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Abstract

The aim of this work is to provide a denotational semantics for
an arbitrary level A-Calculus, i.e., a typed A-Calculus which has rules
as types. This system is shown to be Curry-Howard isomorphic to a
Natural Deduction system, where not only assumptions, but rules, can
be discharged.
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Resumo

Este trabalho apresenta uma semantica denotacional para um M-

Calculus de nivel arbitrario onde pode-se ter regras como tipos. Pode-

se mostrar que este A-Calculus é Curry-Howard isomérfico a um sis-
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Abstract

The aim of this work is to provide a denotational semantics for
an arbitrary level A-Calculus, i.e., a typed A-Calculus which has rules
as types. This system is shown to be Curry-Howard isomorphic to a
Natural Deduction system, where not only assumptions, but rules, can

be discharged.

1 Introduction

A natural extension of Natural Deduction (N.D.) was introduced by Schroeder-
Heister ([2]) where not only formulae but also rules could be used as hy-
pothesis. This fact immediately allowed for the possibility of rules of ar-
bitrary levels that could discharge not only assumption-formulae but also
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assumption-rules. This extension of N.D. was used in the definition of ab-
stract introduction and elimination schemes for which the set of intuition-
istic sentential operators {1, —,A,V} was shown to be complete, i.e., for
any sentential operator & if the introduction and elimination rules for @ are
instances of the abstract schemes then, there is an intuitionistic formula F
constructed out of the intuitionistic sentential operators and the sentential
variables occurring in ®(A;,...,A,) such that Frie ®(A1,...,4,) < F. It
was also possible to define an abstract reduction and under certain conditions
to obtain abstract normalization and strong normalization results.

The aim of the present paper is to define a typed A-Calculus which
has types of arbitrary levels (formula-as-types and rule-as-types) and to
provide it with an abstract denotational semantics. We shall also show that
this typed A-Calculus is Curry-Howard isomorphic to Schroeder-Heister’s
abstract N.D.

In section 2 we describe the syntax of the typed A-Calculus of arbitrary
levels. In section 3 we introduce the abstract denotational model for the
system. In section 4 we show the semantic adequacy of the reduction rules.
Finally, in section 5, we show the Curry-Howard isomorphism.

2 The System Ap

The calculus is defined in the usual way by the presentation of Type con-
struction, Term construction and Reduction rules.

2.1 Types

1. Ay, B1,Cy, ..., Apn, By, Cy, ... are types of level 0.

2. I X4, ..., X,, are types of level 0 and ® is a type constructor
then ®(Xy,...,X,) is a type of level 0 too. .

3. HTy,...,T, are types ,B is a type of level 0,and 7 is the greatest
level among them, then TlT yo.-,T1/B is a type of level n + 1 .
Here T't denotes the string obtained from T throught the replace-
ment of replacing all the occurences of / for — and of — for /
simultaneously.

Examples :



) A/B is a type of level 1.
o A— B,D/C is a type of level 2.
e (A/B,D)— C/E is a type of level 3.

Obs: Note that the parenteses are needed in order to correctly present
the hierarchy of the type formation. They were not include in the definition
of the types for the sake of clarity.

We also define two auxiliary functions p; and p; from Types into 27ypes.

In addition to the definition of terms, we have a notational function
which retrives some of the elements of a term. Thus :

e p1(B) =0 if B is of level 0.
o po(B) = {B} if B is of level 0.
o po(T},...,T}/B) = {B}

o pi(Tf, ..., T/ B) = po(T3) U...U po(T:)

2.2 Contexts

The concept of context plays the same role, in A-Calculus , as the set of
hypothesis (not yet discharged) on which the conclusion of a deduction de-
pends, in Natural Deduction. Thus, if T1,...,T, are types and z1,...,Z,
are variables then a context is a sequence (sometimes viewed as a set) of the
form :

AR EH RN I PR A

We will use the capital greek letters A, © and T to denote contexts.

2.3 Patterns

The concept of pattern serves to denote, syntactically, a rule which may be
used in the construction of terms which represent a deduction having this
rule occurring (as an assumed rule). It is worth noting that even when a
rule is used as a hypothesis we should take it as being applied to its premises
resulting in a deduction of its conclusion. However, as an individual object,



a rule depends only on itself. Thus, a pattern is of the form z[z : T] : T
where, z is a variable and

T is a type of any level. Note that a pattern of level 0 is nothing but a for-
mula assumption. So, we regard a pattern, in general, as a rule assumption.
However, for the purpose of simplicity in the following definitions, we shall
consider separately assumption rule from assumption formulae considering
as patterns only the former.

2.4 Terms

Let us assume that we have the following rule in N.D. style:

H},.,l.,ﬂfl H,{,..|.,H,J;n
Gy Gn
A

We can relate each hypothesis H;? either to a term z : H}?[z : H{*] or to
a pattern of the corresponding type. Thus, the term related to the deduction
of the corresponding G, has free occurences of z. The term corresponding
to the deduction of A must then have z as a bound variable, since the type
corresponding to z is discharged by the application of the rule. Well, we
may think of a more computational kind of rule, where the mechanism of
discharging is applied only to the deduction of the appropriated premisse.
Thus, our A-Calculus should take into account that the binding of a variable
in a term which is formed by an application of the ”rule” is only related
to the term representing the deduction of the corresponding premisse. This
selective way of binding variables is then represented by a list (or lists) of
variables where each member of the list is related, in the correspondent
ordering, to the term where this variables is are going to be bound.

1. z: X[z : X] is a term for any type X of level 0 and any variable
z. Thus, note that a pattern, of level 0, is a term.

2. If ty : T1[@1], . .., tn : Tn[O,] are terms and z is a pattern of type
Ty,...,Tx/X, then :

[fl I I fn] < Zytryeenyly > X[(E : Tf‘,...,T:/X,(‘_‘)l—[fl],...,en-—[

is a term where, Z; is a list of variables whose types are in p(T}).

—

Tn

I



We<an now represent the introduction and elimination rules of N.D. for
an arbitrary constant @ in our A-Calculus as following.

Let @ be a constant which has n introduction schemas each of them
similar to the rule shown at the beginning of this subsection. Its n schemas
are, each of them , represented by the following terms of Ag-abstraction.

If 2% : T/ and ti(e}) : G4[T'%] are terms (0 < j < p;) then
Aglzi,...,zi )(8h, ..., 1) ®(Fy, ..., Fp)[TS,..., %]
is a term.

Related to these n introduction schemas we have the following elimina-
tion schema.

Let
1L gi=[y :Ti"l,...,Tf,ml/Gi,- v-,yf,i ZT;,-,la--pr.-,m;‘,‘/G;,-]
2. v A[A]]
3. v:9(T,...,Tn)[A]
Then
Appe[¥is -y Un) < U V1., Vn > A[A A — F]
is a term.

Fact 1 It is worth notice that by the way we construct our terms for repre-
senting introduction and elimination rules, we have a relationship between
them such that:

For each variable of type rule R in a term resulted from an ap-
plication of a ®-Introduction , we have that any application of
the ®-Elimination has, as a subterm, the associated term repre-
senting a deduction of p2(R) (its conclusion) from p1(R), among
others. We may note that the other way around also holds.

This fact plays a central role in the reduction rules shown below.

2.5 Reduction Rules

A term is a redex if it has one of the following forms:



Appaldi, ..o ¥n) < Malei,. . 2n (.0 8,), 01,y 00 >0 A[T]

Apps[A] < Appw[O] < t1,..., 1tk >,v1,...,0, > A[T]

The first one is called operational redex, while the other one is called struc-
tural redex and plays the role of permutative reductions in N.D. systems (cf.
[1]).

Before we define reduction rules for these redex, we will have a brief look
at what happens in N.D. In this case we must consider which introduction
rule the Ag operator represent. For the sake of clarity we will write down the
reduction rule with Ag representing the first introduction rule for ® (with
the relation to the ordering of the minor premises in the elimination rule).
Thus, if A; is the context:

a1+ (OG- 524, (0),)1/G,

which is obviously the result of the } operator when applied to the cor-
responding configuration for the first ® introduction rule. Remember the
relationship between the elimination and introduction rules. According to
this relationship we must have that in the first ® introduction rule, the set
of types discharged (variables bounded to the new term) is ©} for the first
premisse, O} for the second and so on. Let’s consider then the following
redex (associated to this first introduction rule).

Appg[0 | Ar|...| Anl(Ag[0 | ... 01, .., t), by, .., dn) : AT

Consider the process of filling all z; (of type (©})!/G}) with the term ¢ (of
type G} and context 9}), then the reduction of the above redex is the result
of appliyng this process of filling (which is a generalization of substitution)
to di. We shall now detail this filling process of variables (representing rules)
for terms (representing the associated deductions).

To replace (fill) a variable o of type ©1/G by a term u of type G and
context ©,T in a term #(< z,dy,...,d, >) (here we explicitly show the
occurence of ) is equivalent, in N.D., to replace a derived rule by the



deduction that justifies it. Let II be the following derivation:

Hl Hn
H O H,
a
z
B
Given a deduction II*:
H...H,
H*
o

We can replace the application of the derived rule:

H,.. H,
«x

by II*, obtaining in this way the following derivation:

Hl Hn
Hl o Hn
II*

o
by
g

In the mechanism of A-Calculus the process of substitution discussed
above can be expressed in the following, way. Given that:

1.
(< z,dq,...,d, >): B[T]

2. z:0/G with © =z, P /Hy, ..z, By Hy,
3.

w1, ..., 8q) : Gley : Fy/Hy, .. @n : Fp/Hy, T
‘We can obtain a new term
t(u(dy,...,dy)) : B[Y,T]

the replacing of 2 by the term .. ..



It is clear by the construction of the calculus that a variable of the type
of a rule, if it occurs in a term, then it must occur in the context of an
application of a rule. within the scope of an Application. The case which
has the variable as not being of a type of a rule is treated as an usual
substitution.

The reader can think of what happens if some of the z; is of type of a
rule in the example above when we are treating the case of introductions
and eliminations. In this case, if z;, for some j, is of type of rule, it must be
of type At/ H; where A is the context of d;, in the elimination rule, which in
turn is of type H;. Thus, in this case the process of substitution continues
until all the variables that occurs in similar contexts are replaced by the
corresponding terms. We will denote by ¢+ the result of this process. Thus,
the contractum of an operational redex is :

vi(< y},u;'-,l, . ..,u;,mj > (t;)+) : A[T

also denoted by: ' '
wlyh — (£)4): AlT,
for the sake of clarity.
The contractum of an structural redex

Appa[A] < Appe([O] < t,...,tk >,v1,..., 0, >: A[T]
is as following:

App‘l’ [G](tl, Appd’[A](tQa U2y .-, ’U,n), reey APP@[A](tk, U2y. 00, un))

We use the symbol > to denote that ¢ reduces ¢’ in one step and >*
denotes the transitive-reflexive closure of .

We show below a short example of a reduction for the case where z; is of
type of rule in N.D. in our calculus. Consider the following deduction which
has ®(F') as a maximal formula.

1L, (4]
A IIs
51 B
I, g
c 1,
o(F) D
D



1. M = {Mr 7T is a type}.

2. * is a mapping that assigns to each term
t: Tz Th,. oy 20 Ty

a mapping t*
Mr, X ...X My, — Mr

3. z:T[z:T)*(c) =c€ Mr.
4

Appslvi, ..., ¥n] < Ag[zi,.. .,‘x;i](ti,...,t;i),vl,...,'un >: Al (e1y-vvvem) =

vi(e1s o Cm, < Y5, Uy, ..,u},m]. > ((#))F (er- - - 6m))

Its clear that not all abstract model structures preserve the denotation
under the substitution. The following notion of canonical model defines
what this preservation of denotations means.

Definition 3.2 A Canonical Model of A\r is an abstract model structure
that satisfies the following substitution condition:
Let :
Ha: T},...,TY/T): T[T

,and

$:Tlyr :Thy. o yyn s Ty

be terms such that t and s satisfy the variable condition. Then :
t(z — s)*(cry. . oren) = t*(C1ye ooy Cny (8%)F(1y o oy m))

The variable condition is nothing but a condition that assures that the
filling process .* can be carried out. Note that this condition is always
satified when we perform the filling process as a substep of the reduction
step described in the previous subsection. It is a conseguence of the fact
stated at the second section.

The following Lemma justify the notion of canonical model. Its proof is
a direct consequence of the definitions and the satisfaction of the variable
condition

10



It reduces to

In Ag the reduction is shown as following.
As[z]u([] < z,t >) : ®(F)[]
represents I, where ¢ represents II;
t'(y) : Bly : A]

represents Il3
v([y] < 2,1'(y) >) : D[z: A — B/C]

represents I14. Thus,

Appal2] < Ag[z]u([] < z,t >),v([y] < z,#'(y) >) >: D[] b>*

v(z — u(z — t'(y — 1))

3 The Denotational Semantics

The denotational semantics for the system Agr follows the usual structure
of denotational semantics for typed A-Calculi. We shall define the func-
tion [[.]] which takes each type and each term into their denotations. Qur
model is a syntactical one, i.e., the denotation of a type is the set of normal
terms which have itself as type. Thus, in this way, we a have a straightfor-
ward preservation of denotation under our concept of filling” variables with
terms. Before we describe the Term model we define the abstract notion of
a model for a typed A-Calculus.

Definition 3.1 An abstract model structure is a pair < M,* > such that:



Lemma 3.1 Let < M,* > be a canonical model for Ag. Then, for any t,t'
in Ap, if t D>t then t* = ™.

We now introduce our Term Model. We define a function [[.]] that assigns
to each term t : T[I'] the set of terms to which it reduces.

[t : T = {2 ¢ " ¢}
The canonical term model M = < M, * > is defined as:
o Mr = {[[t]]/t: T} for T of level 0.
o Mp= {t/t‘ T2y i Ty ey Ty]} for T =T, ..., TH/T.
o Let ¢; € Mr,. Then,

(t : T[xl :Tlv <9 &n :TN])*(CI,' -',cn) = [[t[zi A C:'-] T]]

4 The categorical semantics for \p

Types will be interpreted as objects in a category while terms will be
interpreted as morphisms.

4.1 Auxiliary Results

In this subsection, for the sake of notation and technical background,
we touch the categorical theoretic notions used in this work as well
prove some auxiliary results, namely Lemma I and Lemma II. What
follows should hold in a cartesian closed category with finite co-products.
For any pair of morfisms g : A — C and f : B — C we use the
notation [g, f] to denote the (unique) morfism from the object A + B
into C with the co-product property, that is :

l9,floia=g

and

[g,f]oiB:f

11



For any objects A, B and C, and the exponential B4 we have the exis-
tence of a natural isomorfism from Hom(C x A, B) into Hom(C, By)
which we will be denoted by g, that is, forany ¢ : C X A — B we
have §: C — B#, such-that

evo< g, ly>=g

where ev is the evaluator morfism for the exponential B4.

In the sequel we state and prove two results which will be very use-
ful when proving the adequacy of the semantics defined in the next
subsection.

Lemma I. Let C be a cartesian closed category with finite co-products,
f:EF— A ga:AXC — Fand gg: Bx D — F be C-morfims.
Let also dist be the morfism :

———

< [iAx(CxD)yin/(C\xD)]aIOXD >

from (4 + B) x (C x D) into (4 x (C x D))+ (B x (C x D))(€xD)
and ev be the evaluator morfism of the exponential (A X (C x D)) +
(B x (C x D))©*D), Then :

E x (Cx D)

<ig0 f,Icxp >
v

(A+ B) x (C x D)

ev o dist

(AX(Cx D))+ (B x(Cx D))

[gac < I4,mo >,gBo < Ip,7p >]

12



is equal to the morfism

Ex(C x D) <18 A x C 22

Proof. we first note, that, by the definition of co-product :
A x (C x D) 42ex2> (4 4 BY % (C x D)

< [iax(cxD)siBx(cxD))s loxD >

(A x (C x D))+ (B x (C x D)))(¢xD) x (C x D)
is the same as :

Ax(CxD) SACxRYIExD> (43 (Cx DY) +(BX(Cx D)) C*P)x(CxD)

and hence, by the definition of exponential we have:

Ax (C x D) <4xex2y1ex0> (4 o (¢ x D)) + (B x (C x D)))C*D) x (C x D)
€ev

(AX(Cx D))+ (Bx(CxD))

equals to i(4x(Bx0))-
The reader should also note that

<ig0 f,lexp >=< g0 f,Icxpolcxp >

13



Thus :
E x (Cx D)

<igo f,Icxp >
y

(A+ B) x(C x D)

ev o dist

(Ax(Cx D))+ (Bx(Cx D))

) [ng < IA’TFC >,9B0 < IBaﬂ'D >]

F
is the same as
iax(cxD)°o<filcx
E x (C x D) **° DgfcD>(A><(C><D))+(B><(C><D))

[g40 < In,7c >,gpo < Ip,mp >]

F

which, in turn, is the same as < f,Icxp > o(< I4,7c > 0ga). How-
ever, < f,Icxp > 0 < I4,m¢c >=< f,n¢c >. Finally we can conclude
that the whole morfism is the same as < f,7¢ > 0g4.

Q.ED.

We should observe that the above Lemma also holds with regard to B
instead of A.

Lemma II. Let C be a cartesian closed category with finite co-
products. Consider the following diagram:

14



E x By x Es x Fy X F

<h,I>

4

(D+C)x(E1 X E; x Fy X F)

DISTRB

y

D x(Eyx Eyx Fy x Fy)

D x (Ey x By x Fy x Fp) < + SO (Byx By x Fy x
Cx(Eyx Egx Fy x Fy)

h [f1, f2] fo

4

(A+B) X (F] X Fz)

DISTRB'

y

AX(F]XF2)“1:‘>AX(F1XF2)+BX(F1XF2)(—‘["BX(F1XF2)

()] ) [91, 92} 92

4

H

where h : E — (D + C). Then we have that:

[91,92) o DISTRB' o [f1, fo] o DISTRBo < h,I >=

15



[lg1,92) o DISTRB' o f1,[g1,92)0o DISTRB o fy)o DISTRBo < h,I >
Proof. We only need to prove that:

[91,92]0 DISTRB'o[f1, fo] = [[g1,92]0DISTRB'0 f1,[g1, g2}oDISTRB'o f]
which is obtained by observing the following equations :

([g1, 92]o DISTRB'o[ f, fo])oicx (B, x5 x s x Fy) = [91,92]0 DISTRB'o fy
and

(lg1, 920 DISTRB'o[ f1, f2])0ipy (B, x B, x Fy x F3) = [91,92]0 DISTRB'o f,
However, by the definition of co-product we have a unique morfism
from (D x (Ey X Eq x Fy X F3))+ (D X (Ey X E3 x Fy x F,)) into H
which is by definition :

[l91,92] o DISTRB' o fy,[g1,95] o DISTRB' o f5]

Q.E.D.

4.2 The function [[]]

Given a cartesian closed category C with finite co-products [[.]] takes
as arguments types, patterns and terms, and yields values in C (either
objects or morfisms).

Types

— If T is a basic type of level 0, then [[T]] is an object of C.
- HT},...,T}/Y is a type of level n > 0 then

[T],..., T}/ Y]] = [[Y]]Blx--xT=0 ¢ opj(C)

- If ®(Fy,...,F,) is a type of level 0 and has R,,..., R, as the
types of all of its corresponding introduction rules, then

[O(F, -, Bl = [[Ra]l + ... + [[Bn]

16



T =2y : Ty,...,2, : T, is a context then we use [[I']] to denote
[Ti=1,2[[T3]], that is, the product of the denotations of each type in the
context.

Patterns
—~ [[z: R[z: R]]] = Iyry
Terms
A term ¢t : T[I'] will be interpreted as a morphism from [[I']] into [[T7]].
1.

[lz : X[z : X]I] = Iiixy)
2. Given that :
(a) z:T),...,T}/Y[z : T},...,T1/Y] is a pattern and,
(b) t; : Y;[I'; U ©;] are terms, 0 < ¢ < n+ 1, and,
(¢) T; = ©;/Y; and,
(d)

[[t: : Yi[T: U O]} = fi : [[Tu]] x [[04]] — [[¥i]]

and hence by the property of exponentials that gives a natu-
ral isomorphim between Homc(ax b, ¢) and Homc(a, c®) we
have a unique morphism f; from [[T}]] into [[¥;]]I®)). Thus,
< fiy++ s fn > is a morphism from [[T]] into '

[ya)iel . x [y, ]e-]
Finally we define
[01] -0 < &,t1, st >: Yo T, /Y, T, T

as ev[[ryo < I[jR)), < 3’;, . ..,7‘; >>, where R is TIT, o, THY
and ewvyg)) is the corresponding evaluator morphism of its
denotation, which is of course an exponential. Note that
the denotation given above is indeed a morphism from [[z :
R,T4,...,T]] into [[Y]] as the following diagram shows :

[y [ X T [[T3]] x .. [[Ta]

<I[[R]],<?;,...,?;>> [e1]...

EY[[R))
([l XU (1)), X[ Tal) ———— (1Y)

17



. Given that :
(a) ti : Yi[T; U ©,] are terms, 0 < 1 < n + 1, and,
(b)
[[t: : Yi[Ty U ©])] = fi : [[T]] % [[©:]] — [[Vi]}

and hence as we discussed in the above item we have
< fi,.++, fn > as a morfism from from [[I']] into

IR x ... [y, o]
we define
[As[O1]...1Ox] < t1,...,tn >: Y[[q,...,T,]]]
as i[r;° < 3‘;, .. .,ﬁ >, where R; is :
0;-1,...,0, oY, /O(F,....F,)

the i-th introduction rule for ®. So, i[g,); is the injection mor-
fism given by the co-product denotation of the type ®(F1,. .., F},).

. Finally we have the morfism associated to the elimination
rules. Let

() 7 =4} : T4 4, ..,Tfyml/Gi, o yh T, "Tpum},,./Giu]

(b) v = A[A]

(c) v:®(F,...,Fn)[A]

(d) DISTRB = ev o dist be the morfism that plays the
role of distributivity law of the product with regard to

the co-product. Remember that dist is here a general-
ization of the one used in the previous section.

Given that :

1a] M ga(a, ..., 7))

and )
[[5#]] x [[AL] === [[A]]
where A! = A; — gi. Thus, observing that

(o] = [[sll + - - + [[3l]

18



we define
[[Appe[di, ..., ¥n) < v,v1,...,0, > A[A, AL, AL

as the morfism represented by the following diagram.
(Al > ([[agl) x ... x [[AL]D)
< loll Igagyx..xag >

[[@1) x ([[Aa3]] x ... x [[A7)])

DISTRB

4

(]l x (AT X - X [[ALID) + -+ -+ ([[gn]] x ([[A4]] ... x [[AL]]))

[[[valle < Igzans 7agn >»-- - [fenlle < Ty mpagy >]

[[A]]

4.3 The Adequacy of the Categorical Semantics

In this subsection we show that our semantics provides a categorical
model for Ag, that is : Any cartesian closed category with finite co-
products is a model for Ap.

In order to obtain the above mentioned result we firstly need to show
that denotations are preserved by the reduction rules. This is the
content of the following theorem.

Theorem 4.1 Lett:Y[A] andt' : Y[A] be Ag-terms. Ift b*t', then
we have that [[t: Y[A]]] = [[¢ : Y[A]]).

In order to prove this result we need to define the concept of substi-
tution in semantical terms.

19



Definition 4.1 Let
(Y] < ;01,000 >) : Y[A, 2 T, T Z)

andd: Z[yy : Ty,...,Yn : Tp,T] be Ag-terms. Their denotations are

[[A]] x [[2]) (0% xT1]) g (Y]]
and
[T x (T3]} % - x (7)) 22 )

Clearly, from the definition of [[.]] we have that {[t]] is a morfism de-
termined by a diagram that includes the following subdiagram.

[[Z)) @< 5 ([[@4]] x ... x [©a]])

<I, < g1yeeiygn >> [[Y] < z,01,...,0, >]]

ev

[[Z)) W2 XTI s ([T3)) x - .. x [[T]))

Thus, {[t(z « d) : Y[I',A]]] is the morfism represented by the orig-
inal diagram when replacing, conveniently, the above subdiagram by
the following diagram :

(@]} x ... x [[Ox]]

<G1y-0-59n >

4

(T x [Ta]] x ... x [[Tn]]

[[]

y

[[2]]

We would like to explain that the word ” conveniently” means a light-
ful modification to be performed in the original diagram in order
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to connect (we apologize for the graph-theoretical terms) the object
[[A]] x [[T]] with the object [[T]] x [[T1]] X ... X [[T.]] preserving the
rest of the structure of the diagram. It is clear that this modification
_ can be performed by using product morfisms.

Note that a particular case of this definition takes place when sub-
stituting a 0-level type, i.e., when the z : Z with [[Z]] not being an
exponential. In this case the substitution is the composition [[t]]o <
Iyap, [[d]] > itself.

Let’s observe the following about a general redex as the below one :
Appa[Ui, .- Un) < AslO1 ] ... | Ok] < t1,...ytk >,01,..0,0, > AT, AL, L AL
— The denotation of a Ag term, which is a morfism having an in-

jection as its final action, and

— the denotation of the Appg term , which essentialy is a composi-
tion of a morfism with codomain ® with the co-product morfism
([.,.]) representing the alternative morfisms into the type of the
Appg term.

Thus, if the Appg-term is a redex then its denotation is a diagram as
the one described by Lemma I. This is shown by the following diagram:

21



([Taf] o x [ITID x ([[Al) x - . x [[AZ]])

— ——

<< [ty x oo X, [[ta]] >, I >

Y

([yaplesdl .o [[va]jienl) x ([[ad]] x ... x [[A7)

<ig,I>

4

[[@]] x ([} x ... x [[Az]])

DISTRB

y

([[Ra]} x ([[Ad]] x - x [[ARTD) 4 -+ (([Ra]] X ([[AT]] X ... x [[AL]])

[[va]lo < Iymygps mary > - - - [[wallo < Iyr,y, Tpacy >1

[[A]]

If we now apply the Lemma to the diagram above, we obtain following
diagram representing the denotation of the Apps — AR term:

([ra] > -« QTR x ([fAd]] x - - x [[AR]])

p—— —

<< [[ta]l, x o X, [[8]] >, mppary >

R x ([ag) &4 4

where, obviously, R; = [[Y3]J®:]l x ... x [[¥,,]]I®~} is the denotation of
the ¢-th introduction rule for ®.

It remains to show that the morfism shown above is equal to the deno-

22



tation of the contractum of the redex. This is obtained by an applica-
tion of Lemma 4.1 below However, it is worth noting that for the sake
of clarity the lemma is atated and proved for the case when R; is not
a product of exponentials but only a exponential. The general case is
easily obtained form the proof shown in the sequel, as the reader will
note.

Before we go to the lemma, we need to understand what the susbsti-
tution condition is, in the context of the categorical semantics. The
reader should remember the fact observed in the previous subsection,
which is a consequence of the definition of the Appg term in relation to
all of its Ag terms. In categorical terms we can take it as stating that
for each subdiagram representing the application of a rule discharged
by the Appg application, and hence with an exponential domain, we
have a morfism with codomain being this exponential which takes part
in the denotation of the Ag term occuring in the redex. The later is
indeed a morfism constructed with the natural isomorfism used when
providing denotation for Ag terms.

Lemma 4.1 Let #;(y) : F[A,y: Tt/H) and t; : C[T,2: T — H/F]
satisfying the substitution condition required by the operational reduc-
tion rule. Their denotations are

[1A]) x [ el ey

(o)) x ey Bl ey

respectively ,and hence

4] @ [y

Then -
f1a]) x oy <UL e o ey
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equals to [[t2(z « t1(y)1)]]
Proof The proof proceeds by induction on the complexity of

T— HJF.
Basis step. T is empty. Detailing the terms we have:
ti(y): FlA,y: H]
and
t2(2) : C[T,z: H/F]

By the definition of terms we have that, if 2z does really occur in 15,
the diagram representing the morfism, including t,, required by the
lemma has the following structure, where we would like to point out
the subdiagram representing one application of z : H/F (of the form
< z,d >) and ommiting the parallel applications of morfisms (con-
stituents of product morfisms) that have nothing to do with the present

analysis.
[[A]] x {[T]]

——

< [[tal}, Iyryy >

(e e oy <O e

(A7)

In the above diagram f is the morfism that follows the application of
z: H/F in the denotation of t,. ‘
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We can see that

o p—

< Iyppuem, [[d]) > o < [[ta]], Iyry >=< [[tal}, Izy > © < Iypay, [1d]] >

Thus, the morfism represented by the above diagram equals the mor-
fism represented by the following diagram :

[[A]] x ([T}

< Iyap, (]} >

[[All x [[H]]

—

< {[ta]]; Iy [[t1]]

ev

[[FED x [[H])

Where we have the existence of [[t;]], as shown in the diagram, as a

consequence of the definition of exponential and of [[¢;]] itself. Finally
we should observe that the diagram also represents the morfism :

fellt]lo < Iyays [[d]] >

which equals to [[t2(z « ¢;(y « d))]], as previously defined, just in the
case there is only the application of z : H/F shown in the diagram.
The general case is treated in a similar way. Thus, we have proved the
base step.

Inductive step. Firstly, we write down some terms and their respec-
tive denotations. We use I'y to denote the subcontext (subset) of I'
from which the term dg, the premisse of the indicated z application,
depends on :

[ra] x [r]) B2 1)

25



We can see that

r— Py

< Iypyuen, {[d]] > o < [[ta]}s ey >=< {[ta]], Ijpayy > © < Lga, [1d]} >

Thus, the morfism represented by the above diagram equals the mor-
fism represented by the following diagram :

[[A]] x [[T]
< Iyap, [[d]] >
[[A]] x [[H#]]
< [tal)s e [[t1]]

ev

[[FEED 5 [[a])

Where we have the existence of [[t1]], as shown in the diagram, as a

consequence of the definition of exponential and of [[¢,]] itself. Finally
we should observe that the diagram also represents the morfism :

Folft]lo < Iyap [[d]] >

which equals to [[t2(z < t1(y « d))]], as previously defined, just in the
case there is only the application of z : H/F shown in the diagram.
The general case is treated in a similar way. Thus, we have proved the
base step.

Inductive step. Firstly, we write down some terms and their respec-
tive denotations. We use I'yy to denote the subcontext (subset) of I'
from which the term dp, the premisse of the indicated z application,
depends on :

[ral] x [r7) S22 )
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[1A]) x (A e ey

[[r]) x [[F e EE ey

Thus : N
A ¥l (( ey

and .
(ra]) B

As we did in the basis step we have the following diagram, already de-
tailed with the applications of the rules, as required by the hypothesis
of the lemma. Observe that t2(2) = t1([z] < z,dg >) (z is, of course,
of type T'). For the sake of clarity we will consider I' = I'g.

[[Al) x [[T]]

< [t @)1, Iy >

<I J(fd=]>
) e O ol 17 ) N

€v

xy
|~
Q

Here we also have that:

— — —

< Tt [[@)] > o < [[ta], Igry >=< [{ta]], gz > © < Igap (1] >
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and hence by the universal property of the exponential, we have that
evo < ([ Igyery >= ([ ()]

The following diagram shows this last step :

[{al) x )]

.

< Iyap. [ldnl) >

[[A]] x [[EET

—

< [t (@)1s Ipgarurn >N\ [l (9)]

(P L p e

We can note that the subdiagram concerning the composition of [[t1(y)]]
with f represents, by the definition of substitution, the morfism
[[t2(z < t1(y))]). By inductive hypothesis, we have that the diagram
above, which represents :

[it2(z — t1(@))lo < Iyap, [[dz]] >
equals to [[to(z < t1(y « d};))]] which is the same of :
[[t2(z < )]
We also note that the same reasoning could be applied when we have

more then one occurence of the rule z in 13, since the applications are
independent of each other.

Q.E.D.
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It remains to show that the structural reduction rule also preserves
denotation. This is obtained by applying lemma II to the situation
described below which represents the respective denotations of the
structural redex and its contractum.

We firstly consider the following denotations :

(O = [©c]] x...x [[O]]
(e = [T x[[0]] x...x[[04]

[All = [Tl x... x[Tx]]
[N = [Vl x...x [Vl
(@) = [l +...+[Tx])
(@] = [Vill+...+[V]

and the following redex with its respective contractum :

App@[r] < App\IJ[A] <ttyyeeesln >,01,. 00,0 >t A[O]

Appg[A] < t,Apps[l] < t1,v1,...,0% >, +, Appg[l] < tn,v1,..., 06 >>: A[O]

under the assumptions that :
t: v[Og), t; : ®[05, T3], and v; : A[O;, V]

are \g-terms.

Using the same general notation (DISTRB) for the morfisms which
take part in the definition of the denotation of an App-term, we have
the following diagram including the denotation of the terms concerned.
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[[©s]] x TT([[€:1]) > TI([[e:]))
<[fe}}, I >
[[9]] x TI([[e:1)) x TI([[e:])

DISTREB

LI(IT:0) x (TICIOLT) x TI(EOAD)) < T x (TI((O)) x TI([[0:1)

[f1sn o0 fal /< [t]l, I > o << I, mgem >, I >
4

[[@1] > TI({[e:1)

DISTRB

y

LICIV;N % TIC0AD) < [V;]] x TI([I0:])

[91- "g’“]/[["’f]]0 <7y >

where, obviously, ¢; = [[v]lo < I,me; > and
fi =< [[ti]], I > o << I,men >,1 >. The domains of the iden-
tity are not specified for the sake of clarity. The reader should have
noted that the existence of the denotation of the App-term implies
the existence of the denotations of ¢, ¢; and v;, with their respective
domains and codomains as specified by the terms themselves.

[1A]]
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Finaly, with this application of Lemma II we have proved the Theorem
that shows the adequacy of the categorical semantics, allowing us to
conclude that any Cartesian Closed Category with finite co-products
is a model for Ag.
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