S e

Monogroﬂos em Ciéncia da Computagdo
N 29/91 '

A Research Agenda on Software Design

Carlos J. P. Lucena
Julic Cesar S. P. Leite
Daniel Schwabe
Hugo Fuks

Departamento de Informdtica

L

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE sﬁm VICEMNTE, 225 - CEP 22453
RIC DE JANEIRG - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA

- Monografias em Ciéncia da Computagdo, N° 29/91
Editor: Carlos J. P. Lucena ‘ Marco, 1991

A Research Ag@ndq on Software Design *

Carlos J. P. Lucena
Julio Cesar S. P. Leite
Daniel Schwabe
Hugo Fuks

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In charge of publications®

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentaglo e Informagio
PUC Rio — Departamento de Informdética

Rua Marqubs de 58o Vicente, 225 - Gdvea

22453 ~ Rio de Janeiro, R

Brasil

Te].=(®215529w9386 Telent31078 Farr (024051 4-54645
E~mailﬁrosaneainf.puC*rioubr

RESUMO

Esta monografia descreve os interesses de pesquisa comuns dos autores, sob a forma de -
uma agenda cujos tépicos sdo projetos de pesquisa dos seus alunos de pés-graduagdo. Seu
denominador comum & o upstream design de sistemas de software que por sua vez requer a
representacdo de uma extensa rede de informago sobre design. Esta rede abrange todos os
dados relevantes ao processo de design, incluindo todo o processo de decisdo e suas
justificativas, assim como as alternativas cogitadas. A atengfio dada ao upstream tem um
impacto significativo na representagfo dos requisitos, e as idéias desenvolvidas a respeito de

aspectos genéricos do processo de design sdo avaliados experimentalmente em ambientes que

suportam diversas representagSes de design. A representacio do processo de design &, por si s6
um tépico de pesquisa, dado que esta ndo pode ser facilmente separada das politicas e dos
procedimentos do ambiente na qual se insere. Quatro aspectos do problema de software
design sdo enfocados nesta monografia: conhecimento sobre design, o produto do design,
histéria e justificativas do design e design cooperativo.

Palavras-chave
Software design, conhecimento sobre design, o produto do design, design cooperativo

ABSTRACT

The present report describes the joint research interests of the authors in the form of a
research agenda that refers to topics that are current research projects of their graduate
students. Their common investigation centers on the upstream design of software system
that requires the representation of a diverse network of design information. This network
encompasses all data relevant to the design process including postulated alternatives,
their resolution through decisions and rationale that ultimately leads to commitments.
Attention to the upstream has a significant impact on representation requirements and
the ideas developed about general aspects of the design process are evaluated
experimentally in environments that support different design representations. The design
process representation is itself a research topic since it cannot be easily decoupled from the
policies and procedures within the environment in which it is embedded. Four aspects of
the software design problem are addressed by the author's research agenda: knowledge
(aibout design, the design product, design history and design justification and cooperative

esign. :

Keywords

Software design, knowledge about design, the design produét, cooperative design

A Resedrch»Agendq on Sofiware Design

Carlos J.P. Lucena
Julio Cesar S.P. Leite
Daniel Schwabe
Hugo Fuks

Departamento de Informética
Pontificia Universidade Catélica do Rio de Janeiro
Rua Marqués de Sdo Vicente 225
Rio de Janeiro 22453 Brasil

March 91

ABSTRACT

The present report describes the joint research interests of the authors in the form of a research agenda
that refers to topics that are current research projects of their graduate students. Their common investigation
centers on the upstream design of software system that requires_the representation of a diverse network of
design information. This network encompasses all data relevant to the design process including postulated
alternatives, their resolution through decisions and rationale that ultimately leads to commitments. Attention
to the upstream has a significant impact on representation requirements and the ideas developed about general
aspects of the design process are evaluated experimentally in environments that support different design
representations. The design process representation is itself a research topic since it cannot be easily decoupled
from the policies and procedures within the environment in which it is embedded. Four aspects of the software

.- design problem are addressed by the author's research agenda: knowledge about design, the design product,
design history and design justification and cooperative design. : .

I. INTRODUCTION

The main purpose of the research outlined in the following agenda is to generate new
knowledge about the process of designing software artifacts. Software, as an artificial artifact is
strongly dependent on a good design. We see software design as the process taking a functional
specification and a set of nonfunctional constraints and producing a description of an
implementation from which source code can be developed [RUGA 90]. :

We follow Simon's objective view [SIMO 73] by which “design is concerned with
devising artifacts to attain goals”. Therefore we see design as a problem solving activity that aims at
proposing a solution that satisfies previously established goals.

In the process of software construction two metaphors are often used to characterize the
design process. One of them consists of comparing software design to a search space in such a
way that the process of software design is a search for a solution that satisfies pre-established goals
[SIMO 81], e.g., [ANDE 90]. The other metaphor characterizes software process as a chain of

decisions.

Software design is essential not only for the correct implementation of an artifact but
also for its future maintenance. It is a known fact that recording a software design is a difficult
task. In the software design activity not only it is difficult to formalize the software design product
as it is hard to formalize the design process and its rationale. One reason design information is lost
is that commonly used design representations are not expressive enough. While they are adequate
for describing the cumulative results of a set of decisions, particularly about the structure of
components and how they interact, they do not try to represent the incremental changes that come
with individual design decisions [RUGA 90]. o

Our research agenda comprises basic research aspects as well as experimentation
aspects. Basic research is oriented towards the formalization of the software design process
including situations in which it takes place in a cooperative setting and the characterization of the
semantics of reutilization of designs. We believe it is easier to reuse or adapt a generalized
component than a restricted one. Experimentation centers on the evaluation of formalized concepts

> .

of the upstream design in environments that support specific design representations.

The main foci of the research agenda are:
« knowledge about design

« the design product

« design history and justification

» cooperative design

2. KNOWLEDGE ABOUT DESIGN

In order to develop genuinely useful decision support systems for designers, one must
understand what designers do and the types of information they employ. Because design problems
are usually ill-defined [SIMO 73], problem solving may require that much more attention be
devoted to recognition/classification than is common for the well-defined problems typically
studied in problem solving research [ROUS 86]. In other words, problem formulation often is the
central issue in design, much more so than in most other forms of problem solving.

For the purpose of the present research agenda it is useful to describe the design
process in terms of four stages [ROUS 86]:

1. Formulation (or goal elaboration)
2. Synthesis (or design generation)
3. Analysis (or design evaluation)
4. Optimization

The design process involves a great interplay among the above stages and, in particular,
involves synthesis and analysis at multiple levels of detail and abstraction.

Although Software Engineering cannot be compared with more established engineering
_disciplines because of its general lack of solid foundations, it is already possible to identify a
number of established principles to guide effective software designs. Knowledge about the design
of software artifacts exists both with respect to specific implementation techniques and in
connection with some general design principles which have been observed in practice [FREE 83,
PARN 86]. The available knowledge needs to be represented adequately for the purpose of storage
and retrieval in design environments.

Our goal is to explore the above research aspect both from the point of view of
knowledge based system (KBS) as well as some more specific aspect of the problem such as
reutilization. As far as KBS's are concemed we shall be investigating knowledge representation
which are adequate for design artifacts and exploring at the same time the use of hipertexts for the
storage and retrieval of design related information.

Hypertext has been frequently used to support software design [CONK 88] POTT 88,
SCAC 90]. The usual approach is to define special types of nodes and links, which reflect
particular language for representing designs; this language will vary depending on the level of
design being modelled.

The Hypertext Design Model (HDM) methodology [GARZ 90a,b, SCHW 90] provides
a notation in which to define schemas of hypertext applications. In particular, it is possible to
define node and links types, as well as the browsing semantics associated to hypertext applications
built as instances of these schemas. HDM also allows the (partial) specification of hybrid (or semi-
formal [LAI 88]) systems, where it is possible to mix formal and informal representations.

. For these reasons, HDM may be used to specify and implement hypertextual support
for design. By using such a model, it will be possible to describe different design methodologies,
possibly oriented towards different Jevels of abstraction, using the same notation. It should also be
possible to provide coherent interfaces to environments supporting more than one methodology.
Furthermore, the generated hypertext applications will be more easily integrated with knowledge
based support for particular design methodologies.

3

As far as domain oriented reutilization [ARAN 89, NEIG 89] is concerned we are
investigating the organization and retrieval of software design following the DRACO [FREE 87,
NEIG 84] approach. Following this approach components are organized by application domain,
with several implementations associated to each domain, and are organized in a component's
library for the purpose of reutilization. The various implementations represent various design
alternatives for the same specification. ' o

The formalization of the process of retrieval and adaptation of software design is being
developed having as a basis a formal theory of metaphors [LUCE 88]. The theory is associated to a
representation in which designs are expressed as plans to allow for the choice of good candidates
for reutilization, given a specification. For the process of adaptation of design in situations where
perfect matches are found, a formal treatment is being developed based on the notion of
interpretations between theories. ' :

Design decisions are not made in isolation. Often, a solution is best expressed through
several inter-related decisions. Unless the interdependencies are explicitly documented, the unwary
design maintainer will fail to notice all the implications of a proposed change.

A model of specification for multiple participants treats the development of a
specification as a dialogue in which the participants negotiate, establish responsibilities and
cooperatively construct an overall specification [FINK 89]. The term dialogue, as generally used,
refers to a conversation or spoken interaction between two or more participants. The logical
framework developed for the cooperative development of specifications is being extended to deal
with the important new notion of cooperative design (participants producing a design in a
cooperative environment). The theoretical results produced in association with this research aspect
of upstream design will be incorporated in experiments that use different design representations as
the nucleus of cooperative design environments. :

3. THE DESIGN PRODUCT

When dealing with the design product itself it is important to recognize that it
constitutes an extremely complex web of interconnections. Therefore, the conceptual model of a
KBS that attempts to represent the software design product has to pay special attention to the
configuration management problem. In [FINK 90], this problem is treated using the
aforementioned multiple-participant dialogic model. '

To formalize the planning and management of configurations of software components,
a modal action logic is being used [ALEN 91]. The adopted logical formalism allows the
description and reasoning about changes of the structure (design changes), of the module
interdependencies viewed as dependencies between the interfaces of the communicating modules
(interface changes) and of the functional aspects of a high-level software system description. A
modal action logic is used to capture the change aspects of the high-level software descriptions
treated as theories in the logical framework. Reasoning about functional aspects of these
descriptions is achieved through the interaction of a theorem prover for the proposed metalogic
formalism with a theorem prover for reasoning about sequential programs.

Results in the formalization of configuration management will be used in the research
aspects related to KBS's (section 2). It will also influence the representation scheme used for
components within the DRACO paradigm, that is, we want to investigate how a formal system for
dealing with configurations may effectively help in the set-up of domain networks ‘and also
influence the data model for a components’ library with multiple implementation alternatives.

4. DESIGN HISTORY AND JUSTIFICATION

As pointed out by many researchers [POLL 83, GOLD 90, BAXT 90, FEAT 89, LEIT
91, PARN 86] the availability of a final representation of a Design Product is not sufficient. Design
history together with its justification are indispensable not only for the complete understanding of
the artifact to be implemented as well as for its future reuse and maintenance. Therefore, we would
like to be able to represent the design process that led to the elaboration of a given design product.

Our research related to the formalization of the design process concentrates in two
aspects. One aspect has to do with the definition of a meta-language for the formalization of the

' 4
software process [POTT 89]. The second aspect is concerned with a study related to the DRACO
paradigm which treats the meta-knowledge related to the design process as tactics [NEIG 84,
BAXT 90].

The research in a language to describe processes concentrates in the production of a
rigorous description of such a language together with its application in.case studies. The possibility
of modeling software process and in particular the design process will help characterizing history
of designs. Some believe that reutilization is only possible if dealt with at this level [GOLD 90,
SEPP 90]. Extensions to the language will allow the recording of justifications (as in [POTT 88]).

As far as the DRACO paradigm is concerned the process of transformation of
representations, either through vertical transformations (refinements) or through horizontal
transformations (transformations) captures the meta-knowledge involved in the choice of
alternatives through the notion of tactics [NEIG 89, BAXT 90]. These tactics make use of a very
simple language based in production systems. Following the directives contained in the tactics it is

possible to transform representations with the assistance of an automated environment. These
directives characterize the design process itself.

The application of a language for process description used as a basis for the application
of tactics enables greater flexibility for modeling and implementing practical environments driven
by the design process. '

5. COOPERATIVE DESIGN
Cooperative software design [MARC 90] may be carried out in at least two settings:

« Given a design methodology, add to it collaboration protocols to allow multiple
designers to interact and collectively carry out the design;

« Develop a design methodology that incorporates (as built-in primitives) the -
collaboration process.

In either case, very little work has been done up to now in investigating the protocols
used in cooperative design; that is still an open research area.

Regardless of the form of these protocols, the hypertextual support for this process
must be able to accommodate them. In fact, there seems to be some degree of similarity, as far as
primitives are concermned, between such support and support for interactive multimedia applications
- both must accommodate many agents, accessing simultaneously the hyperdocument, in
coordinated fashion. ’

The logical framework proposed in [FUKS 91] will be used to extend existing software
design methodologies by providing them with primitives that model cooperative design.

6. SPECIFIC RESEARCH TOPICS
o) Implementation of the Dialogue Reasoning System

The implementation of a Dialogue Reasoning System based on the notions of
commitment [FUKS 89], commitment calculus and commitment axioms - and legality - legality
axioms.

b) Extension of the Dialogue System to N-Party Dialogues

The current Dialogue Reasoning System is capable of dealing with two participants.
The extension of this system to a N-Party one is not a trivial step because of a variety of side
effects. We intend to use techniques originated from distributed systems specification methods to
bring about the envisaged extensions.

¢) Research in Cooperative Dialogue (to support cooperaﬁve design)

First we will look at the type of dialogue - interlocutors and scripts - that occurs in a
cooperative working environment for software design. Then, we will adapt and use the Dialogue
Reasoning System to represent and to reason with and about these cooperative dialogues.

5

A second line is to investigate the interactions with a multimedia hypertextual
application as an instance of a cooperative dialogue. '

d) Formalization of Design Producis for Configuration Management

_ Software system architectures need to be specified, together with interconnection and
interface definitions and the collection of families of multi-version modules that beleng to the
system. The module interconnection aspects of this high level software descriptions are used in the
system architectural design and configuration. The other aspects are used to help the maintenance
and management of families of multi-version modules. The whole high-level software system
description should also reflect the different granularity of the objects used for configuration
management, such as procedures, functions, data types, modules, subsystems and systems.

In this context the problem of maintaining configurations of evolving software systems
is a relevant one. Here it should be important to provide a formal basis for the existent notions of
systems architecture, formal notions of software systems integrity and mechanisms to control the
evolution of software systems structural and functional descriptions. The solution proposed adopts
alogical formalism that allows us to describe and reason about changes of structure (architectural
changes), the module interdependencies viewed as dependencies between the interfaces of
communicating modules (interface changes) and the functional aspects of a high-level software
system description. A modal action logic is used to capture the change aspects of the high-level
software descriptions treated as theories in the logical framework. Reasoning about functional
aspects of these descriptions is achieved through an interaction of a theorem prover for the
proposed metalogic formalism and a theorem prover for reasoning about sequential programs
[ALEN 91].

e) Interface Design and Application Software Design Produced From
Interfaces as Specifications ' ’

The User Interface Development System called Midas (for Merging Interface
Development with Application Specifications which allows interface/systems designers to develop
an application:specific user interface interactively, in a prototyping-oriented environment, while
refining the specification of the intended application itself. The interface/systems designer receives
expert advice on both interface and application software design principles, emerging from MIDAS’
knowledge base, and can also animate the intended user dialogue with the interface being designed
via an extensive set of visual programming aids.The generated interface can be further customized
by the end-user, by flexibly allowing the default appearance of the dialogue scenarios.
Furthermore, the application-specific end-user interface is also knowledge based. Its domain
knowledge covers user modeling and the application domain, in order to adapt itself dynamically to

different degrees of user familiarity with the application. from novice to experienced.

Both the interface code and the programming-in-the-large of the application code are
developed within an object-oriented framework. A proposal for a software life cycle model based
on the rapid prototyping of user interfaces as a means to refining the specification of the application
all the way down to the import-export list and module semantics specification for each and every
application module is also presented. The lifecycle model is rule-encoded in MIDAS’ knowledge
base. The interface/systems designer is guided by the interpretation of those rules. MIDAS aims to
provide a testbed for new ideas in human-computer interfaces, knowledge-based support of design
activities and life cycle models based on rapid prototyping of user interfaces [CABR 90}

f) An Approach to Software Reuse Based on a Formal Theory of Metaphors

This research topic examines the relationship between software reuse and a formal
theory of metaphors and analogies. We use a formal theory of metaphors as a metaphor for the
problem of software reusability. Metaphors use symbols belonging to a domain, called the source
domain, to refer to objects that belong to a possibly different domain, called the target domain. We
demonstrate by exemplification the viability of reuse when a systematic design method is applied in
both the source and the target domain [LUCE 88].

6

o) Formalization of the Software Design Process and its Application to
Methodologies for Software Design. »

The idea of this new research topic is to investigate how upstream design
considerations such as design justification, the recording of design histories and its reutilization can
be associated to various formal and semi-formal design methodologies (e.g. [SMIT 90].

A major problem in the design process is the loss of rationale and process information
[DUBO 87]. The recording of design decisions and their justifications requires a supporting -
technology to lessen the burden on the designer. We will study, using real cases, the applicability
of hypertext and knowledge bases for collecting, organizing and recording justification and
rationale. A candidate approach is the use of hybrid systems [GARZ 90b], combining knowledge-
based systems and hypertext. These types of systems open up the possibility of using multi-media
representations, that should be able to capture more “informal” aspects of design.

h) Draco's Redesign

The Draco prototype as built by Neighbors [Neighbors,84] is having its design
recovered [LEIT 91]. As of now the Parse, the Transformation, and the Refinement subsystems
were recovered and the Parse subsystem is going through a redesign process.

The Transformation library and the Tactics subsystem are the parts of Draco where
design is a major issue. Both the transformations (horizontal transformations) and the tactics are
knowledge sources for the design process within Draco. A transformation library contains
operational knowledge for use in the design process, mainly recording optimizations operations.. -
The Tactics subsystem encompass a production system like architecture where the rules are meta-
level design knowledge. The Tactics subsystem is used in Draco to drive the choice of which
components to use in the process of horizontal transformation (refinement).

A major redesign of the tactics subsystem, incorporating a tactics language [Goldberg
90, Baxter 90], is the principal objective of Draco's Redesign with respect to design issues. The
tactics language should be useable both for transformations and for refinements.

i) Experimental Desigh Components Library

In order to support our research with exemplars, we are planning to populate a
prototype library of design components. This library should contain different components in
different representations. A faceted classification scheme [GIRA 90] will be utilized for store and
retrieval of components. If possible, extra information about the design rationale [DUBO 87]
would be kept together with the components.

The expected outcome of this line of action, besides the exemplars organized as library
of components, is the seed for a design knowledge base. This knowledge base should be both
domain specific as related to applications and broad with respect to meta level knowledge of design
(general tactics).

7. REFERENCES

[ALEN 91] Alencar, P.S.C.; Lucena, C.J.P.; “A Logical Framework for Evolving Software
Systems”, to appear.

[ALEN 88] Alencar, P.S.; Lucena, C.J.P. Métodos Formais para o Desenvolvimento de
Software. Buenos Aires, Kapeluss, 1988.

[ANDE 89] Anderson, J.S., Fickas, S., “A Proposed Perspective Shift: Viewing Specification
Design as a Planning Problem”, 5th IWSSD, ACM SIGSOFT, vol.l4, 3, May
1989. ‘

[ARAN 89] Arango, G., “Domain Analysis From Art Form to Engineering Discipline”, Fifth
IWSSD, ACM SIGSOFT Engineering Notes, vol. 14, n* 3, May 1989.

[BAXT 90] Baxter, L. Transformational Maintenance by Reuse of Design Histories, Ph. D.
thesis, University of California, Irvine. Dept. of Information and Computer
Science. Tech. Report 90-36.

[CABR 90]

[CONK 88]

[DIAZ 87]

[DUBO 87}
[FEAT 89]
[FINK 89]

[FINK 90]
[FREE 83]

[FREE 87]

[FUKS 89]
[FUKS 91]
[GARZ 90a]
[GARZ 90b]
[GIRA 90]
[GOLD 90]

[LAT 88]

[LEIT 91]

[LEIT 91]

7
Cabral, R.H.B.; Campos, IL.M.; Cowan, D.D.; Lucend, C.J.P.; “Interfaces as

Specifications in the MIDAS User Interface Development System”, ACM Software
Engineering Notes, Vol.15, 4 , Apr.1990. :

Conklin, J.; Begeman, M. L.; “gIBIS: A Hypertext Tool for Exploratory Policy
Discussion”, ACM Trans. Office Information Systems 6 (1988) 303-331

Prieto-Diaz, R., Freeman, P., “Classifying Software For Reusabality”, 1EEE
Software, Jan. 1987. '

Dubois, E.; van Lamsweerdee, A., “Making Speciﬁcation Processes Explicit”, 4th
TWSSD, April 3-4 1987, Monterey, California, USA, Computer Society Press.

Feather, M.S., “Detecting Interference When Merging Specification Evolutions”,
5% IWSSD, ACM SIGSOFT, vol.l4, n* 3, May 1989.

Finkelstein,A.; Fuks H.; “Multi-party Specification”, Proceedings 5th International
Workshop on Software Specification & Design, pp 185-195, IEEE CS Press, 1989.

Finkelstein, A.; Fuks, H.,”Conversation Analysis and Specification”, Computers

‘and Conversation, ed. P. Luff, N. Gilbert & D. Frohlich, pp 173-186, Academic

Press.

Freeman, P., Fundamentals of Design. Tutorial on Software Design Techniques 4th
ed. Peter Freeman and Anthony Wasserman (editors), IEEE Computer Socienty,
1983. ‘ _

Freeman, P,. Conceptual Analysis of the Draco Approach to Constructing Software
Systems. IEEE Trans. on Soft. Eng., SE-13.7, Jul 19897.

Fuks, H.; Ryan M. & Sadler, M. ,”Outline of a Commitment Logic for Legal
Reasoning, Proceedings 3rd International Conference on Logics, Informatics and
Law, Florence 2-5 Nov. 1989.

Fuks, H.; “Negotiation using Commitment and Dialogue”, PhD. Thesis,
Department of Computing, Imperial College, University of London, Feb. 1991.

Garzotto F., Schwabe,D.; Paolini P.;, “HDM - A Model Based Approach to
Hypermedia Application Design”, submitted to ACM - TOIS, November 1950.
Also available as Technical Report 90-75, Dipartimento di Elettronica, Politecnico di
Milano, Nov. 1990. :

Garzotto F., Schwabe,D.; Paolini P.; “New Perspectives For Hypertext Using
Model-based Application Design”, submitted to Hypermedia. Also available as
Technical Report 90-76 Dipartimento di Elettronica, Politecnico di Milano, Nov.
1990. '

Girardi, M.del R.; Price, R.T., “Especifica¢do de uma Ferramenta de Apoio a.
Reutiliza¢do de Software no Desenvolvimento Orientado a Objetos”, Anais do 4°
Simpésio Brasileiro de Engenharia de Software, Sociedade Brasileira de
Computagio, Sdo Paulo, Out. 1990.

Goldberg A., “Reusing Software Developments”, IV Symposium on Software
Development Environments, ACM SIGSOFT, vol. 15, n* 6, Dec. 1990.

Lai,K.Y.; Malone, T.W.; “Object Lens: A “Spreadsheet” for cooperative work:,
Proceedings of the ACM Conference on Computer Supported Cooperative Work,
Portland, Oregon, 1988. .

" Leite, J.C.S.P., Investigacio e Exploragdo do Paradigma Draco. Monografias em

Ciéncias da Computagdo, Dept. de Informdtica, PUC-RIO (to appear), 1991.

Leite, J.C.S.P.; Prado, A., Design Recovery: A Multi-Paradigm Approach,
Monografias em Ciéncias da Computagdo, Dept. de Informdtica, PUC-RIO (to
appear), 1991. ‘

[LUCE 87]
[LUCE 838]
[MARC 89]

[MINS 90]

[NEIG 84]

[NEIG 89]

[PARN 86]
[POTT 88]

[POTT 89]
[ROUS 86]

[RUGA 90]
[SCAC90]

[SCHW 90]

[SEPP 90]

[SILV 88]

[SIMO 81]
[SIMO 73]

[SMITH 90]

8

Lucena, C.J.P. Inteligéncia Artificial e Engenharia de Software, J. Zahar. Rio de
Janeiro, 1987.

Lucena C.J.P.; Silva, J.R.; “An Approach to Software Reuse Based on a Formal
Theory of Metaphors”, Tech.Rep. 14/88, Computer Sc%ence Dept., PUC-Rio, 1988.

Marca, D.A., “Specifying Coordinators: Guideline for Groupware Developers”, 5%
IWSSD, ACM SIGSOFT, vol. 14, n* 3, May 1989.

Minsky, N.; Rozenshtein, D., “Configuration Management by Consensus: An
»”

Application of Low Governed Systems”, ACM Symposium on software
Development Environments, ACM SIGSOFT, vol.15, n* 6, Dec. 1990.

Neighbors, J., The Draco Approach to Constructing Software from Reusable
Components. IEEE Trans. on Software Engineering, SE-10 (Sep. 1984), 564-573.

Neighbors, J.M., “DRACO: A Method for Engineering Reusable Software
Systems”, in software Reusability, vol I, ed. Ted J. Biggers Kaft and Alan J. Pelis,
ACM Press, 1989. .

Pamnas, D. ; Clements, P. A Rational Design Process: How and Why to Fake It.
IEEE Trans. on Soft. Eng., Feb. 1986.

Potts, C.; Bruns,G.; “Recording the Reasons for Design Decisions”, Proceedings
of the Xth International Conference on Software Engineering, 1988.

Potts, C., “A Generic Model for Representing Design Methods”, X1 International
Conference on Software Engineering, IEEE Computer Society, Pittsburgh, USA,
May 1989. '

Rouse, W.B.; “On the Value of Information is System Design: A Framework for
Understanding and Aiding Designers”, Information Processing and Management,
Vol.2, n* | 1986.

Rugaber, S.; Ormburn,S.B.; Leblanc,R.J.; “Recognizing Design Decisions in
Programs, IEEE Software, Jan.1990.

Scacchi, W.; Garg, P.X., “A Hypertext System to Manage Software Lifecycle
Documents”, IEEE Software, Vol. 7, 3, May 1990.

Schwabe, D.; Caloini, A.; Garzotto, F.; Paolini, P., “Hypertext development using
a model-based approach”, Technical Report 90-74, Dipartimento di Elettronica,
Politecnico di Milano, Nov. 90. Submitted for publication to Software Practice &
Experience.

Seppénen, V. Acquisition and reuse of knowledge to design embedded software,
Technical Research Centre of Finland, VTT-Publications 66, 1990.

Silva, J.R.; Lucena, C.J.P. Um Novo Paradigma para o Problema de Reutiliza¢o
de Software, Monografias em Ciéncias da Computagdo, Dept. de Informdtica,
PUC-RIO , MCC 14/88, 19838.

Simon, H.A., “The Sciences of the Aurtificial”, 2nd ed., Cambridge, MA:MIT Press

1981,

Simon, H.A.; “The Structure of IIl Structured Problems”, Arificial Intelligence 4,
1973.

Smith, D.R., “KIDS: A Semi-Automatic Program Development System”, IEEE
Transactions on Software Engineering, vol. 16, 9, Sept. 1990.

