Monografias em Ciéncia da Computagéo
ne 28/91

Design Recovery
A Multi-Paradigm Approach

" Julio Cesar S. P. Leite
Antonio Francisco do Prado

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computacdo, N2 28/91
Editor: Carlos J. P. Lucena Dezembro, 1991

Design Recovery
A Multi-Paradigm Approach *

Julio Cesar S. P. Leite
Antonio Francisco do Prado

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In charge of publicationss

Rosane Teles Line Castilho

Assessoria de Biblioteca, Documentag¢lo e
PUC Rin -~ Departamento de Informdtica
Ruza Marquds de 580 Vicente, 22% - dvesn
22453 ~ Rio de Janeiro, R.J

Brasil

Tel . s (d21)529-9364 Telexi31078
E-mailirosanedinf.puc-ric.hr

Informagio

Faxt (024751415645

Resumo:

Reutilizaglo de software € uma disciplina fundamental PRFA S
atingir incrementos de produtividade na producio de software.
Uma forma de reutilizaglo desejavel &€ a reutilizagio de desenhos
e software, que por serem nais abstratos permitem umz maior

flexibilidade de implementacio. Neste artigo propomos uma
setratdgian para recuperaglo de desenho de software. Fata
setratdgia utiliza-se de trég paradigmas® Inspegdes, Mdtodo de
Jackson para Sistemas (JSD)Y e Prototipaglo. A combinagio desses

tres paradigmas £ avaliada e & demonstrado o0 seuw us0 na
recureragcio Jdo desenho da mfauina de Draco.

Design Recovery
A Multi-Paradigm Approach

Julio Cesar S. P. Leite
Antonio Francisco do Prado
Departamento de Informatica
Pontificia Universidade Catélica do Rio de Janeiro
R. Marqués de S. Vicente 225 Rio de Janeiro 22453
Brasil -

December 1990

Abstract

One of the reutilization aspects that is of major concern is how to get
old code and turn it into a reusable asset. Our article proposes and analyzes a
multi-paradigm approach to the problem of Design Recovery. Design Recovery
is the first step in turning old code into a resuable product. Our aproach is being
used in a special kind of old code, the Draco Prototype, a system that implements
the concept of rcusable components to the point of achieving reusability of
Analysis, Design and Code. In recovering the Draco design, we have used In-
spections, JSD, and Prototyping. The combination of those different paradigms
is analyzed in detail and the results are reported. '

I Introduction

Software reusability has started to be cstablished as an important re-
scarch area in software engineering. Scveral rescarchers [Freeman 88] have been
pointing out that reuse is one of the effective ways to fight the so ever growing
backlog of demanded software. The application of software reusability has, in
most of the practical cases, been restricted to code reuse. Work in the direction
of high orders of rcuse [Matsumoto 87], [Neighbors 89], [Arango 88], [Seppinen
90], [Baxter 90], [Biggerstaff 89] has been performed but there are still many
problems. Code rcuse, which is being pursued by several software producers,
suffers from an excessive knowledge fragmentation and as such is very much de-
pendent on a well organized library [Prieto-Diaz 87]. High orders of reuse will
provide less fragmentation and shall diminish the high cost of retrieval of reusable
code.

Ideally a software construction process should be conducted within the
reusability framework, that is maximize the reusability and produce products that
have a high probability of rcusability. The old lesson of Parnas that we should
plan for change is a characteristic of the software business. What is usually a
problem is that in general the code that is around in most software development
systems [Freeman 87] was not written with rcusability in mind, and is very dif-
ficult to rcuse. Although this old code is hard to reuse, we can not afford the
price of throwing away this knowledge. We must keep this knowledge and im-
prove our capability of reusing this encoded, but fragmented, knowledge. As such
' 1

we need to dig out knowledge from a source that was not structured for posterior
retricval and reuse.

Design recovery aims to capture, mainly from the existing code, the
structure of the original design such that components make themselves more vis-
ible, as well as to provide means for a re-cngineering of the components. Arango
[Arango 88] defines design recovery as:

Given an implemented software system, the problem of design recovery
consists of producing a specification for that system and an cxplanation
of why the existing implementation is in fact an implementation of the
spccification.

This paper reports on a strategy that is being used to recover the Draco
design. Our main objective is to support a cooperative task in which a team
identify module and data abstraction groupings and recover design structures.
The concept of Inspections [Fagan 76] together with Prototyping is the basc for
the understanding and interpretation of the available information. The JSD
[Jackson &3] is the base for the representation of recovered design structures. Our
proposed approach is not as broad as, for instance, the Desire system [Biggerstaff
89], which aims an automation of the recovery process by relying in a domain
modcl as a repository of known plans. Matching available information with
pre-existing plans is the job of an automated assistant, which helps the software
engineer in the recover task. Our work has basically centered its attention on the
manual recover process as performed by a cooperative team.

The paper is organized as follows. The second section gives a brief de-
scription of the Draco system and the situation in which the design recovery is
taking place. The third scction describes our strategy. The fourth describes the
process used to recover the Draco design and the results so far. We conclude de-
scribing some opportunities for tool support.

II The Problem

Draco is a prototype developed by Neighbors [Neighbors 84] to dem-
onstrate his thesis that, similar to industrial production lines, software could be
produced by assembling components. Central to this ideca was the argument that
using the components strategy, it would be possible to reuse analysis, design and
code, thus achicving great improvements on the software production productivity.

On further developments of the Neigbhors” ideas, the Reuse Project and
the Advanced Software Engineering Project at the University of California,
Irvine, under the dircction of Professor Peter Freeman, built the concepts under-
lining what is now called the Draco Paradigm. This paradigm, if compared to the
recent proposals [Agresti 87] to substitute the life cycle paradigm is singular. In-
stead of relying on a general specification language, it relies on special specifica-
tion languages. These special specification languages, called Domain languages,
should cncapsulate the knowledge of a defined problem area, such that systems
dealing with this arca could be specified in a language with constructs related to
the problem area.

Draco as a software system, Figure 1, is composed of 4 subsystems.
Besides the Parser, the Transformer, the Prettyprinter and the Refinement, there
: 2

is a part of this last subsystem that is worth mentioning, the Tactics. The Tactics
is the part of Draco where there is an encoding of meta level design knowledge.
This meta level knowledge is responsible for the automation of the refinement
process. The Parser is central to the Draco system because it defines the internal
form, the anchor representation used by the system, in which all the change of
representations takes place. In the SADT of Figure 1, the meta aspect of Draco
is presented by the parser geénerator, the transformer generator, the prettyprinter
generator and the refinement generator. The use of the codified domains is re-
presented by the input language program, which is parsed, transformed, and re-
fined to an executable language.

Our research group at PUC-Rio is interested in studying the Draco
Paradigm, specially the process of knowledge acquisition oriented towards special
languages. In order to pursue our research cfforts and get more people involved
it is important to have the Draco prototype around. Due to several problems re-
lated to software infrastructure we could not run the Draco system, which re-
quired a special Franz Lisp version. Our decision then was to reimplement Draco.
This reimplementation is planned to happen in two steps, one the design recovery
step and the other the re-engincering step. The design recovery step would
produce, besides the design, a new implementation in Scheme.

Once the design becomes available, a re-engineering effort will trans-
form the existing design in an object-oricnted design, targetting the new imple-
mentation to a real object oriented language.

The situation in which we are doing the design recovery could be pic-
tured as follows.

e The Draco original code, a 3000 line UCI-Lisp [Meehan 79] program,
with no design documentation.

* The absence of a real expert in the Draco implementation.
» The UCI-Lisp manual.

e The Draco manual.

* Neighbors’ thesis.

» The absence of a UCI-Lisp environment.

To this situation several notes arc worth mentioning to fully understand
the problem. :

+ Although 3000 lines of code is nothing spectacular, this counting is
just the Draco kernel, since several of its parts are described in a meta-
language which is then transformed to Lisp.

» Although we do not have Neigbhors around, Leite, several years back,
performed a partial recovery exercise by documenting the UCI-Lisp
version of Draco.

» Although the running of Draco is in Franz Lisp, its code is more dif-
ficult to read than the original UCI-Lisp version, since it was produced
automatically by Draco [Arango 86].

-3

 The personnel involved in the recovery process were students with lit-
tle knowledge of Lisp.

Summarizing, the major source of information for the process was the
UCI-Lisp code. The efforts for recovering Draco design were supported by an
inspection procedure, a prototyping effort using the PC Scheme language, and the
JSD tools to register the captured design structure. The next section is oriented
to provide details on our proposed approach to design recovery for the situation
where the information available is basically old code without a running environ-
ment.

IIT The Multi-Paradigm for Design Recovery

In order to recover the Draco design in the environment as described in
Section 11, we have used a multi-paradigm process that aims to combine In-
spections, Prototyping and the Jackson System Development. The process starts
by dividing the object of recovery in subsystems. For each subsystcm a combi-
nation of Inspection and Prototyping is performed and the design is modeled by
JSD structure diagrams, and a JSD network model. In the combination of In-
spection and Prototyping, inspections are performed and a prototype is produced
to validate the conclusions achicved by the inspection process. This process is
described by the JSD structured diagram in Figure 2.

Our approach aims to recover designs from artifacts where the basic
source of information is the code. Worst, this code can not be exccuted in the
existing environment. Because of this particular characteristic it is nccessary that
the inspection not only involves the reading of the code but its conversion to a
new language, where there is an available translator(code transformation). The
prototyping process aims to validate the new code as well as the inspection proc-
ess itself. Using the knowledge acquired in this process a JSD model is con-
structed in a bottom-up fashion.

Following we present a brief overview of the named paradigms and how
they were used in our proposed process.

III - a) Inspections

Inspcctions was proposed a more than a decade ago as a managerial
paradigm for software production. Since Fagan [Fagan 76] first published
his paper several projects outside IBM used the paradigm and recently there
were reports on the effectiveness of inspections [Ackerman 89]. Briefly, In-
spections as proposed by Fagan, are performed by a group of pcople with
well defined roles and activitics. The roles are: modecrator, designer,
coder/implementor and tester. The activities are: Overview and Prcparation,
Inspection, Rework and Follow-up.

In our design recovery process we have used a variant of Fagan'’s pro-
position. The following are the roles present in our inspection process:

Moderator - The person who plans, controls and manages the in-

spections.
4

Designer - The person responsible for producing the design recovery.

Coder/Implementor - The programmer responsible for the code
transformation.

Tester - The programmer responsible for writing and/or executing
test cases or testing the prototype.

The activitics we have in our inspection process, sec Perform Inspection
in Figure 2, are the same as the four originally proposed, but with differences
that are worth mentioning. Following we provide a brief description of each
activity.

Overview and Preparation - The Moderator first describes the overall
area being addressed, the main and the intermediate goals to be
achieved. The documentation is distributed to all the inspection
participants. The preparation is subdivided in two parts. The first
part involves the actors in the coder/implementor roles. Their tasks
are to perform the code transformation from the original language
to the available language. This task involves a lot of effort in recading
the code and the supporting documecnts to maintain the same se-
mantic in its transformed version. The second part is performed by
the actors in the roles of Moderator, Designer and Tester who will
read both the old version and the new version of the code to be pre-
pared for the inspection meeting.

Inspection - The coder/implementor describes cach translated pro-
cedure of the subsystem and the moderator/designer make questions,
based on a checklist, to the coder/implementor.

The objective of this step is to find errors and to clarify the
doubts in the code. The checklist is a domain oriented list that poses
questions at candidate problem areas. The checklist helps the in-
spector in asking the right questions and not forgetting to ask
questions. This checklist with clues on finding errors, may be studied
and uscd during the code examination. All issues raised in the in-
spection will be addressed in the rework and the follow-up oper-
ations.

Rework - All errors or problems reported in the inspection are cor-
rected by the designer or coder/implementor. The result of this step
1S a new tranformed code version.

Follow-up - The moderator must verify if all crrors and problems
discovered in the inspection were resolved in the rework. The result
of this step is a valid version of the code transformation.

III - b) Prototype

Prototyping turned out to be a buzz word as rescarchers and practi-
tioners found out the problems with the waterfall model [Sigsoft 82] [Agresti
87]. Prototypes are used to provide early demonstration of behaviour of a

certain artifact in order to shorter the validation cycle. In our approach,
5

prototyping is the test of the transformed code. In this case the prototype in
its several versions is the code implemented in the new language.

The process of implementing the prototype is achieved by a manual
transformation of the available code into a new language(code transforma-
tion). This transformation, however, is eased by the mandatory use of the
language as close as possible to the original one. In order to test the proto-
type, outputs produced by the original version, should be compared with
outputs of the new code, for the same inputs.

The use of prototyping is essential, in our case, since the inspection uses
it to help the test and the understanding of the system being recovered. As
shown in Figure 2, if the implementation and test result in success, the
moderator accepts the prototype, otherwise it is rejected and a new
inspection/implement and test cycle is executed.

II-¢)JSD

The Jackson System Deveclopment [Jackson 83] [Cameron 86] is a
method that emphasizes the modeling activity of the problem addressed.
JSD makes a clear distinction between native activities(actions) of a problem
being modeled and eventual functions that a software system should per-
form. Modecls become more claborated as the development progresses up to
the Implementation stage. The native activities are clustered in entities with
their related attributes, which later are transformed in processes. There is
no global memory, data is shared between processes by state vectors or data
streams. The interactions between these processes will determine the be-
havior of the model, even before the Implementation stage.

Once the native activities are identified from the bottom-up, JSD is
clearly a top-down development method. Our use of JSD is singular. In-
stead of departuring from a problem analysis, we are departuring from an
implementation. This characterizes the use of JSD in a bottom-up fashion.

Although we depart from the implementation, there is not enough
knowledge to construct the System Implementation Diagram, that is the ac-
tual implemented design. The approach we use is to decompose the problem
into parts, the decomposition being dependent on the problem, recover each
part and then integrate the models produced.

The rccovery of cach part is the core of our method, the result is ex-
pressed in a SSD (System Structure Diagram) which is equivalent to the one
produced at the Network Stage - Elaboration phase. This diagram is an in-
itial version which should be revised when the models are integrated. The
integration should produce the SID (System Intcgration Diagram), which
should mirror the closest as possible the rcal physical design. The final SID
and the supporting network model would be the end products of the recov-
ery process.

IV Draco Design Recovery

As discussed in Section 11, our objective is to have the Draco machine working in
order to study the paradigm. Since available Draco is not supported by our
software plataform, we decided to re-engineer the machine. The knowledge em-
bodied in the Draco machine was not completcly available in a representation
other than code, so we needed to perform knowledge extraction from the code it-
self.

The multi-paradigm approach just described was an ideal candidate,
mainly for its characteristics, which matched the main characteristics present in
the Draco case, that is:

a) cxistence of a team composed of the two authors and two computer
science students,

b) nced to produce a prototype, and
c) the nonexistence of a design document

In this section we will describe how the suggested approach has been
used in the Draco case, stressing the interaction between Inspections and the
production of a working prototype. We conclude reporting on the results
achieved at this stage of the project.

IV - a) Draco Recovery

The process used on Draco Recovery with the data and resources men-
tioned in 11 is best described by the JSD Structured Diagram in Figure 3. This
diagram is an instantiation of the diagram in Figure 2 with the actions specialized
for the Draco case. Following we will describe each part of the process.

Subsystem Structure

The parts identification were performed by a UCI-Lisp cross-analyzer
developed in Scheme. This analyzer shows which procedures are called by one
specific procedure and which ones call this same procedure, within a subsystem.

The scope of cach subsystem to be recovered in each stage of the re-
covery development can’t become totaly clear initialy, but this first analysis helps
the starting of the process. As soon as the work goes ahcad we can get more
comprchension about the role of each subsystem.

Inspection and Prototyping

To rccover each Draco subsystem, first we read the UCI Code,
then produced the translated code and next we implemented and tested the
prototype until its acceptance.

Perform Inspection

We performed the Draco Inspection in four repeated actions
described below and, as a result of this step, we had a Prototype of the
subsystem being translated.

® Understand the UCI Code and Codify into Scheme.
e Inspection Scheme Code.

® Correct and Create a necw version.

e Validate the version.

These actions are described below, with more details.

Understand UCI Code and Codify into Scheme

The understanding of the statements and controls struc-
tures of the concerned languages, through the reading of their
manuals, makes it possible to codify each UCI procedure into the
new language (Scheme), sometimes even without a clear compre-
hension about the role of the procedure in the subsystem.

The first step on the recovery development is the code
transformation, that is, each statement of a procedure in UCI Lisp
is converted into Scheme Lisp, keeping the same semantic. The
result of this step is documented as showed in Figure 4, which is
the version 0 of the transformations.

This document contains, for each procedure, on one side
the original UCI Lisp code and on the other the translated Scheme
code. Besides, it contains the explanation of the procedure’s role
in the subsystem based on the knowledge that we could get at that
point in time.

The most important aspect of this transformation is to
preserve the correctness of the original procedure. By that we mean
that any transformed procedure must have the same property and
results of the original one.

In order to make the code transformation possible, some
UCI functions, which didn’t cxist on Scheme, had to be con-
structed and implemented. In this case we had to implement in
Scheme the UCI DF, Catch/Through, Some, Ttymsg, Ldiff,
Aexplodec commands. The Fexpr facility of UCI Lisp was imple-
mented using a series of Scheme Macros. The same was done for
Catch/Through control. These two aspects, one refering to evalu-
ation and scope of variables, and the other to the flow of control
were the major problems encountered so far.

Inspection Scheme Code

After we get the transformed version (Figure 4), we can
perform the inspection of the transformed code to find errors and
to clarify doubts about the translated code.

Four pcople constituted the inspection team: a Modera-
tor, a Designer and two Coder/Implementor. Three inspections
with about four hours each were sufficient to validade the trans-
formed code in the case of the Parser Subsystem.

The time to do inspections and resulting rework was
scheduled and managed by attention of the Moderator. At each
inspection meeting the Coder/Implementor presented a new code
version, documented as shown in Figure 4, which was used to un-
derstand the code and to find errors by the Designer and Modera-
tor. An annotated version of this same document is shown in
Figure 5. The checklist used to provide suggestions on where and
how to detect defects is showed in Figure 6.

Correct and Create a New Version

As the errors and doubts about the code are pointed out
by the Designer, they are corrected and explained by the
Coder/Implementor who creates a new version of the code.

The translated code of each procedure must be verified
and depending on the result that we get in the verification, we can
accept the current version or we annotate the errors to be corrected
in the new version.

Validate The Version

Once there are no doubts about the code transformations
of cach procedure in the subsystem, the Moderator accepts the
version, otherwise we Perform Inspection until the correct version
can bec obtained.

Implement And Test The Prototype

After all the procedures from a subsystem are verified, they
are compiled into the prototype to be tested. Depending on the test re-
sults, the new code could be accepted as the final version or it is rejected
and will be submitted to new inspections and validations.

Accept The Prototype

The prototype is accepted when it produces the same re-
sults of the original code being recovered. The Designer performs
9

the Tester role for the inspection process and he can verify the
correctness of the translated code by running the new code with the
same input data of the examples we have for execution in the ori-
ginal code, and comparing the results produced by the prototype
with those in the samples.

Reject The Prototype

Errors are identified by the Tester and depending on the
complexity of the error the prototype may be immediately cor-
rected by the Tester himself or be rejected.

Construct a JSD Network Modgl

In order to construct the System Specification Diagram, the
Network Model, the lisp procedures were considered entities and the
commands were considered actions . The several processes are linked
by data streams and state vectors. Arguments were considered data
streams, and global variables were transformed in an entity named
GLOBALVAR, from which all global access was described via state
vectors. This basic heuristic has allowed us to construct a first version
of a model which is to be integrated on a SID(System Implementation
Diagram) to be elaborated as the final action of the Recovery process
(see Figure 3). '

The procedures behavior are cxpressed by Structures Dia-
grams which specifies how their actions are ordered in time.

Integrate the Models

This phasc of the Method has been executed until now. As soon as we
have the SSD of the Draco major subsystems we can start their revision and their
integration into a SID.

IV - b) Results So Far

The Draco recovery was divided in four stages as we have defined four
subsystems, Parse, Transform, Refine and Prettyprint , shown in Figure 1. These
subsystems constitute the four intermediate goals of the Draco work recovery.
The Parse subsystem with about 800 UCI lines was recovered. Approximately
the same number of Scheme Lisp code lines were generated, compiled and tested.
As the result of the errors that was found on the inspections, implementations an
test, three versions of the document shown in Figure 4 were created.

Using the Jackson System Development we created Structure
Diagrams, as shown in Figure 8, for cach function that was included in the Parse
Subsystem. The composition of all those functions resulted in the Parse Subsys-
tem Network Model , shown in Figure 9. The complexity of this Model is due to
the inclusion of the parser generator definition together with the core parser code.
In Figure 7 there is a detail of Figure 9.

10

The existence of Global Variables in the original design forced us to
create a special symbol (marked with an asterisk) in the SSD. This symbol works
as an entity from where processes reads data through state vectors.

The Scheme version accepted was finally validated by the the gener-
ation of the Draco Parser itself. At the moment, the recovery work is being
concentraded on the Transform and Refine subsystems. The expericnce on Parse
subsystem gave us more familiarity with the process as well as with the UC]I Lisp,
Scheme Lisp and the proper Draco system, such that we expect to have a better
performance on the others subsystems.

VYV Conclusion

We can not afford to throw away our investment in existing code. We
need to find out ways to recover the design of existing kwowledge in code form,
and re-cngincer those designs to make them real reusable assets. That is a hard
task. The knowledge is fragmented and the recovering process is expensive. In
our research project at PUC-Rio we are facing a situation where it is mandatory
to recover and re-design a software artifact, and that was our main motivation in
designing a process to recover software design.

Our approach of mixing diffcrent paradigms has been effective. Al-
though the manual translation of UCI Lisp to Scheme is not a difficult problem,
it is not trivial, specially since Scheme is a lexical scoped Lisp. The adjustment
with respect to FEXPR and the CATCH/THROW control, was not so trivial.
With that regard, our observations pointed out that the use of Inspections im-
proved the team’s understandability of the problem, as well as shortened the
conversion cycle.

Collecting productivity data on the environment in which we are oper-
ating (graduate and undergraduated students) seems difficult, and we do not
claim to have all of the data, but we have observed several positive points on the
use of our approach.

First of all, we have managed to structure the work, by using In-
spections, as a manageable process. Since using students is very different than
using employees or contractors, we list this as an important point. Second, the
system we are dealing with is extremely complex and the inspection mecting was
decisive to make the full understanding of the recovered subsystem, the Parser,
possible. Third, the time spent debuging programs was shortened, since the In-
spection meetings took most of the team’s time.

With respect to modeling, or documenting the design, our use of JSD
has been productive. The construction of the network model of the Parser, de-
manded as lot of effort, but made it clear for the team how the several parts of
this subsystem werc put together. Although we did not derive the implementation
diagram, of Draco, nor used the model produced for the re-design task, we can
observe that the model produced has structurcd and encapsulated knowledge.

Our future plan is to continuc the use of this design recovery process for
the Draco code as well as for other cases. As much as we gain confidence on our

approach and get feedback from its use, we may improve some aspects of it.
11

Although we did not produce tool support, besides the trivial cross-
analyzer, it is an ongoing project the use of hypertext to support Inspections
mecetings by making possible that the code be annotated and revised interactively
as well as making explicit the linkage with produced JSD documents. One of the
authors, Prado, is currently working on a JSD tool that should be integrated with
such hypertext support.

VI Acknowledgments

Marcelo Santana and Alexandre Scidl have been developing an cxcel-
lent job as members of our Draco team. We acknowledge their help and cffort in
recovering Draco.

VII References

[Ackerman 89] Ackerman, A. Frank, Buchwald, Lynne S., Lewski, Frank H.
Software Inspections: An Effective Verification Process. In IEEE Software, May
1989.

[Agresti 87] Agresti, W. In New Paradigms for Software Development, W.
Agresti, Ed., IEEE Computer Society, Long Beach, CA 1987.

[Arango 86] Arango, G., Baxter, 1., Freeman, P., and Pidgcon C. TMM: Soft-
ware Maintenance by Transformation. 1EE Software, 3(3):17-39, May 1986.

[Arango 88] Arango, Guillermo F. Domain Engineering for Software Reuse,
Ph.D. dissertation thesis, University of California Irvine, 1988.

[Baxter 90] Baxter, I. Transformational Maintenance by Reuse of Design Histo-
ries, Ph.D. thesis, University of California Irvine. Tech Report 90-36, 1990.

[Biggerstaff 89] Biggerstaff, T. Design Recovery for Maintenance and Reuse,
IEEE Computer, July 1989.

[Camcron 86] Cameron, John R. An Overview of JSD. IEEE - Trans. on Soft-
ware Engincering, SE-12, NO 2, Feb 1986.6 :

[Fagan 76a] Fagan, M. E. Design and Code Inspections to Reduce Errors in
Program Development, IBM SYST J., 1976.

[Freeman 87a] Freeman, P. Software Perspectives Addison Wesley, Reading,
MA, 1987.

[Freeman 87bj Freeman, P. Software Reusability. IEEE - Computer Society,
March, 1987.

[Jackson 83b] Jackson, M. A. System Development. Prentice Hall International,

Inc, 1983.
12

[Matsumoto 87] Matsumoto, Y. A Software Factory: An Overall Approach to
Software Production In Software Reusability, pages 155-156 . IEEE Computer
Society Press, 1987.

[Mcchan 79] Mechan, J. R. The New UCI LISP Manual, LEA, Hillsdale, New
Jersey, 1979.

[Neighbors 84] Neighbors, J. The Draco Approach to Constructing Software
from Reusable Components. IEEE Trans. on Software Engincering, SE -
10:564-573, September 1984. :

[Neighbors 84] Neighbors, J. A Method for Engineering Reusable Software
Systems. In Reusable Software. Addison Wesley, 1988.

[Pricto 87] Prieto, Diaz R. Domain Analysis for Reusability. In Proc. Compsac
- 87. Tokyo, Japan, October 1987.

[Seppanen 90] Seppinen, V. Acquisition and Reuse of Knwowledge to design
embedded Software, Technical Research Centre of Finland Publication 66 , 1990.

13

DRACO)
INF
YARSER
DOMALN l FOR THE
YARSE DOMAIN
DPEFINITION
—
DOMAIN PARSE
LANGUAGE b DOHAIN
PROGRAN INTERNAL FORM
(Tvan) T T PROGRAN
DOMAIN DOKAIN
PARSED INTERNAL
GENERATOR FORN
SENERATOR IRACO
(BRACO-PARGEN) TRAHSFORMATION
(DRACO-FARSE)
DOKAIN
TRANSFORMATIONS TRANSFORM
DEFINITIONS p
(SINTAX-SEMANTICS)
TRANSFORM DOKAIN
LIERARY TRANSFOR
GENERATOR INTERNAL
FORN
(DRACO-XFHEEN) GENERATO

DOMAIN COMPONENTS DEFINITION

{DRACO-TRANSF

TRANSFORMATION LIERARY
FOX THE DOMAIN

N\ DOKAIN TRANSFORNMED
INTERNAL FORN PROGRANK

MED

! DRACOC

ORM) COMFPONENTS
TACTICS

l

COMPONENTS LIPRARY
FOX THE DOMAIKN

-

(SIMANTICS)

(DRA

REFINE

SOURCE CODE PROGRAM FOR AN

) EXECUTAELE TARGET LANGUASE
T T TRACO FRETTYFRINTER
COMPONENTS SOURCE XEPRESINTATIONS
LIBRARY CoDE
GENERATOR GENERATOR FRETTYPRINTEF
FOR THE
CO-REFGEN) (DRACO-XEIFINI) DOHAIN
#{ PRETTY
DOMAIN LA&NGUAGE FRETTYPRINTER DEFINITION FRINTER
v IRACO
: PRITTYZRINTED
T FOXM

PRETTYFFINTED
FORM BENERATOXR

FREYTYFFINT
SINEXATIOR

(pracc-r26EN) (LRACO-FRETTYPRINT)

=

igure

DIVIDE THE
PROBLEM
IN PARTS

DESIGN
RECOVERY

PARTS
RECOVERY

-

INSPECTION
AND
PROTOTYPING

PERFORM
INSPECTION

OVERVIEW
AND
PREPARATION

INSPECTION

REWORK

INTEGRATE
THE MODELS

CONSTRUCT
A JSD
NETWORK
MODEL

IMPLEMENT
AND TEST THH
PROTOTYPE

FOLLOW-UP

AANAY

ACCEPT THE
PROTOIYPE

[+]

REJECT THE
PROTOTYPE

Figure 2

DRACO

RECOVERY
-
USE THE SUBSYSTEM INTEGRATE
SUBSYSTEM RECOVERY THE MODELS
STRUCTURE
OF DRACO
-
INSPECTION CONSTRUCT
AND A JSD
PROTOTYPING NETWORK
MODEL
- -
PERFORM IMPLEMENT
INSPECTION AND TEST THH
PROTOTYPE
0
UNDERSTAND INSPECT CORRECT - VALIDATE ACCEPT THE
UCi CODE SCHEME AND THE PROTOTYPE
AND CODIFY CODE CREATE A VERSION
INTO SCHEME NEW VERSION

o

REJECT THE
PROTOTYPE

—]

Figure 3

©fF Parser-Rue (Exps)
(Prog (S51k Giobal-ParseRule)
(Setq Global-Par seRule (Car Exps))
(Setq Stk Global-Stack)
(Cond (Eval (Cadr Exps))
(Cond ((Eq Stk (Cdr Global-Stack)) Return T
aTaiYmsg T
"ERR- rule ™
Global-ParceRude
" succeeded but &d not return
one PARSER-NODE™

n
(Setq Global-ErrorCount
(Add1 GlobalErrorCount))
(Setq Glohal-Stack St
(Push Giobal-Stack *(XERROR*))
Return DM
(T (Cond ((Eq Stk Giobal-Stack)
Return Gefasym-Puar)))
GaOTYmsgT
“ERR: rule
GiobatParseRule
" faded but constructed
PARSER-NODES"

n
(Setq GliohalfrrorCount
(Add1 GiobalErrorCount))
(Setq Global-Stack Stk
Return NDINN

OF Parser—Rule (Oxps)
(et ((Stk Global-Stack))
(Set Global-Parse—Rule (Car Exps))
@f (Eval (Cadr BXps))
o (Elg? Stk (Cdr Global-Stack))
"

(Begn
TY¥msg T
"“ERR:rude ™
Giobal-ParseRule
" succeeded but &d not return
one PARSER-ODE™

n
(Sett Gobal-Errorcount (K GlghalFrrorCount))
(Set! Global-Stack Stk)
Gf‘l)xsh Global-Stack (XFRROR*)
u1)
{f (Eq? Stk Glohal-Stack)
Metasym—Puar)
Begn

(TTYmsg T
‘ITRR-rule
Global-ParseRide
"' fadad but construcied
PARSER-NODES"

n
(Set! GlobalErrorCount
{(+ GobarErrorComnt))
(g;e)i*))Goba‘-*Siad(S
49))))

PARSER-RULE

This sub-routine takes as argument a list of
a rule name (CAR EXPS) followed by its corresponding code (CADR EXPS).
PARSER-RULE then evaluates the associated code and verifies if it
as expected had generated a one and only one node into the
Global-Stack.lf it had been so it just signals true, otherwisa, an error
-treatment is executed.

Figure 4

(DF Parser—Ruie (Exps)
(Prog (Stk Global-ParseRule)
(Setq Global-ParseRule (Car Exps))
(Setq Stk Global-Stack)
(Cond ((Eval (Cadr Exps))
(Cond ((Eq Stk (Cdr Global-Stack)) Return T
TOTYmsg T
“ERR:rule ™
Global-ParseRule

" succeeded but did not return

one PARSER-NODE™

n
(Setq Global-ErrorCount
(Add1 GlobatErrorCount))
(Setq Global-Stack SH)
(Push Global-Stack *(*ERROR*))
Return TH
(T {Cond ((Eq Stk Global-Stack)
Retuwrn Metasym—Puar))
aTaTYmsg T
“FRR:-rule "
Global-ParseRule
" falad but consiructed
PARSER-NODES"

n
{Setq GicbalEfrrorCount
(fdd1 Giobal-ErrorCount))

(Setq Global-Stack S
Return N

O\omx\)q@a .

D Quol o msoxkx\u{o\

(DF Parser—Rule (Exps)
(Let ((Stk Global-Stack))
(Set! Glohal-Parse—Rule (Car Exps))
@f (Eval (Cadr Exps))
af (E]g? Stk (Cdr Global-Stack))
#

(Begin
(FT¥Ymsg T
“ERR: rule
Global-ParseRule
" succeeded but did not return
Done PARSER-HRODE™
(Set! Giobal-Errorcount (1+ Global-ErrorCount))
(Set! Global-Stack Stk)
(Pun)sh Global-Stack *(¥*ERRORX))
#
{f (Eq? Stk Global-Stack)
Metasym—Pvar)

(Begin
TT¥Ymsg T
"[RR-ruls "
Global-ParseRule
" fatled but constructed
PARSER-NODES"

n
(Set! Global-FrrorCount
(¥ Global-ErrorCouat))
(Set! Glohal-Stack SHY
K$)))

de EXPS 7

2) Quel o (ondicde POnO- Oerey Fipo 2 7

5) Qo oo &%@Qeﬂ/ﬁu eviIne

%Qo‘oc&_ Stvock

e (cor GPoval-stack) 7

PARSER-RULE

This sub-routine takes as argument a list consisting of
a rule name (CAR EXPS) followed by its corresponding code (CADR EXPS),
Parser-Rule then evaluates the associated code anqd verifies if it
as expected had generated a one and only one node into the
Global-Stack. if it had been so it just signals true, otherwise, an error
’ treatment is executed.

Figure 5

CHECKLIST

Completeness

1. Are all sources of input identified?

2. Are all types of outputs identified?

3. Are all procedures that compound the subsystem defined?
4. Are all the parameters defined in each procedure?

5. Are all required parameters passed correctly?

6. Are the data structures of each local and global
variables defined?

7. Had all possible side-effects been accounted for?

Ambiguity

1. Are all special terms clearly defined?

2. Is the scope of the globals and locals variables .kept on?

Consistency

I. In the Selection and Repctition the error condition is
correctly tested?

2. Are correct the variables used for test?

3. All the properties of the control structures of the original code
are preserved on the new translated code?

4. Are all the functions correctly defined with their properties?

5. How are the structures of the S-Expressions?

Figure 6

®

®

lllllllll

uuuuuuuuu

L sy

I
o
asiwu

peeeecan]

! I
SIEETN04d
ouL ol

o 1

(R J

pu o0 FT4{]
s
118

woaa
e £ 171

NOLIVEITVILINE
Lo i~ L7

> LLLL (]

PARSER
INITIALIZATION

(FN)
SET Q
GLOBAL-ERROR-COUNT 0
GLOBAL-ICHRPTR CONS NIL PARSE-INSTRING EVAL
CHR CADR GLOBAL-ICHRPTR ' FN
GLOBAL-STACK NIL]

RSLT ERROR
RETURN NIL

1 o
RETURN ERROR
CAR RETURN NIL
GLOBAL-STACK

Figure 8

