition: DI" = {D¢ | ¢ & I'}
Dg;&alit_icm:—wr={§(pi¢e I}

@, ¥ to range over propositions in CL (Cg,... Dy) and
I, A to range over sets of propositions in CL (CT,... DA).

£.2. Membership Semantics

In this section we develop a membership semantics for the commitment calculus.
(Gardenfors 88) develops a membership semantics - one in which truth in an epistemic
state is determined by membership of a set - for theory revision which is not relevant at
the current stage of this work.

In our semantics states-of-affairs are described by propositions. The truth and falsity of
formulas is defined by their membership status in the commitment stores. For each
formula ¢ we check if it belongs to C or D. '¢' is undefined if it does not belong to either
commitment store.

Ca (ory)e C iff e Candye C
Cv if
e C | then (ovy)e C
ye C then (ovy)e C
if (pvy)e C and
-yeC ~ then oe C
~¢pe C then ye C
ve D then e D
9D then —yeD
C—n if
—pe C then —(pAry)e C
~ye C then —{oAay)e C
if —(pry)e C and
oe C then -ye C
ye C then —pe C
C—v ~(pvy)e C iff —pe C and—ye C

- 16 -

DA if

oe D then (pay)e D
yve D then (eav)e D
if (oayie D and
oe C then = wyeD
ve C then ¢e D
—9e D | then veD
-yeD then oe D
Dv (pvy)e D iff ¢oeD andye D
D—n —~(oary)e D iff —~¢pe Dand—ye D
D"—N if
-pe D - then —~(pvy)e D
-ye D then —~(pvy)e D
if —(pvy)e D and
-pe C then ~yeD
-ye C ~ then -wpeD
Co if (p—>y)e C and
e C then ye C
-ye C then —~pe C
Do if
¢oe C andye D then (p—y)e D
e D and—ye C then (p—y)e D
D~ if ¢e C - then —eD
C- if —0e C then oe D
4.3. Rules

From this semantics we can read off a set of rules. These rules envisage consistency
preservation inside the commitment stores. Below we present the rules in a different order
from that given in the semantics. Here we are concerned with showing when two sets of
- rules behave like duals. In the cases that duality is not atrained, we point out the cause.
Most of the rules are accompanied by additional text, to explain and guide the reader
throughout this section. We also present some of the rules that we do not have in the
calculus, giving the reasons for not having them.

17 -

Ca

Co.Cy CAl /—L hd l /J>
&/ : D

Clo Ay)

¢ and y.

(
Co v

i B O O U

If I'm committed to being a good citizen and a parent, then I'm committed to being a good
citizen.

Cloay) @AY ’
“—“C\lf CAEZ C(ji :)?

Q

’ - -

Dv
. ¢

M Dvi $ ’ L4 $

D(evy) < U vy P

Rule DvI says that if one is not committed to @ and not committed to V, then one is not

committed to either @ or y.

D(op v y) | I (ovy)
“*D(P DvE1 <(J2 : P

?

DI I T T S N R

D(o v y) (ovy)
MDW DvVE2 é)) ‘ <Ig

L R N T T T T N O,

-
If I'm not committed to being either a good citizen or ¢ parent. then I'm not committed to
being a parent.

t
t

-

The two sets of rules Ca and Dv above are duals. This implies that the rules for dealing
with conjunctipns of commitments are similar to the rules for dealing with disjunctions of
D-commitments.

- 18-

Cv

Ceo ‘ | @ ‘ ,
=0 noo
Clov) © (‘JD | %
! |

.........

Rule CvI1 says that if one is committed to @, then one is committed to ©ory.

| é\ -
¥ Cvi2
Clo v y) v C

Cy

B T

_ (evVy)
Clovy) .Cav CvEl é -y
Co C 0 ; D)

committed to @.

| - | @V) |
Clo v y) ,C—o , é
CvE2 P
Cy (.3 v . D

Lmm mm e meo-ewnawww-woaow o

If I'm committed to being a good citizen or a parent, and I'm committed to not being a good
citizen, then I'm committed to being a parent.

Clovy) Dy : CVE3 v , ! ‘4)
~ C . D

committed to not @.

C((PVW) ,D(p CVE4 &(QVW) ’ . 0
Dy - C ' D

P P M e s m e e e~ 1
If I'm committed to being a good citizen or a parent, and I'm not committed to being a good
citizen, then I'm not committed to not being a parent. '

Dna

Do

— DAl
D(g A) A

D
@AW :

...................

-O—
8
\

-19 -

]

‘ 5;93!“*) Dal2 , Wy ‘
eVl | C . D

..................

.
If I'm not committed to being a parent, then I'm not committed to being ¢ good citizen and a
parent. '

Do C

- e m o om =™

Rule DAEI says that if one is not committed to ¢ and ¥ and not committed to not , then

one is not committed to Q.

Die Ay}, D=o DAE2 ' ! (OAY)
D P
¥ C ! D
' y

[A T T T T N P N P N NN

If I'm not committed to being a good citizen and a parent, and I'm not committed to not
being a good citizen, then I'm not committed to being a parent.

D(gp Ay), Cy DAE3 oy ’ (o Ay)

Rule DAE3 says that if one is not committed to ¢ and ¥ and committed to y, then one is

not committed to @.

' o) ' (ery) ,
Dy DAE4 G | 4@

D(p Ay), Co

L N N T T U S O N S

ood citizen, then I'm not committed to being a parent.
g

The two sets of rules above Cv and DA are not duals because of the differences between
rules CvE3 and DAE3 (CVE4 and DAE4). The asymmetry between these rules is caused by
the need to weaken rules DAE. To have them as perfect duals, their conclusions have to be
of the form C—@ (or C=y), which would put ourselves in the position of, from not being
committed to something to becoming committed to its opposite. For example, if one is not
committed to being a good citizen, this does not imply one being committed to being a bad
citizen. The opposite is fine: if one is committed to being a bad citizen, then one is not
commitred to being a good citizen. Therefore, we transform C—¢ into D¢ (C—¢ in Dy),
which is justified by rule Dl below.

C-n
S Conll -
A - Id
C(o A W) C oy D

Rule C—All says that if one is committed to not @, then one is committed to not ¢ and V.

- 20 -

_Cw o v [-
C"‘!((P/\W) o D

. "'*((P A ‘é’) '
If I'm committed to not being a parent. then I'm committed to nat beiﬁg a good citizen and a
parent. : ‘ :
Ctonur —~(@ A) I

Rule C-~AEl says that if one is committed to not @ and ¥ and committed to @, then one is
committed to not V.

(oA Y) ,
. Yy

C—(pAwy),Cy

B T I A A T U

Next we indicate how rule .*C—-.AEB* (and rule *C—AE4*) would look and show the
reasons for not having it (them).

C—(o A y), Do (e AY)
Cmy . *C—AE3* C

L I T T T T T G

If I'm committed to not being a parent and a good citizen, and not committed to not being a -
parent, then I'm committed to not being a good citizen.

Although the reading that we gave to this rule makes it sound reasonable, there is some
strenghening of commitments embedded in it that we want to avoid in the calculus. A
formula in the D-store is influencing the conclusion of a formula in the C-store.

D-av

D—o - ! -9
D—,((p N \11]} | D"IVI].) é - é

LR I R o N T Y

neither ¢ nor .

Doy D12 | ; Y
D—(o v) Y C \ ‘ D

. L
If I'm not committed to not being a parent, then I'm not committed to neither being a good

citizen nor a parent,

221 -

D—(@ v y).C—eo
D'—ﬂy

D—vE] =~ | l ""(':9 v w)

Rule D=VE1 says that if one is not_committed to neither ¢ nor ¥ and committed to not
¢. then one is not committed to not W. This rule is not so straightforward. First imagine
that you ere committed not to go to the cinema or to the club. Next you decide to relax this
commitment and withdraw it (which is similar to the effect caused by double negation in
natural language). As a result of it, now you are not committed not to go to the cinema or
to the club. Then you remember that you are committed not to go to the cinema because
you simply hate black and white movies and there is no colour movie showing in town. You
canclude that you are not committed not to go to the club, i.e. there is a chance that you
might end up dancing to the sound of lambada but you are definitely not going to watch
any movie this evening.

D= ,C— :
oV y).Cy D—vE2 oy —~ v)
Pe C ‘ D
oo T

Next we indicate how rule *D—vE3* (and rule i*D—nvE‘?*) would look and show the
reasons for not having it (them).

4 —(® Vv)
W *DvE3* -V
v ' ¢
@ ee e e [, .

Now instead of being committed not to go to the cinema, you are simply not committed
to go to the cinema. We feel that the conclusion is a bit too strong to follow from the
remisses, therefore we do not want to have the rule *D—vE3* in our calculus.

The two sets of rules C—a and D—v above are asymmetric in the sense that both sets of
rules fack their counterparts. Rules C—AEl and C—AE2 miss their duals which are rules
D—VE3 and *D—VvE4* respectively. The same happens to rule D—VE1 and rule D—vE2
which miss their dual rules *C—AE3* and *C—nAE4* respectively.

Cav

—¢, C— E

= Y I -y

C(g v) Cav C ; D

it T

Rule C—vI says that if one is committed to not ¢ and committed to not y, then one is

committed to not ¢ or y.

C—~{o v y) PV) ‘

L e a e e e s ereome - m o o
Rule CVEI says that if one committed to not being a parent or a good citizen, then one is
committed to not being a parent.

-22--

Colo v v)
Cmf\}!

C—VE2 » ;g(qa V) i

Lbevenwsww R B T
Rule C—VE! says that if one committed to not being a parent or a good citizen, then one is
committed t6 not being a good citizen. '

IDEVN : | o)

- o
D—¢, D=y Der] 5 ’ v
Do nw) ~ VP AY)

'

Cm e M e e e wm e e e m w w ow w

Rule D—Al says that if one is not committed to not ¢ and not committed to not , then

one is not committed to not @ and y. If I'm not committed to not being a good citizen and
not committed to not being a parent, then I'm not committed to not being a good citizen and
a pavent. :

D—(o A y) ' {9 A Y)
e — D-AEl : |
e e et aemn~ L-__“-“.:

If I'm not committed to not being a good citizen and a parent, then I'm not committed to
not being a good citizen.

]

Dolory) DnE2 [P A V)

If I'm not committed to not being a good citizen and a parent, then I'm nor committed to
not being a parent. :

The two sets of rules above C—v and DA are duals. This implies that the rules for
dealing with. disjunctions of negative commitments are similar to the rules for dealing
with conjunctions of negative D-commitments.

The following rules give identity to this commitment calculus.. They are not just
bureaucratic symbol manipulation but actually mean something. Moreover, the absence of
counterparts for some of the rules below indicate a lot about the interaction between this
calculus and the dialogue action component developed in the next section. :

C- | : : -
| (¢ -y
gi_(g_:}__‘_‘g"_‘g? C—El Q ;

4

T U G T -~ . %~

If Joan has a commitment to the idea that being a marvied person implies being a mother,
and Joan has a commitment to becoming a married person, then Joan has 3 commitment to
becoming a tmother.

23

Cle - w).C—v Ci (¢~ l

C-"v(p =\

D

[}

v

If Joan has a2 commitment to the idea that being a mamed person 1mp.xu being a mother
and Joan has 2 commitment to not becoming a mocher, then Joan has a commitment to not
becoming a married person.

One would expect to find at this point a rule like C—1: a rule that would create
conditional commitments from indivicfual commitments. Nevertheless, conditionals will
only appear in the commitment store as the result of the assertion of a conditional or as
the result of a justification for a challenge. It is the argumentation step.

The following two rules, although introducing conditionals, do not contradict what we
just said above. What they tell us is that given that one has the stated formulas in one's
commitment store, it would be dangerous for one to become committed to the stated
conditional, because one will be introducing a contradiction in one's store, hence becoming
liable to a resolution demand from the other party to put the record straight.

D-

¢
LDy Dol & ‘ M
D(o —) C :

)

If Joan has a commitment to becoming a married perwn and Joan does not have a
commitment to becoming a mother, then it would be dangerous for Joan to become
committed to the idea that being a marned person implies being a mother.

B"(l(p—(—:—T“' D12 é
-_é t
¢V Gl)

If Joan does not have a commitment to not becoming a married person, and Joan has a
commitment to not becoming a mother, then it would be dangerous for Joan to become
committed to the idea that being a married person implies being a mother.

The two rules below show how formulas can move from the C-store to the D-store. It is
perceivable from them that this move - from 'C' to 'D' - implies the same sort of relaxation
that occurs in natural language provided by the double negation.

D~

¢
Lo Dl |
N \ - '

..................

IfI'm committed to being a good citizen, then I'm not committed to not being a gooa
citizen.

-24 -

Cn

C—o
D¢

C—E | C

..................

If Joan has 2 commitment to not becoming a married perso” then Joan does not have a
commitment to becoming a married person.

This rule caprures an important valid formula {C-—-¢ — -—1C®} in the commitment logic
(Fuks, Ryan & Sadler 89) that we wanted to preserve - allowing commitments to be
weakened. We do not have rule Dg/C—¢. Thus, this preserves another important aspect of
commitment legic - not allowing commitments to be strengthened - in which
{-Cqp — C—¢} is not a valid formula.

Finally we do not have the following rules in our calculus. This way we avoid the
generation of undesirable implicit commitments from two contradictory explicit ones.

¢
%@ ' *C—Absurd* —P
Cy C — D
X v N :
¢
Do, D—
ek *D-Absurd* ' l —Ap
. : : v g

Based on the rules given above, a definition for a commitment calculus derivability
(Fcc) is given below:
Fkece iff
EX R TR @ where

foreachi,i=1ton, @, el or

was obtained through applications of CC rules.

4.4, Commitment-Consistency

The soundness of this calculus is a trivial result. Regarding completeness of this
calculus, we feel that it falls outside the scope of this work. We are still investigating the
subject and we do not feel that it is necessary to present a full account of the calculus at
this stage. Nevertheless, the present version of the calculus is strong enough to deal with
all the aspects brought up in this dissertation.

In this section we show that the calculus is commitment-consistent, to disband any
fears that the calculus falls into some contradiction at the propositional level.

We sav that this calculus is commitment-consistent, because starting from
commitment-consistent commitment stores and using only the rules supplied by the
calculus, we never derive both that we are committed to something and to the negation of

that thing (Ce, C—e).

Commitment-Consistency is defined based on the strongest case which is (D¢, D—o).
This is the case. because in CC premisses in the D-ctores can never influence conclusions
that appear in the D-stores, the opposite being permitted.

- 25

CI v DA 1« commitment-consistent iff it is not the case that
(CI'. DA t+cc De and CI', DA FcC D).

Based on this definition of commitment-consistency we have two immediate resules:

Immediate Result I:

If CI' U DA is commitment-consistent then it is not the case that
(CT", DA Fcc Cg and CT, DA Fcc D).

Proof: Sﬁppose that CI' U DA is commitment-consistent and it is the case that
CI, DA+cc Co and CI, DAt cc De.
Then applying rule D= to CT', DA +cc Cy we have CI', DA +cC D=

which contradicts the definition of commitment-consistency.

Immediate Resule 2:

If CT" U DA is commitment-consistent then it is not the case that
CI', DAFcc Co and CT, DA Fcc C—e.

"]
-y
O
O
™

Suppose that CI' U DA is commitment-consistent and it i the case that
CTI'. DAFcc Ceo and CT, DA Fcc C—o. _

Then applying rule D— to CT,, DA Fcc Co we have CT, DAFcc D—e,

And applying rule C— to CI', DA+ cc C—¢ we have CI', DA Fcc De,

which contradicts the definition of commitment-consistency.

Using similar techniques to (Hughes & Cresswell 68) we show that CC is
commitment-consistent.

Theorem: If CT", DA is not commitment-consistent

Then T', =A is inconsistent in PC (propositional calculus).

Proof: Suppose that CT, DA is not commitment-consistent.
Therefore 3¢ such that CT. DA occ D and CT', DA+ cc D—g.

For every wif of CL we construct its PC-transform the following way:
1) Deleting C's;
2) Replace D's by —'s.

For each rule of CC we see by transforming the premisses and conclusions, that we end
up with a valid rule of PC. Below we present two examples of CC rules transformed into

C rules:

- 26 -

NClovwy) Crwy CvEl
Co

Clovy), C—v vy, Y
V—\

Where (@ v W),=y is very similar to one of the 'V' elimination rules for propositional

¢ calculus using natural deduction style.
2) D—'rgQ . Dﬂ\gl D=l
Do ay)
D¢, D -y Y,
v
D-(ery —— (QAY)

Where o=@, mmy becomes _@, ¢ which is very similar to the 'A' introduction
= (Q A Y) OAY

rule for propositional calculus using natural deduction style.

So by induction, any proof in CL can be transformed into a proof in PC.

So by transforming CT, DA +cc Do we have I', ~A +PC = and

by transforming CI', DAF cC D@ we have I', mAFPC == .

So I', = A is inconsistent in PC.

4.5. Recapitulation

In this section we developed a Commitment Calculus for dealing with the consequences
of commitments inside the commitment stores. lts rules envisage consistency preservation
inside the commitment stores. Each party has a commitment store for its positive and
negative commitments {'C' commitment store), and a 'D' commitment store as a place for
the statements which the party is not committed to. We decided to desxgn the stores in
this wav. because it is very revealing abour the three-valued nature of our notion of
cemmitment. We are not interested in giving a definitive meaning to the notion of
commitment, but solely providing a framework within which to operate it.

The semantics of this calculus is based on the notion of commitment membership, t.e.
the truth ‘and falsity of formulas is defined by their membership status in " the
commitment stores. The soundness of this calculus is a trivial result.

Given thdt we are still experimenting with it, there is no full account of the calculus
vet. Thus we did not contemplate giving it a completeness result. Ne\umeleos, we proved
the calculus to be commitment-consistent, showing in this way that it does not fall into 2

L27-

contradiction at the propoasitional level.

The itmportance of this calculus to our framework is justified in the next section because
of its relevance to the locution modifier Resolution Demand. For ite specification the
commitment calculus has to be taken into account. A party is only allowed to urge the
other party to straigthen its commitment store, if by the sole application of 2 commitment
calculus rule, the latter's cammitment store is proved to be contradictory. If the condition
above is not met, the dialogue will be brought to an error state.

The commitment calculus however, gives only a static view of commitment. We
therefore embed this calculus into a dialogue system which gives a dynamic view of the
way that commitments are established and discharged. In the following section a Dialogue
Action Component is proposed.

5. Dialogue Action Component

The Dialogue Action Component has axioms of the form {Pre—[Party_AtoParty_B,
Locutions] Post}, where Party_A and Party_B are the participants in the dialogue and
Locutions are the application of a finite set of locution modifiers to statements. Pre and
Post are the pre- and post-conditions of the locutions performed by party.

The calculus developed in the previous section, introduces the semantics and the rules
for the manipulation of these pre- and post-conditions. Its interaction with DAC is
presented in this section.

Two new state of affairs appear in this section, namely healthy and error. They are
introduced in DAC, because in the future we wish to deal with the normative aspects of
arguments - valid or invalid, good or bad arguments.

5.1. DAC Axioms

In respect of our framework, DAC is responsible for the insertion/deletion of
commitments in the commitment stores. To capture this mechanism we defined it in an
axiomatic way using a modal [action] logic style (Goldblatt 82, Maibaum 87).

Its axioms are divided into two different sets: commitment and legality axioms.
Commitment axioms define the changes in the commitment stores and the health of the
post-conditions caused by the uttering of each specific locution.

These axioms essentially have the format:

Pre — [AtoB, Locution] Post

Afrer Party_A uttered Locution to Party_B, then given Pre happens to be the case prior to Locution, Post
happens to be the case after Locution.

Legality axioms define the proper ordering for uttering locutions. Their general shape
is: :

Pre — [AtoB, Locurion] [BtoA, Locution'] Post

After Party_A uttered Locution to Parrv_B and Parry_B uttered Locurion' to Parcy_ A then given Pre
happens to be the case prior to Locurion. Post happens to be the case afrer Locution’.

At the current stage of this work our dialogues are limited to two parties. However, in
the future we would like to extend our framework from two-partv to N-partv. This justifies
the sense of direction given ro our locutions: AtoB (from Party_A to Parcy_B). A possible
extension could look like: AtoAudience (from Party_A to Audience) or AtoB_C_D (from
Party_A to Parties B_C_D) which constitutes a qualified audience.

5.1.1. Lancuage for Pree and F@S%wﬂaw tions
w 4 !

The elements and the rules that form and control the pre- and post-conditions of
ACCORD are those defined for the Commitment Calculus. For ACCORD these
boundary conditions and the commitment stores are one and the same thing. However, at
this level, two new states of affairs are defined - healthy and error - (remember that
commitment stores define s-0-a's} that would be rendered meaningless at the commitment
calculus level.

Let us define 'P' - the language of pre- and past-conditions - by extending the language
guag F P Y g guag
definition in the commitment calculus.

Definition: Language L'
Let L' be the propositional language:
p.g...€ L' (atomic propositions)
o,y e L' then—g.0orvy.@vVy, 0-ye L

Definition: Language P »
Let P be the language of pre- and post-conditions:
Ifo € L' then ¢, Co, Dy, healthy, error and 'A' € P.

Definition: CT' ={Co | ¢ T}
Definition: DA = {Do | ¢ e A}

Healthy indicates that the dialogue has been played properly until that stage, thus the
commitment stores are in good condition. So, empry stores make for healthy conditions. At
this point we might be encouraged to think that a party's store describing a contradictory
s-0-2, e.g (Cap A Cam @), does not make for a healthy condition, but that is misleading. In
the case above, it will be at the other party's discretion to ask Party_A to stralghten up its
store. Nothing is wrong with the pre- or post-condition. :

Error indicates that there is something wrong with the conditions, therefore with the
“dialogue. In the commitment case, an error state occurs when a party chooses a locution
that does not match with the given pre-condition. In the legality case, an improper
sequencing of locutions leads to an error. At the current stage of this work, whenever an
error state occurs, 'error’ is placed in the speaker's commitment store - the one responsible
for causing the error state. Otherwise, both commitment stores remain the same.

5.1.2. Locution Rlodifiers

This section introduces some axioms that characterise each of the following locution
modifiers: Assertion, Question, Withdrawal, Challenge. Justification (]u&nﬁcauon for
the Challenge of an Implication), Denial and Resolution Demand.

Concemning the commitment case. the onlv changes in the commirment stares are those
that appear tn the axioms, the rest remains the same. It also presents situations where the
utrering of some specific locution under certain pre- condmom leads tc an error post-
condirion. :

Concerning the legaliry case, we are onlv interested in capturing which sequences
involving each <pec1’tc locution modifier lead to a healthy post-condition - we alwavs starr
from a healthy pre-condition. We first present all the sequences which have that specific
locution modifier as the first member. then we present the axioms that end with it

Special attention is given to the locution modifier Resclution Demand. For its
specification the commitment calculus has to be taken into account. A party is only
allowed to urge the other party to straigthen his (the other party's) commitment store, if
by the sole application of a commitment calculus rule, the latter's commitment store is
proved to be contradictory. If the condition above is not met. the speaker - the one who
demanded the resolution - will bring about an error state. For the sake of clarity, when we
present its legality axioms, we assume that the contradiction is in the 'C' store.

As to the choice for the locution modifiers, it was in some sense an arbitrary one. We
followed Macken:ie's choice, except for the locution modifier justification (and jusdfication
for the challenge of an implication) which we introduced. We also treat some of the other
locution modifiers in a slightly different way - we grant denial the full status of a locution
modifier and we only provide for one version of resolution demand. Mackenzie's choice was
influenced by Hamblin's selection, which we believe was inspired by the ancient game of
Obligation, performed in the Academy, a garden near Athens where Plato and Aristotle
used to teach.

The reader should always have in mind that our aim is to develop a framework for
dialogue representation systems and not the specification of a finished dialogue logic,
multi-purpose and ready for use. For each different application, a purpose built dialogue
system should be set up and each rule or axiom tailored for its specific task.

There is a lot of work done in the theory of speech acts (Austin62, Searle 69, Searle 79,
Searle & Vanderveken 87), that could be related to the nature of the locution moedifiers
used here but at the current stage of this work the former is not particularly relevant.

Finally, it is important to remember that locution modifiers should be seen in context,
i.e. while interacting with each other. This was done when we applied the dialogue
formalism to office work In the following sub-sections we first look at them individually,
trying to bring out some of the common sense embedded in each of them. For each of them
we introduce some commitment and legality axioms. In the next section we combine them,
showing in this way that they are expressive enough to emulate some patterns of
reasoning which are common in cooperative environments.

£.1.2.1. Language for locution modifiers and ACCORD

Before we start giving the axioms for each locution modifier, we present languages for

locution modifiers and ACCORD.

Definition: Language ‘LLoc

Let Lj . be the language of locution modifiers:
if @ € L'then asserts(¢) € Ly
if @ € L' then questions(9) e L
if ¢ € L'then withdraws(@) e Li.:
if o e L'then why(o) e L.
if @ € L' then justifies(@) € L
if @ € L' then justiIMP(@) e L
if @ € L'then denies(qp) e L .
if Co. Cy. Cyand ‘A" € P then resolve(Co A Cy /Cyl e 1.

.30 -

definition: Language LACCORD
Let Laccorp be the language of ACCORD:
ltpre € Pandpos € Pandloce L,
then pre — [AtoB, Loc] post € Lacoorp
and pre — [BtoA, Loc] post € Laccorp:

5E.1.2.1.%1. ﬁ&séﬂ:iﬁn

The assertion of a statement commits the speaker and the hearer to the s-0-a (and to its
immediate consequences, i.e. consequences inferred from the application of any rule of the
commirment calculus once) described by that statement.

Language: asserts(s): It is the case that s.

Commitment Axioms

healthy — [AtoB, asserts(@)] Cap A Cho

Afrer Party_A utrered asserts(@) to Party_B, then given that P is a healthy state prior to the
assertion, both parties are committed to @. :

A party is committed to anything stated by another party. The placing of =
commirment inside the other party's store is a way to force him to react to it. Silence has
the force of agreement so, if he does not react to it he becomes committed to it and to its
immediate consequences. To get rid of a commitment (in its commitment store) Party_B
has to withdraw it. When given as an answer to 2 question, an assertion is the same as
confirmation or a yes.

Cag — [AtoB, asserts(¢@)] error

After Party_A utrered asserts(@) to Party_B, then given that Party_A is commitred to o}
priot to the assertion, P' is an error state, both commitment stores remain the same.

One is not allowed to re-assert one's commitment. Being repetitive is not a healthy way
to advance reasoning.

Legality Axioms
Starting with an assertion.
BtoA, asserts(y)] healthy

‘healthy — [AtoB, asserts(¢)] |
] [BtoA, questions(y)] healthy
N
H

healthy — [AtoB, asserts(o
BtoA, withdraws(y)] healthy
healthy — [AtoB, asserts{0)] [BtoA, why{y)] healthy
healthy — [AtoB, asserts(©)] [BroA. resolve(CI'/Cwy)} healthy

Ending with an assertion.

)
)
healthy — [AtoB, asserts(¢)
)

healthy — [AtoB, asserts(@)] [BroA, asserts(y)} healthy
healthv — [AtoB, questions{®)] [BtoA, asserts(y)] healthy
healthv — [AtoB, withdraws(@)] [BtoA, asserts{y)] healthy
healthy — [AtoB, justifies{¢)] [BtoA, asserts(y)] healthy
healthy — [AtoB, deniesi@)] [BioA. asserts(y)] healthy
healthy — [AtaB. resolve(CT/Co)] [BroA, asserts(y)] healthy

5.1.2.1.2. Question

To question a statement is to doubt (the very existence) of the s-o-a described by that

- 3] -

statement. It does not commit either speaker or hearer to the s-0-a described by the
guesrioned statement. :

Language: questions{s): Is it the case that s’
Commitment Axioms

healthy — [AtoB. questions(¢)] healthy=

After Partv_A utrered questions{@) to Party_B. then given that P is a healthy state prior to
the guestion, P is 5 healthy state. Both commirment stores remain the same.

The uttering of a question does not affect the commitment stores. After asking a
question, it is up to the other party to confirm it (assert), deny it (denial) or distance
himself from it (withdraw). The question answer mechanism is very useful for advancing
the reasoning process. By means of it, conclusions are made available and common ground
is established that way. :

Cagp — [AtoB, questions(¢)] error

After Party_A uttered questions(¢) to Party_B, then given that Party_A is committed to ¢
prior to the question, P’ is an error state.

One cannot question one's commitments. A party cannot doubt the existence of a
commitment that is already in his commitment store, he can only withdeaw it or
challenge it.

Legality Axioms

Starting with a question.

healthy — [AtoB, questions(@)] [BtoA, asserts(y)] healthy
healthy — [At0B, questions(@)] [BtoA, denies(y)] healthy
healthy — [AtoB, questions(@)] [BroA, withdraws(y)] bealthy
Ending with a guestion.

healthy — [AtoB, asserts(9)] [BtoA, questions(y)] healthy
healthy — [AtoB, withdraws(¢)] [BtoA, questions(y)] healthy
healthy — [AtoB, justifies(¢)] [BroA, questions(y)] healthy
healthy — [AtoB, denies(¢)] [BtoA, questions(y)] healthy

For future extensions on the subject of questions, there is a vast literature that we will
take into consideration - notably New Foundations for a Theory of Questions and Answers
(Hintikka 83), The Logic of Questions (Harrah 84) and On Questons (Hoepelman 83).

5.7.2.1.8. Withdrawal

To withdraw a statement is to dissociate oneself from the s-o-a described by that
statement. Nevertheless it is not just a rejection of a statement, because now the speaker
is aware of it. To mark this difference, the statement is placed in the 'D’ part of the
commirment store. If the speaker was committed to that statement previously to its
withdrawal, afrer the withdrawal he (she) is not committed to it any more.

Language: withdraws(s): I am not so sure that s or No commitment to s.
Commitment Axioms _
Cap — [AtoB, withdraws()] Dag

After Party_A utrered withdraws(@) to Party_B. then given that Party_A is committed to ¢

prior to the withdrawal. A is not commitred to @.

The sitvation picrured above typifies the way that a parry gets rid of 2 commitment

that was probably - but not exclusively - placed there as the result of an assertion uttered
by the other party. |
healthy — [AtoB, withdraws(@)] Dag -

Aker Parry_A utrered withdrewsio) 1o Party_B. then given that P 1s 5 healthy state prior to
the withdrawal, Party_A 1s not commitsed 0.

The situation above reflects the awareness of the s-0-a that comes from a comment like |
am not so sure that. It is weaker than a commitment to the negation of the same s-o-a.
Da¢ — [AtoB, withdraws ()] error

After Party_A uttered withdraws(@) to Party_B, then given that Party_A is not committed
to @ prior to the withdrawal, P’ is an error state.

One cannot withdraw what one has withdrawn before. We do not provide a mechanism
for forgetting in our framework. This axiom stresses the awareness aspect given to our
notion of commitment.

Legality Axioms

Starting with a withdrawal.

healthy — [AtoB, withdraws(@)] [BtoA, asserts{y)] healthy
bealthy — [AtoB, withdraws(g)] [BtoA, withdraws(y)] healthy
healthy — [AtoB, withdraws{¢)] [BtoA, why(y)] healthy
healthy — [AtoB, withdraws(@)] [BroA, resolve(CI'/Cy)] healthy
healthy — [AtoB, withdraws(@)] [BtoA, questions(y)] healthy
Ending with a withdrawal.

healthy — [AtoB, asserts(¢)] [BroA, withdraws(y)] healthy
healthy — [AtoB, questions(@)] [BtoA, withdraws(w)] healthy
healthy — [AtoB, withdraws{o)] [BtoA,'withdraws(\y)] healthy
healthy — [AtoB, why(¢)] [BtoA, withdraws(y)] healthy
healthy — [AtoB, justifies(¢)] [BtoA, withdraws(y)] healthy
healthy — [AtoB, denies(®)] [BoA., withdraws(y)] healthy
healthy — [AtoB, resolve(CI'/Co)] [BroA, withdraws(y)] healthy

5.1.2.1.4, Chalienge

Faired together with justification. challenge forms the basis of the argumentation
process. Challenging a statement differs from questioning it, for while in the latrer case
one is asking for some form of confirmation, in the former case one is asking for good
reasons to stick to it.

Language: why(s): Why is it to be sup osed that s or How is it known that s’
& & Y) PP
Commitment Axioms
healthy — [AtoB. why(g)} 'Ca{why{tp))_ A Crp

Afrer Party_ A uttered why(@} to Farry_B. then given that P is a healthy stare prior tc the
challenge: Party_A is committed to why(@! and Party_B is commirted to .
A challenged Statement will be marked - as 3 why(Statement) - in the commitment
store of the speaker. This is part of the mechanism to avoid circularity in answering other
challenges (why(a); justifies(h). why(b): justifies{a)}. The challenged Statement i

placed unmarked into the hearer's commitment store, to force him (her) ta react tc it. A

- 33

challenge is a demand for evidence. It is neither a demand for a confirmation nor for a
demal like a question.
Cagp A Crp — [AtoB, why(9)] Ca(why{@)) A Cro
Afier Party_A urtered why{@) to Farev_B, then given that both parties are commitred to ¢
prior to the challenge, A is committed te why(@) - but not to @ any more - and Parry_B

" remains commrdtted to @.

A challenge forces the hearer to disclose the premises that led him to make that
statement.

Legality Axioms

Starting with a challenge.

healthy — [AtoB, why(¢)] [BtoA, justifies ()] healthy
“healthy — [AtoB, why(¢)] [BtoA, withdraws(y)] healthy
healthy — [AtoB, why ()] [BtoA, resolve(CI/Cy)] healthy
Ending with a challenge.

healthy — [AtoB, asserts(¢)] [BtoA, why(y)] healthy
healthy — [AtoB, withdraws(¢)] [BtoA, why(y)] healthy
healthy — [AtoB, justifies(¢)] [BroA, why(y)] healthy
healthy — [AtoB, denies(¢)] [BtoA, why(y)] healthy

5,1.2.1.5.‘ Justification

Given as an answer for a challenge, forms the basis of the argumentation process. ‘It :
provides good reasons for the challenger to stick to the challenged statement.

Language: justifies(s): s is a justification for Challenge.
Commitment Axiom
Ca(why(p)) A Crp — [BroA, justifies(y)]
Ca(why(9)) A Ca(y—9) A Cay A Crp A Cr(y—0) A Cryr

After Party_B uttered justifies(y) to Party_A, then given that Party_A is committed to
why(@) and Party_B is committed to @ prior to the justification, Party_A is committed to
why(e}, (y—9) and y, and Party_B is committed to @, (W—@) and ¥ after it.

A justification places the answer and the argumentation step (v, (W¥—9)) into both
commitment stores. It provides the premises that support the challenged statement.

JustIMP is a variant form of the locution modifier Justification, specially designed for
dealing with challenges of formulas containing one implication.

Commitment Axiom for the Justification for the Challenge of an Implication
Ca(why(y—=0)) A Cb(y—©) — [BtoA, justIMP(y)]
Calwhy(y=0)) A Ca(w—0) A Cawr A Cr{y—0) A Ce{wr—0) A Cry

After Farty_B uttered justIMP{W/} to Party_A. then given that Party_A 15 commitred to
why{Y—®) and Parnn_B 1s commitred to (Y= prior to the tustification. Farty_A s
committed to why(Y—=Q}, (W—@! and @, and Farry_B 1s committed to (Y—@), (Y—@) and ')
after ir.

JustIMF was designed in an ad hoc way. In the future we might resort to some specific
reasoning straregies jor justification to achieve the same result. The Legality Axioms are
the same for Justification and for JustIMF.

-34.

Legality Axioms

Starting with a justification

healthv — [AtoB, justifies{g)] [BroA. withdraws{y)} healthy

1

~

healthy — [AtoB. justifies{o)] {BtoA, resolve(CI'/Cy)] healthy
[BtoA, questions(y)] healthy

[BtoA, why{y)] healthy
I

healthy — [AtoB, justifies(@)] [BioA, asserts(y)] healthy

)]
healthy — [AtoB, justifies(e)]
healthy — [AtoB, justifies(q)]
)]
Ending with a justificacion.
healthy — [AtoB. why(9)] [BtoA, justifies (y)] healthy

51.2.1.6. Denial

This locution modifier can only be used after a question. It commits both the speaker
‘and the hearer to the negation of the questioned statement.

Language: denies(s):] deny that it is the case that s.

Commitment Axiom

healthy — [AtoB, denies(@)] Camp A Chmg

After Party_A utrered denies(@) to Party_B, then given that P is a healthy state prior to the
denial, both parties are committed to —¢.

In the commitment axiom above, we are treating the denial of a statement as an
assertion of the negation of that statement. Thus, a denial is stronger than 2 withdrawal.

Legality Axioms

Starting with a Denial.

healthy — [AtoB, denies()] [BroA, asserts(y)] healthy
healthy -- [AtoB, denies(p)] [BroA, withdraws(y)] healthy
healthy — [AtoB, denies(¢)] [BtoA, resolve(CI'/Cy)] healthy
healthy — [AtoB, denies{¢)] [BtoA, questions(y)] healthy
healthy — [AtoB, denies(@)] [BtoA, why(y)] healthy

Ending with a denial.

healthy — [AtoB, questions(9)] [BtoA, denies(\)] healthy

5.1.2.1.7. Resclutien Demand

It is used by the speaker to alerr the hearer that his (the hearer's) commitment store is
in a inconsistent state. The hearer has to take some action to correct it. CC and DAC are
connected via this locution modifier. A party can only demand a resolution from the other
party, if by the sole application of a commitment calculus rule. the latter's commitment
store is proved to be inconsistent. Otherwise the dialogue is not a healthy one anv maore. The .
proper uttering of a resolution demand does not affect the commirment stores.

Language: resolve(Set_of_Statements/Statement):

Resolve this set of statements against this specific statement.

The commitment axtoms for resolution deraand have the general form:

Cricontradictory) — [AtoB. resolve(CT/Ce)] Crlcontradictory)

After Partv_A utzered resolve(CTIT/Co) - the set of commitments designared by T and the
- . s B - 1 . . :
specific commitment ¢ being proved to be contracictory by the soie apphceation of z
commitment caiculus ruie - te Farty_B. then given thar Fartv_F hae thueform of contradiction i
his commitment store prior to the resolunion demand. both commirment stores remain the same
afier it
Below we instantiate this axiom using three potentizlly contradictory commitment
stores:

Co(paw) A Crmg — [AtoB, resolve(Cloay)/C-¢)] Cr{oay) A Crmeo

After .Parr.y_A utrered resolve(C{@Aw)}/C—-@) to Fartv_B. then given that Party_B is
committed to (@AY) and ~@ prior to the resolution demand, both commitment stores remain
the same after 1t. . :

From rule CAEl we see that Party_B's commitment store is in an inconsistent state.

Clo—y) A Co A Cy —[AtoB, resolve(C{o—sy).Co/Cy)] Clo—y) A Co A Cy

After Party_A uttered resolve(C(@—y),Co/C-y) to Party_B, then given that Party_B is
committed to (¢—=W), @ and =y prior to the resolution demand, both commitment stores
remain the same.

From rule C—E1 we see that Party_B's commitment store is in an inconsistent state.

D¢ A D{gay) — [AtoB, resolve(Do/D{@awy))] error

After Party_A uttered resolve(Do/D(@Ay)) to Party_B. then given that Party_A is not
committed to @ and (@AY) prior to the resolution demand, P’ 1s an error state, ie. the improper
uttering of a resolution demand places 'error’ in the speaker's C-commitment. store. Party_B
remains not commirted to @ and (GAY). :

From rule DAll we cannot detect any inconsistency in Parry_B's commitment store.

At the current stage of this work, the party that is asking for the resolution demand,
does not have to show which commitment calculus rule he used to spot the inconsistency.
In the future we might make this necessary, for in a cooperative environment showing the
means by which one detected a mistake is always helpful.

Finally concerning ACCORD, being committed to something and not being committed
to the same thing implies having a contradictory commitment store. Thus Party_B can
demand a resolution from Party_A if {Cap A Cam@). However, if instead Party_A's
commitment store's contents were {Da@ A Da= @}, then a resolution demand coming from
Partcv_B would bring the dialogue to an error state. For example, if I'm committed to go to
the cinema and I'm committed not to go to the cinema, then there is something wrong with
me. On the other hand, if I'm not committed to go to the cinema and I'm not commirted not to
go to the cinema, apart from a strange fixation on movies, there is nothing wrong with me.

Legality Axioms

Starting with a resolurion demand.

healthy — [AtoB, resolve(CI/Co)] [BtoA, asserts{y)] healthy
healthv — [AtoRB. resolve(CI/Ceo }] [BroA, withdraws(y)] healthy
Enaing with a resolunon demand.

heaithy — [AtoR, asserts(©)] {BroA. resolve(CT/Cw)] healthy
healthv — [AtoB, withdraws{@)] [BroA. resolve{CT/Cy)] healthy
healthv — [AtoB, whv{o)] [BroA. resolve(CI/Cwr)] healthy
healthy — ’{AtoE. justifies(0)] [BroA. resolve(CI/Cyr}] healthy

healthv — [AtoB. denies{@)] [BroA. resolve(CI/Cwr)] healthy

236 -

B.2. Derivablility
The only rule necessary for defining the Dialogue Representation derivability relation
= ACCORD - is the transitivity rule shown below.

Transitivity rule:

P—-!AwB Locl P P — [BtoA. Loc'l P
P — [AtoB. Loc] [BtoA, Loc] P

Given a set I' of propositions of Lyccorp 2nd ¢ € Laccorp then,
I'HACCORD @ iff
| 3¢1, Q2. ..., Pn where
©=¢n and
foreachi,i=1ton,
piell or
@i € logical axioms of ACCORD ~ or
i is the conclusion of the transitivity rule using premisses

¢j and @k for @, k < i.

Definition_of Healthv Dialogue:

A dialogue is legal iff
Faccorp P — [ParryitoPartyj, locution]® P or
I'accorp P — [ParryitoPartyj, locution]» P
where n21 and j=i.

6. Cliches, Seripts and Patterns of Cooperative Reasoning

In this section we introduce the notions of cliches, scripts and patterns of cooperative
reasoning, for extending our framework with a view ro support cooperative work.

Next we present two patterns of cooperative reasoning: Justifying and Resolving. By
cooperative reasoning we loosely mean the kind of reasoning that is common in the office
and in the classroom for example. Although not particularly relevant at this stage of the
work, an interesting classification of cooperative illocutionary acts provided by (Hancher 79)

is going to be taken into consideration for future extensions.

Below we verify if they are ACCORD-derivable and also if they are healthy dialogues.
First, we check in all steps if the post-condition is well formed. Then, we check if the
sequencing of the dialogue events is sound. For each dialogue we show its derivation tree.

1) The dialogue presented below typifies a justifving conversation, where Pariv_A is
challenged by Partv_B to justifv his (her) previous assertion.

healthy — [AtoB. asserts(y)]
[BroA. why{y)]
[AtoB, justifies(p)]
Cay A Chlwhy(y)) A Cale—Y) A Cag A Crle—y) A Cro

- 37 -

nEgithy — [&int goiertoiel Lav 2 iy

Lew s LDe = flica whpleliiee A (Dlwnyie)

heatthy — fatnd atze to X Hics whi telii8e s Lhiwhu e

it

Lew s Lhiwhy et = JAT0E jucttiestell o £ Lliwhyie) r L8ty e n LEy 7 LDIv—elAlbe

heslthy — [atob secerts(e)) IBloA. why ($)atol. justiftesiviliew o Lhiwhyied o Lalv—e> a Loy A lbte—~vl A LDy

The post-condition {Cay A Cr{why(y)) A Cale—-y) A Cag A Cb((p-—)\ﬁ) A Cro} is well
formed.

The sequencing of dialogue events {[BtoA, why(y)] [AtoB, justifies(q)]} is sound
according to one of the legality axioms for Challenge.

We take the post-condition {Cay A Co(why(y)) A Ca(o—oW) A Cep A Cr{p—y) A Cog}
together with the second dialogue event from the chosen pair {{AtoB, justifies(¢}]} and
transform it to the pre-condition that makes the commitment axiom for that specific
locution {justifies} correct. Thus we get {Cay A Co{why(y))} as the pre-condition for (1).

The pre-condition for (1) is the post-condition for (2}, and it is correct by construction
(or, more appropriately, by destruction).

The sequencing of dialogue events {[AtoB, asserts(y)] [BtoA, why(y)]} is sound
according to one of the legality axioms for Assertion. :

We take the post-condition {Cay A Ch(why(y))} together with the second dialogue
event from the chosen pair {{BtoA, why(y)]} and transform it to the pre-condition that
makes the commitment axiom for Challenge correct. Thus we get {Cay A Cry} as the pre-
condition for (3}. '

The pre-condition for (3) is the post-condition for (4).

Given thar (4) is the first dialogue event, we only have to take its post-condition {Cay A
Chry} together with the dialogue event {{AtoB, asserts{y)]} and transform it to the pre-
condition that makes the commitment axiom for Assertion healthy. Thus we get {healtiy}.
which matches with our dialogue pre-condition. QED.

2) The dialogue presented below typifies a resolving conversation, where Party_A is
urged by Party_B to resolve a contradiction in his (her) commitment store, that was
created by his (her) previous assertion.

Ca{e—y) A Cap — [AtoB, asserts(—Wy)]
[BtoA, resolve(Ca{@—y) A Cag [Camy)]
[AtoB, withdraws(@)] Calg—y) A Camy A Cb—y A Dag

P R R AU - HXa S Tl TR TR L M E-C AVl S]

Cav—#ts Tac »imod o Do — [Fopa repigtue (g cm=w » Lav 2 Jamwdilate—v:p(ay 2 1070~ (170

Coiw—=w » {ad — [AtoE ascerisie)i [Bioa resaive ((aiv—w: /s {8y ¢ (o W) (glu—e:r (B¢ o Lo n ChOY

Ca—eis Cav s Lane, e = Jat0E withorewzig) e~ s Le0w » Jooe o Lgw

o

(oive; s Coae — AT0E gusertaim)i s reipive {Law —e o o - Cemedliatef witngrawsie Y Docw—=w: o Demw » (B0 » Dew

- 38 -

The post-condition {Cal @-2y) A Ca=y A Cr—W A Dag} is well formed.

The sequencing of dialopue events {[BroA. resolve{Ca{lo—y) A Cor / Camy)} [AtoB.
withdraws{®)]} is sound according to one of the legality axioms for Resciution Demand.

We take the post-condition {Ca{@—y) A CamW A Cb=y A Dagj together with the second
dizlogue event from the chosen pair {{AteB, withdraws{¢}]} and transform it to the pre-
condition that makes the commitment axiom for that specific locution {withdraws)
cortect. Thus we get {Calg—y) A Ca A Ca—y A Cr—y} as the pre-condition for (1).

The pre-condition for (1) is the post-condition for (2), and it is correct by construction.

The sequencing of dialogue events {[AtoB, asserts{—y)}{BtoA, resolve(Calo—y) A Cep/
Ca—y)}} is sound according to one of the legality axioms for Assertion. ,

We take the post-condition {Ca(@—y) A Ca@ A Ca—w A Ct—y} together with the second
dialogue event from the chosen pair {{BtoA, resolve(Ca{p—y) A Co@ [Camy)}} and check if
there is a commitment calculus rule that given {Ca(¢— W) A Ca@} as a premise, it
concludes an implicit commirment that contradicts {Ca—y}. We find rule C—E1.Then we
transform it to the pre-condition that makes the commitment axiom for Resolution
Demand correct. Thus we get {Ca{@—y) A Cag A Camy A Co—y} as the pre-condition for
(3).

The pre-condition for (3) is the past-condition for (4).

Given that (4) is the first dialogue event, we only have to take its post-condition
{Ca{o—y) A Cap A Cayp A Ch—y} together with the dialogue event {{AtoB, asserts(—w)]}
and transform it to the pre-condition that makes the commitment axiom for Assertion
correct. Thus we get {Ca(@—=Wy) A Cag}, which matches with our dialogue pre-conditior.
QED. '

We checked elsewhere (Fuks 91) that the examples B and C in section 2 are ACCORD--
derivable. Some changes to the commitment stores were made necessary, because after the
development of the commitment calculus in section 4, we introduced the 'C' and 'D’
notation for commitments. First we translated the commitment stores into the new
notation. Then, starting from the resulting commitment steres, by only applying
ACCORD rules, we returned to empty - thus healthy - commitment stores. These healthv
dialogues were presented as proof trees using a backwards deduction style. For each
example we tried to identify bits of this decomposed chain of reasoning, that are similar to

" the patterns of cooperative reasoning presented above.

The identification of these sequences - patterns - of locution modifiers is the first step
towards the construction of higher level strucrures like scripts and cliches. These
structures should be able to enact these patterns of cooperative reasoning in an intelligent
way. We are still at a very early stage of the development of this framework, and at the
moment we are only able to provide the representation schemes that can caprure these
patterns of reasoning. Other possible patterns of cooperative reasoning are: clarifying;
searching; question-answering: observing; negotiating; bargaining, etc.

Currently we are extending the framework for the development of groupware for
cooperative software design {Lucena, Leite, Schwabe & Fuks 91). We follow a path similar
to the one taken by (Rittel & Kun:z 7C, Lowe 85 and Sculer & Smith 90) where desigr
decisions and rationales are logged using argumentation structures. For this purpase. we
arz working on cliches anad scripts for the provision of conversation sterectvpes that coulc
guide the sofrware designers in their tasks The foliowing is 8 sample senips

A-Scrip:
Current S-O-A: Inconsistency in Party_A's commignent store
1f Parrv_B wishes
Then Parny_B 1o Parrv_A {resolving!
Cliches are stare transinon diagrams where state transformations occur bv the

- 3G .

utrering of dialogue events. An interesting example of cliche 1« the Conversation jor Acnon
dizgram in (Winograd 85) That particular chiche could have it offer and counter-offer
sreps enacted by using argumentative structures of the kind presented by (van Eemeren &
Grootendorst 84). The conversation built around & valid argument would progressively
construct a diaiogue structure, which should map te s well formed Toulmin strucrure

(Toulmin €4} or other similar structure.

A further improvement will be the incorporation of cognitive heuristics to the
framework in order to provide it with the ability of learning cliches from existing
dialogues. This will also make the framework more flexible, for a priori cliches might not be
appropriate for sundry domain specific applications. This proficiency will be especially
useful for user interface - and groupface - design, where the users' profile and the group's
social structure emanate from their conversations.

challenges
assertions
withdraws
resclves
justifications
denials
questions
Locutions
Pattems
Scripts
Cliches

The figure ahove illustrates the interrelation berween locutions, patrerns, scripts and
cliches. Cliches are made out of other cliches, scripts, patterns and locutions. At the
cutrent stage of this work, we are working with a small set of locution modifiers. The
addition of new locution modifiers might prove necessary for coping with yet unknown
situations. We hope that our experiments with software design will give us some insight
as to whether the addition of new locution modifiers is necessary.

7. Coneclusion

Negotiation permeates many aspects of our everyday life. Normally, the
accomplishment of a task involving more than one party is by means of agreements,
commitments and compromises. Human organizations, heing based on team acrtivity,
strongly rely upon negotiation. Computational models based on dialectical reascning can

be successfully applied to problems requiring negotiation.

Cooperation in the work place is increasingly becoming a major issue in business,
industry and in academe. As a result of this, different rypes of users are sharing and
working on common information. Tools and methodologies are needed to instigate, support
and structure this interdisciplinary debare. Cooperative work can be seen as the generation
of language acts and conversations (Winograd 88). Conversation 1= a3 mechanism for
generating commitments, :

It evolved from a formalism for the analvsic of dialogue created by Ha
bv Mackenne. It comprises a commitment calculus and a diatogue act

In this work we developed ACCORL - & framewark for dialogue representation svstems.

T

O W
]
a
o
3
]
3
)
m
]
=

We applied this framework to a cooked case originating from an office environment.
focussing on its cooperative and group aspects. We trie to show that this framework i
suitable for capruring and representing some of the cooperanive aspects characteristic of
group activities. : '

ACCORD as it stands now is still in an embrvonic stage and a3 lot remains to be done.

- 40 -

CC s still incomplete. It needs a lot of testing and there is plentv of rcom for
improvement. We want to reassess the work done on Commitment Logic {Fuks, Ryvsan &
Sadier 89} and v to Link 1t 1o the calculus. This development topether with the use of
deontic operators within DAC's axioms, will probably make this framework more capable of

“handling problems that involve negotianon. A further improvement will be the extension
of ACCORD from a two-party svstem into a N-parry one.

We also intend te extend this dialogue representation svstem, by using the notions of
intention {Cohen & Levesque 87. Bratman 87) belief and knowledge in a2 wav similar of
that we have been using commitment. Intention stores, knowledge stores and belief stores
will be created and intentions, knowledze and beliefs will be established and discharged by
locution modifiers in a way similar to that envisaged for commitments. A new set of
axioms or rules shall be devised for interconnecting theses stores. i.e. for prescribing the
effects that updatings in any of the stores will cause in the other stores.

ACCORD seems to suit applications like software configuration management
(Finkelstein & Fuks 90) where specifications - versions - are treated as commitments that
are established, updated and discharged by members of the software development group.
The future use of this framework for the development of groupware could give us more
insight into the process of software design, especially from the team activity point of view
(Lucena, Leite, Schwabe & Fuks 91}, and could alse give valuable feedback for improving
the framework itself. At the moment we are trying to develop cliches and scripts for this
purpose.

An immediate advantage of using ACCORD is that group awareness is a natural
conisequence, and that group work support systems based on it will naturallv tend to meet
the end-users' language capabilities. We believe that this framework could be 2 source of
inspiration for the design - and in the furure for the development - of groupface
management Systems.

There -are many other applications to this framework in computing. In the subject of
distributed reasoning, it could be applied to the detection of mutual consistency in
distributed databases. It could help in the design of collaborative editing systems. Finally
it could be used in the fast developing field of multimedia, for the provision of
argumentative structures for computerised conferencing systems.

Acknowledgements

I would like to thank Tom Maibaum, Martin Sadler, Dov Gabbay, Anthony
Finkelstein and Daniel Schwabe for their constructive comments, interest and help.

Financial support has come from CNPg - Conselho Nacional de Desenvolvimento
) : pport 9 -3 i -
Cientifico e Tecnoldgico - Brasilian nartional council for scientific research and
technological development, grants 300608/90.0 and 20.2471/86-CC.

Most of this work was developed whilst the author was deing his Ph. D. at ‘the
Department of Computing. Imperial College of Science Technologv and Medicine,
P » F £ P g 4.
London University.

References

?J,

Aliwood, 1. Logiz and Spoken Inreraztion in Reasoming and Discourse Frocesses, e
Myers, Brown & McGonugle, pp 67-94, Aademic Fress Cognitive Saene Series. 1987

Anderson, A. R.: On the logic of commitment. Philosophical Studies VIO pp 23-27. 1959

Austin, }. L. How to De Things with Words, ed:]. Q. Urmson and M. Shisa: 2nd edition

1980, Oxtord University Press, 1962,

- 41 -

Barth. E. M. & Krabbe, E. C. W From Axiom te Dialogue: A Fhilosophical Srudy of

yreumentation; de Gruveer, 1682

Bond, A. H.: A Computational Mode! for Organizations of Cooperating Intelligent
Agents: Troceedings Conference on Office Information Svstems, SIGQOIS Bulletin,
VIIN2Z&3, pp 21-30, 1990

Bratman. E. W What Is Intention; Report n® CLSI-87-90, January 1987,

Castaneda, H. N.: Thelagic f OHigation Philasghical Studies VIO, pp 17-23. 1959,

Carbonell.].G.: Meta-Language Utterances in Purposive Discourse; Carnegie-Mellon
Univ Tech. Rep. CMU-CS-82-125, 1982.

Cohen, R. P. & Levesque, J. H.: Persistence, Intention and Commitment: in Formal
Theories of Communication, (eds.) P. R. Cohen & C. R. Perrault, Report n® CSLI-
87-6%, pp 171-203, 1987.

Davis, R. & Smith, R. G.: Negotiation as a Metaphor for Distributed Problem Solving;
Artificial Intelligence V20, pp 63-109, 1983.

Erman, L. & Lesser, V.: A Multi-Level Organization for Problem Solving Using Many,
Diverse. Caperating Saurces f Knawledee Proc. IJCAI-75, pp 483-489, 1975.

Finkelstein, A. & Fuks H.: Multi-party Specification: Proc 5th International Workshop
on Software Specification & Design, pp 185-195; IEEE CS Press, 1989.

Finkelstein, A. & Fuks H.: Conversation Analysis and Specification; in Computers and
Conversation. ed P.Luff,N. Giltert & D. Frchlich, pp 173-186. Academic Press, 1990.

Fuks, H., Ryvan M. & Sadler, M.: Qutline of 2 Commitment Logic for Legal Reasoning;
Prec 3rd International Conference on Lepis, Infarmatices and Law, Florence, Nov.1989.

Fuks, H.: Negotiation using Commirment and Dialogue, PhD. Thesis, Department of
Computing. Imperial College, University f Londm. Feb. 1991.

Gvabbay, D. M.: N-Prolog: An Exrension of Prolog with Hypothetical Implications 2,
Journal of Logic Frogramming, V2, pp 251-283, 1985.

Gardenfors. P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States, The
MIT Press. 1988.

Goldblatt, R.: Axiomatising the Logic of Computer Programming. XI; Lectures Notes in
Computer Science V13C, Springer-Verlag,1982.

Green, M.: Report on Dialogue Specification tools In Proc. Workshop. User Interface
Management Svstems; ed: Pfaff; Springer-Verlag, 1983.

Hamblin, C. L.: Fallacies; Methuen. 1970.

Hamblin, C. L.: Mathematical models of dialogue. Theoria V37, pp 130-155, 1971.

Hamblin, C. L.: Imperatives, Basil Blackwell Ltd, 1987.

Hancher. M. : The classification of cooperative illocutionarv acts. Language in Society
VE&. pp 1-14. Cambridge Universirv Press. 1979

v .

Harrah. D Trhe Loge of Questons in Handbook of Pnuosophical logic, V2, pp 715-764: e
L. Gabrav and F. Guenthner: . Reide!, 195 ‘

;.

L. Reidel, 1954

Hintikka, I.: Some main problems of Deontic Logic in Deontic Logic: Introductorv and
Svstematic Readings. pp 225-24%: ed: R. Hiipinen: D. Reidel, 1971.

Hintikka. 1.: New Foundanons jor ¢ Theors of {Juesnons and Answers in Questions and
Answers, pr 155-19{; ed: Ferenc Kiefer. D). Rejdel. 1983,

L Or Quesoons in Questions and Answers, pp 191-227; ed: Ferenc Kiefer: D.
19&3.
- 42

'Hughes, G. E. & Cresswell, M.].: An introduction to Modal Logic, Methuen, 1968.

Kornfeld, W. & Hewitt, C.: The Scientific Community Metaphor; 1IEEE Trans Systems,
Man & Cybernetics, SMC-11,1, pp 24-32, 1981. '

Koo, C. & Wiederhold, G.: A commitment-based communication model for distributed
office environenments; Proceedings Conference on Office Information Systems,

SIGOIS Bulletin, V9, N2&3, pp 291-298, 1988.

Ladriere, J.: Logic and Argumentation; in From Metaphysics to Rhetoric, ed: Michel Meyer,
pp 15-35, Synthese Library, 1989. :

Lenat, D.: Beings: Knowledge as Interacting Exp'e‘rts; Prec. JCALT5, ppl26-133, 1975.

Lucena, C. J. P., Leite, J., Schwabe, D. & Fuks, H.: A Research Agenda on Software
Design; Research Report n® 29/91, Departamento de Informitica, Catholic
University of Rio de Janeiro, March 1991.

Lorenz, K.: On the Criteria for the choice of Rules of Dialogic in Argumentation: Approaches
to Theory Formation; SLCS V8, ed:E.M Barth.&]J.L.Martens;Jchn Benjamins B. V., 1982.

Lowe, D. G.: Co-operative stucturing of information: the representation of reasoning and
debate; International Journal of Man-Machine Studies V23, pp 97-111, 1985.,

Mackenzie, J.: How to stop talking to tortoises; Notre Dame Journal of Formal Logic, V20,
pp 705-717, 1979. ‘

Mackenzie, J.: Why do we number theorems?; Australasian Journal of Philosophy, V58, pp
- 135-149, 1980. : : :

Mackenzie, J.: TheDialectics of Logic; Legiqueet Analyse, V24, pp 159-177, 1981.

Mackenzie,].: Begging the question in dialogue; Australasian Journal of Philosophy, V62,
N2, pp 174-181, 1984.

Mackentie, J.: No Logic before Friday; Synthese, V63, pp 329-341, 1985.

Maibaum, T. S E.: A logic for the Formal Requirements Specification of Real-
Time/Embedded Systems. FOREST internal report, Imperial College, London, 1987.

Pollock, J. P.: The Foundations of Philosophical Semantics, Princenton University Press, 1984.
Rescher, N.: An Axiom System for Deontic Logic, Philscphical Studies V9, pp 24-30, 1958.

Rittel, W and Kunz, W: “Issues as Elements of Information Systems"; Working Paper
131, Center far Planning and Develqyment Research, University o Califarnia, Berkeley, 1970.

Robinson, W. N.: Negotiation Behavior During Multiple Agent Specification: A Need for
Automated Conflict Resolution; CIS-TR-89-13; Dept Computer and Information
Science, Univ of Oregon, 1989.

Sculer, W. & Smith, B. J.: Author’'s Argumentation Assistant (AAA): A Hypertext Based
Authoring Tool for Argumentative Texts; in HYPERTEXT: Concepts Systems and
Applications, (eds.) A. Rizk, N.Streitz and J. André, The Cambridge Series in
Eletronic Publishing, 1990. ' ’

Schneiderman, B.: Multiparty Grammars and Related Features for Defining Interactive
Systems; IEEE Trans Systems, Man & Cybernetics, SMC-12,1, pp 148-154, 1982.

Searle, J. R.: Speech Acts: An Essay in the Philosophy of Language; Cambridge
University Press, 1969.

Searle, J. R:: Expression and Meaning: Studies in the Theory of Speech Acts; Cambridge
University Press, 1979.

Seartle, J. R. & Vanderveken, D.: Foudations of Hlocutionary Logic; Cambridge University
Press, 1987.

-43 -

Sruth. R0 The Contract Net Frotocol: High-Level Communication and Control in 2
Dustributed Problem Solver; IEEE Trans, Compurers, T-290 0, pr 11041113, 1980

Simith, R & Davis, Rt Frameworks for Cooperation in Distributed Problem Solving: [EEE
Trans Svetems, Man & Gyternana, SMC-11.1, pp 61-69, 1981,

Schneiderman, B.: Multiparty Grammars and Related Features for Defining Interactive
Systems: 1EEE Trane Svstems. Man & Cybernetics, SMC-12.1, pp 148-154. 1982,

Toulmin, E. S.: The Uses of Argument, Cambridge University Fress, 1964.

van Eemeren. F. H., Grootendorst, R.: Speech Acts in Argumentative Discussions: A
Theoretical Model for the Analysis of Discussions Directed towards Solving
Conflicts of Opinion; Foris Publications, 1984.

von Wright, G. H.: Deontic Logic, Mind V60, pp 1-15, 1951.

Winograd. T.. A Language/Action Perspective on the Design of Cooperative Work; In
Computer-Supported Cooperative Work: A Book of Readings; ed: 1. Greif, Morgan
Kaurmann Publishers, 1988.

- 44 .

