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Abstract

The Game-Theoretic approach for semantics was created with the purpose of providing meaning to formulae
where the traditional semantics have some drawbacks. Hintikka, however, used this approach to provide an
alternative semantics w.r.t. the traditional one. The nice feature of this semantics is its quam—algorlthmm
specification. This feature has raised some ideas around theorem provers construction.

This report describes a theorem prover based on game-theoretic semantics and shows its soundness.
However, as a conclusion of this work some proof-theoretic reasons are pointed out in order to show the
inherent incompleteness of this kind of theorem provers when they implement fully the symmetry of the
game, that is, the power of proving either the formulae or its negation without submiting each of them (only
the formulae is submited).

Key-Words : Mechanical Theorem Proving, Game-Theoretic Semantics.

Resumo

A abordagem de jogos para dar semantica a linguagens légicas surgiu com o propdsito de atribuir-se
significado a férmulas onde a semantica tradicional ndo é adequada. Hintikka usou esta abordagem como
uma via alternativa de atribuicdo de significado em relagio a tradicional. A caracteristica mais interessante
desta é seu aspecto quasi-algoritmico. Deste aspecto surgiram ideas em torno da construcio de provadores
de teoremas.

Este relatério descreve um provador de teoremas baseado na abordagem citada acima e mostra sua
corretude com respeito a logica classica. Entretanto , com base em consideracdes de teoria da prova,
a incompletude inerente deste tipo de provador, quando a simetria do jogo é mantida, é argumentada.
Entendemos por simetria a capacidade de em um tdnico passo provar-se ou a férmula submetida ou sua
negacao, resultado este dependendo do vencedor do jogo.

Palavras-Chave: Prova automética de teoremas, Semantica de jogos.
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0.1 Introduction

This report has the purpose of documentation of an experiment done by the author, as a member of
the research group of prof. Tarcisio H. Pequeno at PUC/RJ, with the use of game-theoretic semantics for
defining a theorem prover for first order classical logic. This experiment culminates with the implementation
in LISP of a theorem prover based on game-theoretic semantics improved by some strategies [Rio89]. Further
a logic programming environment was implemented using the game-theoretic theorem prover ([Rio89]) as
its inference motor.

Here, for the sake of documentation, it is described the theorem prover and shown its soundness by
means of a translation process to Natural Deduction. It is also given reasons for its incompleteness based on
proof-theoretic arguments. That was the reason for giving up this approach to theorem provers definition.
However, some arising questions produced by this experience gave motivation to a methodology, and further,
a system for Natural Deduction Theorem Provers contruction [Hae90].

In section I the Theorem Prover is described. In section II its soundness is proved. In section III its
incompleteness is commented. However, as this report has only the purpose of documentation, the interested
reader should read also the articles ([HP87], [HP88b], [HP88a]) published during the development of the
theorem prover, which contain more details concerning the intuition behind it.

0.2 The Definition of the Theorem Prover

0.2.1 The High-game ” Agame” (Analytical game)
¢ Base = Knowledge base.
¢ Relev = Set of relevance of a formula with respect to the Base .
¢ Relevdin = Dynamic relevance.
o V-ref = referee of the jogo-Vv.
o A-tef = referee of the jogo-A.
o —-ref = referee of the jogo-—.
o atom-ref = referee of the atomic game.

Formally Base is a set of formulas and Relevdin is a subset of it. The referees are sets of pairs of the
type (A, J), where A is a formula and J is a player of the game. We name the players as Nature and Myself.
The idea is that Nature tries to prove the negation of the formula under game and Myself tries to prove the
formula itself. It may occurs in the game the case where neither Nature nor Myself wins, in this case we say
that a draw occurred. We name adv(J) the opponent of J, where if J =Nature then adv(J) =Myself and
vice-versa.



Functionally Agame has a pair (J,5) as result, where J is the player who won, and § is a substitution
that we had to do in the formula under game such that J would have won. S is a substitution over existential
variables.

We will use the projections 71 and 75 to obtain the first element of a pair and second element respectively.

1. Agame(A,J) = Bgame'(A, Relev(A) — RelevDin, J).
with
Atom —ref = Atom — ref U {f — ree(B,adv(J)) such that B € DD(A)}
Where Relev(A) is the set of relevance of A
with respect to the Base.
2. Agame(—A,J) = Agame(A,adv(J))
3. Agame(A; V Ay, J) = (Winner, 5)

(a) If 7 (Agame(As,J)) = adv(J) and
m1(Agame(mo(Agame( Ay, J)) Az, J)) = adv(J)
then

Winner = adv(J)
S = mo(Agame(mo(Agame( Ay, J)) Az, J)).

(b) If m1(Agame(As, J)) = adv(J) and
71 (Agame(my( Agame(Ag, J)) A1, J)) = adv(J)
then

Winner = adv(J)
S = mo(Agame(ma(Agame(Aq, J)) A1, J)).
with V-ref = V-ref U {f — ree(B,adv(J)) / B € DD(A32)}

(c) If 7 (Agame(Ay,J)) = J then
Winner = J
S = my(Agame(Ay, J)).

(d) If my(Agame(Az,J)) = J then
Winner = J
S = mo(Agame(As, J)).

(e) If nothing above occurs then

Winner = nobody
S = undefined

note : In these cases m3(Agame( Ay, J)) must be the most general substitution in the game (among
all the alternatives of the following move).



4. Agame(Ay A Az, J) = (Winner, S)
(a) If m(Agame(Ay,J)) = J and
71 (Agame(mo(Agame( Ay, J)) Az, J)) = J
then
Winner = J
S = ma(Agame(ma(Agame( Ay, J))Asz, J)).
(b) If w1 (Agame( Az, J)) = J and
T1(Agame(ma(Agame(Ag, J))A1,J)) = J
then
Winner = J
S = my(Agame(my(Agame(Asq, J))A1,J)).
with A-ref = A-ref U {f — ree(B,J) / B € DD(=A4;)}
(c) If m1(Agame(Ay,J)) = adv(J) then
Winner = adv(J)
S = ma(Agame(Ay, J)).
(d) If 7 (Agame(Asg, J)) = adv(J) then
Winner = adv(J)
S = nwo(Agame( Ay, J)).
(e) If nothing above occurs then
Winner = nobody
S = undefined

note : In these cases my(Agame(A;,J)) must also be the most general substitution in the game
(among all the alternatives of the following move).
5. Agame(VzA(z),J) = (Winner, S)
(a) If m1(Agame(A(fz1,...,21),J) = J then
Winner = J
S = mo(Agame( A(fzy,...,zk),J))
Where f is a new functional symbol and the z;’s are all of the free variables occuring in
Ve A(z).
(b) If m (Agame(A(e — z),J) = adv(J) then
Winner = adv(J)
S = ma(Agame(A(e — z),J))
(c) If nothing above occurs then
Winner = nobody
S = undefined



6. Agame(3zA(z),J) = (Winner, S)
(a) If m(Agame(A(e — z),J) = J then
Winner = J
S = my(Agame(Ale —z),J))
(b) If m1(Agame(A(fzy,...,zx),J) = adv(J) then
Winner = adv(J)
S = mo(Agame(A(fz1,...,2k),J))
Where f is a new functional symbol and the z;’s are all of the free variables occuring in
JzA(z).
(c¢) If nothing above occurs then
Winner = nobody
S5 = undefined
7. Agame(A — B,J) = (Winner, )
(a) If 7 (Agame(A,J)) = adv(J) then
Winner = J
S = ma(Agame(A,J)).
With —-ref = —-ref U
(b) If 1 (Agame(A,J)) = J and
m1(Agame(mo(Agame(A, J))B,J)) = adv(J])
then
Winner = adv(J)
S = my(Agame(ro(Agame(A, J))B, J)).
With —-ref = —-ref U
(c) If m(Agame(B,J)) = J then
Winner = J
S = mo(Agame(B, J)).
With —-ref = —-ref U {f — ree(C,J) | C € DD(~A)} and if does not occur in A any
existential variable then Base = {A} U Base

(d) If nothing above occurs then

Winner = nobody
S = undefined

0.2.2 The Low-Game ” Bgame” (Base Game)

Functionally Bgamé’ has an atomic formula and the player who is playing as arguments and a pair
(8,J) as result whose first element of it is the winner and the second one is a substitution over the exis-
tential variables of the atomic formula which is argument of the game. Besides of the arguments that we
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have mentioned there is the set of relevance which represents the subset of the knowledge base where the
predicative symbol present in the atomic formula appears.

Dymanic Relevance. We will see later that it is possible the case of a Low-Game to depend on the
result of a High-Game. So this High-Game must depend on another Low-Game. Well, the set of relevance
of the last Low-Game will have to take into account the fact that one formula of the set of relevance has
already been in context which is the formula of the first Low-Game. So we associate to each Bgame a set
of formulas that has already been used before the current movement of the game. We call this the set of
dynamic relevance (RelevDin). And it will be useful to build the set of relevance when a High-Game calls
a Low-Game.

The reader should note that this set of dynamic relevance must be informed from one movement of the
game to another. Well, as in the case of the movement to be from one High-Game to another High-Game it
is unnecessary to make this information explicit. But, as we have already seen, in the case of a movement
from one High-Game to a Low-Game we must do the information explicit (see item i of the definition of the
High-Game). In the case of a movement from a Low-Game to a Low-Game the information does not change
and no explicity information transmition is necessary. And in the case of a movement from a Low-Game
to a High-Game we let implicit the fact that the relevance of any High-Game from now on will be this last
dynamic relevance informed by the Low-Game to the High-game. So we will use RelevDin to denote the
dynamic relevance before the moving and RelevDin to denote the dynamic relevance after the moving

o Bgame'(A,T,J) = (J',5) , iff there are o € I' such that Bgame(A,a,J,T) = (J', 5).
¢ Where RelevDin for the above Bgame is RelevDin U {a}.

If this is not the case, then Bgame’ will have (nobody, undefined) as result.
The functional character of Bgame is such that :

Bgame(A, a, J, Flag) means that the game is being played with respect to the atomic formula
A, the formula a, the player J and the Flag meaning that the formula « is or not under the
scope of a negation.

The definition of Bgame is such that :

1. Bgame(A, B, J,p) = (5,J) , if and only if S is a substitution over the existential variables of A
and over the variables of B (we assume that variables are not existential variables and vice-versa)

such that SA = §B.
2. Bgame(A,-B, J,p) = Bgame(A, B,adv(J),-p).

3. Bgame(A, By A By, J,p) =
» jogo— A(A, By, By, J,T),iftp="T.
jogo—V(A, By, By, J,F),if p=F.



4. Bgame(A, By V By, J,p) =
jogo—V(A,By,By,J,T),if p="T.
jogo— A(A,By,Bs,J, F),if p=F.
5. Bgame(A,VzB(z),J,p) =
jogo—VY(A,B(z),J,T),if p="T.
jogo— (A, B(z),J, F),if p=F.
6. Bgame(A,3zB(z),J,p) =
jogo— 3(A,B(z),J,T),if p="T.
jogo—V(A, B(z),J, F),if p= F.
7. Bgame(A,B — C,J,p) = jogo— — (A, B,C, J,p),

Remark : In the following we use Sv3 to denote the substitution that replaces all variables by existential

variables. By example,  is replaced by e — 2. We also use two auxiliary functions , namely player and Ny,
defined as following :

o Player(J,T) = adv(J) and Player(J,F)=J
¢ Ng(B,T)= B and Ng¢g(B,F) = -B.
Thus, we have the following definitions for jogo — V,jogo — A, jogo — ¥, jogo — 3 and jogo— — :

1. jogo-V(4, By, By, J,p) = (Winner, S)
(a) If m(Bgame(A, By, J,p)) = J and
refs — in(Syare(Bgame(A, By, J,p))Bs, player(J,p)) = (J, 5")
then
Winner = J
§ = 5" o Syamy(Bgame(A, By, J,p)).
(b) If 7 (Bgame(A, By, J,p)) = J and
Agame(Syare(Bgame(A, By, J,p))Ng(—Ba,p),J) = (J,5")
then
Winner = J
S =80 Syame(Bgame(A, By, J,p))
(c) If mi(Bgame(A, By, J,p)) = J and
refs — in(Syary(Bgame(A, By, J,p)) By, player(J,p)) = (J, S")
then
Winner = J
S = 8o Syame(Bgame(A, By, J, p)).



(d) If 71(Bgame(A, Bz, J,p)) = J and
Agame(Syare(Bgame(A, By, J,p))Ng(—B1,p),J) = (J,5)
then

Winner = J
S = 8§’ 0 Syara(Bgame(A, Bz, J,p))
(e) I m1(Bgame(A, By, J,p)) = adv(J) and
refs — in( Syara(Bgame(A, By, J,p))B2,
player(adv(J),p)) = (adv(J), S")
then
Winner = adv(J)
S = 5" o Syama(Bgame(A, By, J,p))

(f) If 71 (Bgame(A, By, J,p)) = adv(J) and

Agame( SVHWZ(Bgame(A’ Bla J,p))Ng(_'B%p)a
adv(J)) = (adv(J), ")
then
Winner = adv(J)
S = 5" o Syama(Bgame(A, By, J, p))

(g) If 71(Bgame(A, By, J,p)) = adv(J) and
refs —in( Syawa(Bgame(A, By, J,p))Bs,

player(adv(J),p)) = (adv(J), §')

Winner = adv(J)
S = 8" o Syama(Bgame(A, By, J, p)).
(h) If 71(Bgame(A, By, J,p)) = adv(J) and
Agame( Syara(Bgame(A, By, J,p))Ng(=By, p),
adv(J)) = (adv(J), S")

then

then
Winner = adv(J)
S = 5" 0 Syare(Bgame(A, By, J,p))
(i) All the others cases have (nobody, unde fined) as value.
2. jogo— A(A, By, B, J,p) = (Winner, S)
— If Some of the games Bgame(A, B;, J,p)(i=1,2)
has a winner
then
(Winner, S) = Bgame(A, B, J,p), where
this game is the one
which has winner.



3. jogo—V(A, B(z),J,p) = Bgame(A, B(z),J,p)

. jogo — 3(A, B(z),J,p) = Bgame(A, B(fy1,-..,Yn),J,p), where f is a new functional symbol in
the game and the y;’s are all of the free variables occuring in B(z) not taking into account
itself.

. jogo— — (A, B,C, J,p) = (Winner, S)

If p=1T then

Ta If 7y(Bgame(A,C,J,T)) = J and
Agame(ny(Bgame(A,C,J,T))SvaB,J) = (J,57)
then

Winner = J
S = 5" 0 Syama(Bgame(A4,C,J,T)).

Tb If m1(Bgame(A,C,J,T)) = adv(J) and
Agame(na(Bgame(A,C,J,T))SvaB, adv(J)) = (adv(J), 5")
then

Winner = adv(J)
S = 50 Syama(Bgame(A,C,J,T))

Tc If mi(Bgame(A, B, adv(J), F)) = adv(J) and
Agame(mo( Bgame(A, B,adv(J), F))SvaC,adv(J)) = (J,5)
then

Winner = adv(J)
S = 5" o0 Syama(Bgame(A, B, adv(J), F))

Td If my(Bgame(A, B,adv(J), F)) = J and
Agame(my(Bgame(A, B,adv(J), F))SvaC, J)) = (adv(J), ")
then

Winner = J
S = 5" 0 Syara(Bgame(A, B,adv(J), F))

Te If m1(Bgame(A,C,J,T))=J and
refs — in(wa(Bgame(A,C,J,T))SvaB, J) = (J,57)
then

Winner = J
S = 8" 0 Syama(Bgame(A,C,J,T)).

Tf If 71(Bgame(A,C,J,T)) = adv(J) and
refs — in(wo(Bgame(A,C,J,T))SvaB, adv(J)) = (adv(J), 5')
then

Winner = adv(J)
S = §' o Syame(Bgame(A,C,J,T)).



Tg If 7y (Bgame(A4, B,adv(J), F)) = adv(J) and
refs — in(ma(Bgame(A, B, adv(J), F))SyaC, adv(J)) = (J, ")
then
Winner = adv(J)
S = 5’ o Syara(Bgame(A, B,adv(J), F)).
Th If 7y(Bgame(A, B,adv(J), F))=J and
refs — in(wo(Bgame(A, B, adv(J), F))SvaC, J) = (adv(J), S")
then
Winner = J
S = 5’0 Syare(Bgame(A, B, adv(J), F)).

Ifp=F then

Fa If Bgame(A,C,J, F) has winner
then
(Winner, S) = Bgame(A,C, J, F).
Fb If Bgame(A, B,J,T) has winner
then
(Winner,S) = Bgame(A, B, J,T).

0.2.3 The referees

This theorem prover is based on the one proposed by Jackson [Jac87] (at least in propositional logic).
However the game proposed by Jackson has in some cases ended up in loop. The reason is that in these
cases we have an inference of a part of the formula, based on another part of it. The typical case is when
we need a proof of —=A to prove B. Well if our goal is to prove AV B then with these facts we have already
proved it. The function of the referees in the game is to detect these cases giving to the game the right
winner. The function Refs—in consults the A-ref, the V-ref, the —-ref and the atom-ref intending to detect
the cases mentioned. It receives the formula and the player that will play the movement in the context
of the Agame and verifies its (of the pair (formula, player)) presence in some of the referees. We use the
function f — ree in order to give conditions to the testing below. This function only avoid negative literals
in the referee structure, by putting the positive ones and replacing the associated player for his opponent.

So:
(A4,J) if A is a positive literal

f—ree(4,J) = { (B,adv(J)) if A=-B

In the following we use A € I' to denote the testing whether some instantiation of A (a formula) belongs to
I' (a set of formulae).
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Refs—in(A,J) = (J',5")

If ((A,J) € V-ref) or
((A,J) € A-ref) or
((A,J) €—-ref) or
((A,J) € atom-ref)

then
J' = adv(J)
5’ is such that 5’A belongs to
some of the referees.

General Remarks :

o The reader should be careful with the definitions because they are indeterministic, i.e., more than one
rule may occurs but if the results are different then the knowledge base must be inconsistent.

o Another thing to observe. About the test of membership which the referees do, we should remenber
that ,in all referees, (V-ref, atom-ref, etc) we have formulas representing DD’s and therefore this test
isn’t an equality test, but rather an instantiation test (look into the definiton of DD below just in the
cases of quantified formulas).

0.2.4 The Deductive Determinant DD
This notion was defined firstly in [Hae87] and is recursively defined as :
e DD(A)={A}if Ais a literal.
e DD(A — B) = DD(B).
¢ DD(AV B) = DD(A)U DD(B).
DD(AA B) = DD(A)x DD(B).
DD(--A) = DD(A).
e DD(~(AV B)) = DD(=A)x DD(=B).
DD(~(A A B)) = DD(=A) U DD(~B).
DD(-(A — B))= DD(A) % DD(~B).
e DD(VzA(z)) = {A(y) / y is a variable of the language }.
e DD(JzA(z)) = {A(¢) / t is a term of the language }.
Where {A1,...,Ag} *{B1,...,Bn} ={A1 AB1,A; A By,..., A A By, }.
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0.3 The Soundness of the Theorem Prover

In this section we show the relationship between the theorem prover and the system of Natural Deduction
(N.D.) due to Prawitz [Pra65]. The relationship is total, i.e., for each theorem proved by the theorem prover
we can build up a deduction in N.D. Indeed the building process is a translation one. Thus we show the
soundness of the theorem prover by means of that relationship, for the soundness of N.D. is a well-known
result. This relationship was used in [HP88a].

We will not stress all the items of the game definition, for there is a lot of analogy in the treatment to
be shown here. However, the detailed translation process, from game into N.D., can be found in [Nun88],
where is described a formalization of it in the language PROLOG.

As it can be noted, the game works out by looking at the main connective of the formula, for each move
is determined by that connective. Natural Deduction works out likewise, the only difference being that in it
we work towards the formula we want to show, while in games we work from it. Smullyan [Smu68] showed
this is only a viewpoint matter when he relates tableaux to Sequent Calculus proofs by seeing the former
bottom-up. Here we use a version of this method in order to show a translation from games into Natural
Deduction.

In a rule of the Agame there can be seen two kinds of items : those that define as winner the same player
that began the game and those that define as winner its opponent. We call them direct and indirect items
respectively.

In a rule of the Bgame we also have two different kinds of items : those which have the negation flag
(last parameter of Bgame) true and those which have it false, informing that there is no negation over the
basis formula (second parameter of Bgame) and there is a negation over it respectively. We call the first
ones direct items, while the other are called indirect items.

Note that the direct items of an Agame are different in essence of the respective ones of the Bgame.
We can associate each direct item of each Agame case to the N.D.’s introduction rule over the respective
connective. So, for example :

Agame(AN B,J) = (J,5)iff Agame(A,J) = (J,51) and Agame(51B,J) = (J,5)
is associated with ,
SA SB
S(ANAB)
,and
Agame(AV B,J) = (J,5) iff Agame(A,J)=(J,5) or Agame(B,J) = (J,5)
is associated with,
SA SB
SAVSB SAV SB

12



, respectively.
In a similar manner we can associate the Bgame’s direct rules to N.D. elimination rules. So, for example

Bgame(A,BAC,J,T) = (J,5)iff Bgame(A,B,J,T) = (J,5) or Bgame(A,C,J,T) = (J,5).

is associated with the A-elimination rule. However, this association is not as straightforward as the first
one. If it were the case of Bgame(A,A A B,J,T) = (J,0) where (§ is the empty substitution then the
association would be straightforward. But, looking from a global viewpoint, we note that this association
is not directly related to the atomic formula in the Bgame context (A), rather to a lower degree formula
which is associated to another one and so on until a direct association to A is found as an elimination rule
of Natural Deduction.

5o, by associating the new constants/functions of the Bgame over the 3, as well as the ones passed by
the Agame over the V, to parameters in Natural Deduction proofs, we complete the association for direct
rules. So, for example :

Agame(VzA(z),J) = (J,S) iff Agame(A(c),J) = (J,5)

is associated to the V-introduction rule, since ¢ ,being a new constant, cannot be replaced by any term
(remind that it is not affected by §), i.e., it can be viewed as a formal parameter which does not occur in
any formula that participates in Agame(A(c),J). Moreover, note that if there are free variables occuring
in Vz A(z) then a functional symbol, with arity equals to the numbers of those free variables and depending
on then, is need in order to ensure that the parameter which will be replaced by it does not occur in any
assumption after the translation. Remember that the free variables occuring in the term formed by the
new functional symbol will be replaced during the game sequel. This treatment of paramenters related to
skolemization is found in [Sch84].
In the same way :

Bgame(A,3zB(z,y1,...,yn),J,T) = (J,5) iff Bgame(A, B(fy1,...,¥n), S, T) = (J,5)

is associated with the 3-elimination rule, for the new constant (functional) symbol ¢ (f) can be viewed as its
proper parameter. In the case of the functional symbol, we take the term S fyi,..., ¥y, as playing the role
of the proper parameter. There is a problem with that association when the new constant ¢ ,or the whole
term fy1,..., s, replaces an existencial variable of the Agame, hence it may occur in the minor premiss of
the J-elimination. The solution to this problem is discussed in section 2.1.

So the association shown above is such that each direct rule of Agame is associated with the N.D.
introduction rule over the same connective, and the direct rules of Bgame are associated with the elimination
rules.

Now we see what happens when the referees are included in the game. These cases are viewed as a case
of application of a classical axiom and a V-elimination rule and a deduction built up by using the deductive
determinant property [Hae87]. The final result of the association to N.D. in this case is as follows :
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Agame(AV B,J) = (J,9), for Agame(A,J) = (J,S5) and the game used a consultation to the V-referee
about §, where § is a deductive determinant of B. So, the translation is :

[‘ié] [‘|5]
sus 54 SB
VO SAVE)  S(AVB)
S(Av B)

Where the deduction of S A from § is the result of the translation into natural deduction of Agame(A,J) =
(J,8), and the deduction of SB from § is obtained by means of a procedure that builds a deduction of
a formula from any of its deductive determinants which can be found in [Hae87]. The other referees have
similar treatment. It is interesting to point out that even the case of the direct rule over the — in the Agame
context has as associated natural deduction the —-introduction rule, for we add to the Base the antecedent
of the implication, so we can discharge its (possible) use.

With regard to the negation, we do not associate it to Natural Deduction rules directly. The reason of
this is that the game definition does not implement the negation directly, rather by defining how a negated
conjunction, a negated disjunction and so on can be deduced. The same happens w.r.t. the Bgame indirect
rules, which defines how to deduce from each part of a negated conjuntion, a negated disjunction and so on.
Therefore the indirect rules are associated to a derived rule to the negation of each connective, and to the
derived rules that say how to eliminate a connective which is within the scope of a negation. For example :

~SA -SB
—~S(AV B)

and
=S(AV B) -S(AV B)

-S4 ’ -S$B

are respectively the N.D. (modified) rules associated with :

o Agame(AV B, J) = (opn(J), S) when Agame(A,J) = (opn(J), 51) and Agame(S$1B,J) = (opn(J), §),
and ;

e Bgame(A,BV C,J,F) = (J',5) when either Agame(A,B,J,F) = (J',5) or Agame(A,C,J,F) =
(J',8) (J’ is any player).

In the sequel we present the whole translation process and prove its correctness.
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0.3.1 The Translation

In order to attain the translation into N.D. from a game G we join in a whole deduction the N.D. represention
of each rule used by G, according the sequel given by G itself. Thus, making this connection recursively we
note that the basic step is just the rule Bgame(A, A’,J, f) = (J,5) when the translation is SA (A and A’
atomic). We Split the translation into two partial translations, one responsible for Bgame translations and
another for Agame translations. We call them TradA and T'radB respectively. Since the game is defined
by a simultaneous recursion between Agame and Bgame, the total translation must also be.

So we have the following desired results about the translation, that prove its correctness :

Lemma 0.3.1 . Let Bgame(A, B, J, f)=(J',5) be a game that does not call any instance of Agame. Then

o IfJ'=J and f =T then TradB(Bgame(A, B, J, f)) is a deduction of SA from SB (only).
o IfJ/ =J and f = F then TradB(Bgame(A, B, J, f)) is a deduction of SA from -~SB (only).
o If J' = opn(J) and f =T then TradB(Bgame(A, B, J, f)) is a deduction of =S A from SB.
o If J' = opn(J) and f = F then TradB(Bgame(A, B, J, f)) is a deduction of ~SA from ~SB.

The proof proceeds by a simple induction over the degree of B.

Proposition 0.3.1 Let a be a formula and Base = I a set of formulas. Assume that the utterance
of lemma 2.1 holds for all Bgame calls in Agame(a,J). Then :

o If Agame(a,J) = (J,5) then TradA(Agame(a,J)) is a deduction of Se from T.
o If Agame(a,J) = (opn(J), S) then TradA(Agame(a,J)) is a deduction of ~a from T'.

Proof. By induction on the degree of a.. The assumption done in the hypothesis of the proposition guarantees
the basic step. The inductive step for each case of the game is done by using the corresponding rule or
derived rule (to the negation) in order to construct the desired deduction from the previously contructed ,
by the induction process, subderivations (deductions of the premisses).

Now we use proposition 2.1 and lemma 2.1 in order to prove the desired result used as a hypothesis in
the proposition itself (in terms of Agame calls instead of Bgame calls).

Theorem 0.3.1 Let Base = T' be a set of formulas and A be an atomic formula. Let Agame(A,J) =
Bgame(A, B, J,T) for some B € T' be a game which has (J',S) as its result. Then :

o If J' = J then TradA(Agame(A,J)) = TradB(A, B,J,T) is a deduction of SA fromT.
o If J' = opn(J) then TradA(Agame(A,J)) = TradB(A, B,J,T) is a deduction of ~SA from T.
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Proof. By induction on the number of calls to Agame from Bgame. The basic step is lemma 2.1. If there is
a call to one instance of a Agame, then : If it is not an atomic instance (instance over an atomic formula), it
surely calls atomic instances. Well , these instances have a lower value of induction, hence their translations
by TradA are of the required type,i.e, we can apply the induction hypothesis. Thus, we use proposition I
and get the desired conclusion. It is clear that may happen a consultation to a referee, so in this case we
use the schema shown in the first section. ‘

Now by using proposition 2.1 again and theorem 2.2 we get the desired result :

Theorem 0.3.2 Let a be a formula and Base = T' a set of formulas, then :
o If J' = J then TradA(Agame(a, J)) is a deduction of Sa from T'.
o If J' = opn(J) then TradA(Agame(e, J)) is a deduction of —~a from T.

0.3.2 The permutations on the 3-elimination

The process of translation done by the pair of functions (TradA and TradB) are straightforward, since
they perform a simple mutual recursion and they build the corresponding tree derivation by using the rules
and derived rules to the negation. The only care we have to take is to permute the existential elimination
until it obeys the restriction over its proper parameters, what must happen when we get the existential
introduction that eliminates the proper parameter. This is the only case when we cannot use the simple
way of construction, that is, to connect translated premisses by using a rule and getting the translated
conclusion. Moreover we should argue that these permutations are always possible and result in correct
N.D. derivations. '

The permutation are of the following form for rules with one premiss (the general case has a similar
treatment): ‘

- [Pb] [PD]
3 113 H] H2
C > dyPy D
D D
H3 H3
« (87

where b, or the functional symbol introduced by the corresponding rule of Bgame that occurs in b, still
occurs in D.

It is clear that there is some place in I3 where a 3 is introduced and the permutations are not need
any more. After all the permutations are already done we replace the b by a proper (new) parameter of
the J-elimination rule. However, we must ensure that all the V introductions were well done, i.e., they
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obey the restriction on the V-introduction. In other words we must assure that in the following result of a
permutation:
[Pb]
IT,
I, Aa
dyPy VzAz
Ve Az
15
a

a does not occur in Pb. But we have the following facts :

e In order to a occur in Pb, it (a) must be the result of an instantiation from an V-Elimination rule in
II;. Thus, 3y Py has free variables.

e But, in that case, because of the theorem prover evaluation, b is a term built with a new functional
symbol and b depends on the variable eliminated by the mentioned V-Elimination (call it 2).

o Aa still contains b, for otherwise this permutation would not be need any more.

o Thus there is an J-Introduction over a variable w with regard to b below the showed V-Introduction.
Thus there is a free variable (call it w) occuring in VrAz.

o Thus, because of the theorem prover evaluation, a is a functional term built up with a new functional
symbol depending on w (possibly among other variables).

o In II; there is an atomic formula which contains ¢ and b, for both occur in Aa and Pb. Call that
atomic formula a.

o Let o = @14,...,%,. Because of the theorem prover evaluation, « is the result of the unification of
an atomic formula Q#],...,#, and @t”1,...,t”,. Where for some i and j, ¢} contains b(...,z,...) and
t”; contains a(...,w,...). Moreover, z is replaced by a(...,w,...) and w is replaced by b(...,z,...).
However this is impossible.

Thus, a does not occur in Pb and we can replace all the terms with new functional symbols by proper
parameters, in order to obtain a correct N.D. proof.

0.3.3 The Soundeness

An immediate consequence of Theorem 2.2 is :

Corollary 0.3.1 . The game procedure is sound.
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0.4 On the incompleteness

It has already said that the theorem prover is incomplete. Indeed, its incompleteness might be seen as
inherent to the proof method, namely the game.

As the reader must have noted, the theorem prover carries out its procedure by analysing the formula
into its atomic components and then analysing also the formulae of the knowledge base into its atomic
components. After that an unification algorithm is used to check the relation between pairs of atomic
components (one obtained from the formula (goal) analysis and the other obtained from the knowledge-base
formula analysis). From the process of translation one can note that the theorem prover (or proof method)
search for proofs which have an elimination part (E-part) (possibly empty) immediately followed by an
introdcution part (I-part). The I-part has only introduction rules and terminates with either the formula
wanted to be proved or some minor premiss of the —-Elimination. The E-part begins from some formula
of the knowledge-base. The reader familiar with proof-theory must have noted that the theorem prover is
nothing but a searcher for normal proofs.

Based on the discussed in the above paragraph it can clearly be seen the cause of the incompleteness of
the method. That is :

1. The method searchs for normal proofs.
2. It replaces the classical absurdity rule by the rule of double negation (-—A4  A).

3. There is no Normal Form Theorem for the system with this replacement. ([Pra65]).

Thus, it may be the case to propose to the theorem prover a valid formula which does not have normal
proof, obtaining a wrong answer (Failure or LOOP 1).

One may also have noted that the use of the double negation plays an essencial role in the game definition.
In order to be called a game, the rules must be simetric, i.e., the players can swap places and goals and this
change will only affect the name of the winner. Thus, the game-theoretic semantics approach to theorem
provers construction does not seem to be as good as it seemed at first sight.

Well, one may think that the problem is with the classical logic. But if a simpler logic as the minimal
logic ([Pra65]) is focused a new problem arises , since the game is based on the simetrical role played by the
opponents. There is no possibility of elimination of the V within the scope of an odd number of negations
(the particular case of only one negation gives enough problems). Thus, any formula of the above kind
should be regarded as a non-analisable on. The only thing to do is to check for unification with other
formula of the same kind, as it is done with atomic formulas. But, this solution does not seem to agreed
with the basic idea of game-theoretic semantics, according to which the mentioned kind of formulas should
be considered as having a primitive semantics.

Thus, based on the reported experience one had to conclude that the nice features of the game-theoretic
semantics, mainly its way to define the semantics of the negation not merely as a metalevel negation, are so
atractive to theorem provers construction as non-computational. This should not be surprising, since the
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game-theoretic semantics for atomic formulas is (originately) given within the framework of structures for
the first-order languages and supposes a model (possibly infinite or even non-denumerable).
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