Monografias em Ciéncia da Computacao
ne 12/92

A Denotational Approach for Type-Checking
in Object-Oriented Programming Languages

Roberto lerusalimschy

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22453
RIO DE JANEIRO - BRASIL

PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computacdo, N2 12/92
Editor: Carlos J. P. Lucena Abril, 1992

A Denotational Approach for Type-Checking
in Object-Oriented Programming Languages*

Roberto lerusalimschy

*

This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In chargé of publicationss®

Rosane Teles Ling Castilho

Assessoria de Biblioteca, Documentaciac & Informagio
PUC Rio -~ Departamento de Informdtica

Rua Marquls de 530 Vicente, 225 -~ Gdvea

22453 - Rio de Janeiro, R.J

Brasil

Tel. . (H21)529-9386 Telens34078 Faxs(024)511-5645
E-mailirosanedinf.puc—rio.br

Abstract

This paper proposes a method to check type safety in object-oriented programming languages.

Our first step is a formal definition for “type safety”. Following the object-oriented tradition, we assume
that the only visible part of an object is its interface, that is, the operations it exports. This leads us to
define type error as the sending of a message to an object that has no method for it. A type safe language is
one that can ensure, at compile time, the absence of such errors during the execution of a correct program.

Our next step is the definition of an illustrative language, called School. School has multiple inheritance,
recursive types, late-binding, etc. Moreover, it has separate hierarchies for types and classes: subtyping
means compatible signatures, while subclassing means code reuse. [JFollowing an informal description, we
present a complete denotational semantics for our language.

The main section of the paper is a formal proof that correct School programs run without type errors,
that is, School is a type safe language. We start defining correct memories, which are memories where all
variables have objects with appropriate types, and proceed showing that correct expressions and methods
preserve memory correctness. Together with this, we prove that, in a correct memory, an object always has
methods to handle the messages it can receive.

Although we have applied the method in an illustrative language, it can as well be applied to most OOPLs
in the Simula tradition, like C++ or Eiffel. Obviously, as such languages are not well typed, the complete
proof would be impossible. Nevertheless, the formalization of those concepts can bring light to many hidden
aspects of a language.

Keywords: Semantics of Programming Languages, Type Systems, Object Oriented Programming.

Resumo

Este artigo propde um método para verificagio de seguranga de tipos em linguagens de programagao
orientadas a objetos.

Nosso primeiro passo é uma defini¢do formal para “seguranca de tipos”. Seguindo a tradigdo de orientagio
a objetos, assumimos que a tdnica parte visivel de um objeto é sua interface, isto ¢, as operagdes que ele
exporta. Isto nos leva a definir erro de tipo como o envio de uma mensagem para um objeto que nao tem
um método adequado para trati-la. Uma linguagem com seguranca de tipos é uma linguagem que pode
assegurar, em tempo de compilagdo, que programas corretos executario sem erros de tipo.

Nosso préximo passo é a definicdo de uma linguagem ilustrativa, chamada School. School oferece heranga
multipla, tipos recursivos, “late-binding”, etc. Além disto, tem hierarquias separadas para tipos e classes:
subtipagem significa compatibilidade de assinaturas, enquanto subclasses sdo usadas para reutilizagio de
c6digo. Apds uma descrigao informal, apresentamos uma semantica denotacional completa para nossa lin-
guagem.

A secdo principal do artigo é uma prova formal de que programas School corretos executam sem erros
de tipo, isto €, School é segura. Comecamos definindo memérias corretas, que sao memorias onde todas as
varidveis tem objetos com tipos apropriados, e prosseguimos mostrando que expressdes e métodos corretos
preservam a corre¢ao da meméria. Junto com isto, provamos que, em uma memoria correta, um objeto
sempre tem métodos para tratar as mensagens que ele pode receber.

Apesar de termos aplicado 0 método a uma linguagem ilustrativa, o método pode também ser aplicado
na maioria das LPOOs na tradi¢io de Simula, como C++ ou Eiffel. Obviamente, como tais linguagens nio
sao bem tipadas, uma prova compelta seria impossivel. De qualquer modo, a formalizacio destes conceitos
pode iluminar muitos aspectos obscuros de uma linguagem.

Palavras-chave: Semantica de linguagens de programagao, Sistemas de Tipos, Programacio Orientada a
Objetos.

A Denotational Approach for Type-Checking in Object-Oriented
Programming Languages

Roberto lerusalimschy
Pontificia Universidade Catélical— Rio de Janeiro
roberto@inf.puc-rio.br

April 24, 1992

Abstract

Starting with a pragmatical (but formal) definition of type in object-oriented languages, this
paper proposes a method to test type safety in this kind of language. We say that a language
is (type) safe if it ensures that, during the execution of a correct program, every message sent
to an object is matched by an appropriate method.

We define a “typical” object oriented programming language, featuring multiple inheritance,
recursive types, and separation between specifications and implementations. Then, we give a
formal definition for its type system, and a denotational semantics for the execution of the
language, based on message passing. Finally, we formally prove that our language is type safe.

Along the work, better understanding is gained about many problems related with type
systems in object-oriented languages.

Keywords: Semantics of Programming Languages, Type Systems, Object Oriented Pro-
gramming.

1 Introduction

In recent years, there has been a great interest in type systems for Object-Oriented programming
languages (OOPL). This field has received important results from groups working towards formal
grounds, addressing issues like data abstraction [7], inheritance and subtyping [5], recursive types
[1], etc. Also, there have been many contributions on a more practical side. Almost every language
presents its own concept of type system, differing from others in points like single x multiple
inheritance (e.g. Beta [15] x CommonLisp [4]), separate hierarchies for types and classes (e.g. Pool
[2] and DuoTalk [16]), possibility of redefinition of signatures of inherited methods (e.g. C++ [10]
does not allow, while Eiffel [17] does), and many other topics.

Usually, the formalization of OO type concepts is done by translating these concepts into a more
“formal” language, like typed lambda calculus or an algebraic framework [9]. Some advantages of
this approach are the use of a simple and well understood framework and the possibility of isolating
the concepts object of the study. Moreover, the concept of type in these frameworks is more exactly
defined than in most programming languages.

However, some of those pros are also cons. Frequently, results developed in an applicative
language are not easily translated back into an imperative language, category that includes most of
the widely-used OOPLs (like Smalltalk [13] and C++). Moreover, most OO characteristics are not
orthogonal; for example, [7] studies abstract types with inheritance (without recursive types), while
[1] discusses the interaction between recursive types with subtyping (but without data abstraction).

In this paper we propose an alternative approach for formalizing OO type systems, wherein
we can study aspects of “real” OOPLs. This approach assumes a denotational description of the

1

language, and proceeds by proving that the language is “well-typed”. In order to do that, our fist
step is an appropriate definition of type.

In object-oriented programming languages, objects carry their own operations, and these oper-
ations are the only visible part of an object; the only thing one can do with an object is to send a
message to it. So, if we want to characterize types as, for example, “a collection of values sharing
a common structure or shape”!, we should use only the operations as the visible structure of an
object. Therefore, a good definition for types in OO languages is that the type of an object is
its interface, that is, its collection of operations.? Following the above definition of type, we can
say that a type error in an OO program is the sending of a message to an object that has no
method for it.® Statically typed languages are those that can ensure the absence of such errors by
a type-checking procedure performed during compile-time.

The remaining of the paper is devoted to show how one can prove that an QOPL is statically
typed, using our approach. Along the work we will adopt VDM [14] as our formal language.
The next section presents a somehow typical language, called School. This language follows the
imperative tradition, and includes features like multiple inheritance, freely recursive types, the
pseudo-variable Self, and late-binding. Section 3 gives a denotational description of the type system
of School. In section 4 we describe the run-time behavior of a School program, following an approach
similar to [18]. Section 5 is the main part of the paper, and presents a formal proof that correctly
typed programs run without “message not understood” errors. Some extensions for our language
are presented in section 6. Finally, section 7 exposes some interesting conclusions we have arrived
during this work.

2 The School Programming Language

A program in School is composed by a sequence of modules. Each module defines a specification
(type) or an implementation (class). A specification defines the interface of an object, that is,
the operations it must export, and lists its supertypes. That list is used to build the specification
hierarchy, which defines type compatibility along the language. Implementations, on the other
hand, define the internal structure of objects, like their internal variables, and code for the various
operations (methods).

An specification module has the following syntax?:

Type typeName
{Subtype of superTypeName
[redefine opName {, opName}] }
{Function functionName ({parameter}) :, resultType ; }
End typeName

Each type can have multiple supertypes. Each “Subtype of ” declaration includes th operation
definitions from the supertype into the new specification. Every operation is included, 'nless its

'[1], pp. 104

?Most OOPLs, like Simula [3], Beta, C++, and Eiffel, identify classes with types; few, like Smalltalk { without a
concept of type) and Pool [2], do not. This identification implies that types are not really abstract, because their
internal structure can be used to differentiate them. Therefore, this work considers types and classes as tw: different
concepts. Nevertheless, we can easily model that identity assuring a one-to-one correspondence between types and
classes.

3What is called a “message not understood” error in Smalltalk.

*As usual, “{ }” means 0 or more repetitions, and “[]’ means an optional item.

name is in the redefinition list; in this case the new specification must provide a (re)definition for
the operation. Whenever an operation is redefined, the new definition must be “compatible” with
the old one. To be compatible means that the result type of the new definition must be a subtype of
the old result type, and the parameter types of the old definition must be subtypes of the respective
parameter types of the new definition.5

After the hierarchy declarations, follow the operation definitions. These definitions include the
new versions for redefined operations. In order to keep simplicity, we assume that an operation
always has a result type, that can be Void® when the operation has nothing else to return. A
parameter in a function definition has the form name : typeName.

Any clash between operation names inherited from different supertypes, or between an inherited
operation and a local one, is considered an error (that is, the meaning of the specification module is
undefined). Notice that this remark does not apply for operations in the redefinition list, as these
operations are not inherited. Specifically, if two or more supertypes have operations with equal
names, but all these operations are redefined, there is no conflict. In that case, the new unique
definition must be compatible with all old versions.

A note about recursive definitions: School, as most object oriented languages, supports recursive
types. So, function definitions inside a specification can refer to names of types not yet defined.
However, School, again as most OO-languages, does not allow cycles in the inheritance graph. To
avoid that possibility, a type must have been already declared in order to be used as a supertype.

An implementation module is written as:

Implementation implementationName : typeName
[Subimplementation of {implementationName}]
{Var varName : typeName ; }

{Function opName ({parameter}) : resultType
expression }
End implementationName

Every class implements an explicit type, which is named in the beginning of the module, after
the implementation name. This type is also the type of the pseudo-variable Self (see below).
The “Subimplementation of ” declaration states the superclasses of the implementation. This
declaration makes available all methods and variables from the superclasses. All inherited variables
and methods must have distinct names, but the methods can be overwritten by new ones. An
implementation can also declare new instance variables for the objects of that class, and new
operations. These operations have free access to the new instance variables and the inherited ones.

As usual in object oriented languages, inside every class there is an implicit declared pseudo-
variable” named Self that always refers to the ob Ject executing that method. In order to properly
type Self the type of an implementation must be a subtype of the types of its superclasses.

School is an expression-oriented language. That means that different levels of command struc-
ture are merged into the single level of expressions. In particular, the body of a function is also an
expression, and the value returned by a function is the value of its body.

An expression can be any of the following options:

. Self

. nil

5Concepts like compatibility are formally defined in section 3.
8The type Void is a proper supertype of all other types, and has no operations.
"Self is not a real variable because one can not assign a value to it.

. varName := expression

. while expression do expression’

o if expression then expression’ [else expression’’]
° varName

° expression.opName ({expression})

. new implementationName

° block

Unlike more conventional programming languages, School does not assign a type for each ex-
pression; instead, it defines when an expression satisfies a type. The main reason for this shift of
emphasis is the if expression. In a language with multiple inheritance, like School, not all pairs of
types have a unique common supertype. Therefore, there is no single type that we can assign to an
if expression without being too much restrictive. Another reason is the nil expression: although it
satisfies any type, there is no type to denote it. From now on, whenever we say “the expression I
has type t” we mean “the expression E satisfies any supertype of t”.

The expression nil denotes a predefined value, and it satisfies all types. This value is the default
initial value for all variables. An assignment has the usual meaning in object oriented languages,
that is, the expression evaluates to an object, and a reference to this object is stored in the variable.
The final value of an assignment is the result of the expression. The type of the cxpression must
satisfy the type of the variable, and the assignment itself has the type of the variable.

To avoid the introduction of a type boolean inside the language, while and if test for a nil
value.® A while expression executes its second expression while the first one is different from nil; it
only satisfies the type Void. An if expression evaluates its first expression; if the result is different
{rom nil, it evaluates expression’; otherwise, expression’’ is evaluated. Anyway, the final value
of the expression is the value of the last evaluated expression. An if expression satisfies any type
that is satisfied by both expression’ and expression’’.

Next we have function calls (or message passing). This expression calls the operation opName
from the object that results from the first sub-expression, passing the values of the expression list as
parameters. There must exist a type satisfying the first expression which has an operation named
opName. That operation must have the same number of parameters as supplied, and each actual
parameter must satisfy its respective formal parameter. The whole expression has the type of the
result type in the operation definition. ,

In order to create new objects, we use the new expression. The result of this expression is a new
object of the class implementationName, and it has the type associated with that implementation.

The last kind of expression is a block, that allows the declaration of local variables and sequential
execution of expressions. A block has a declaration section followed by a list of expressions, and
its value is the value of its last expression:

[Declare
{Var varName : typeName}]
Begin

{expression ;} expression
End

8 Notice that, even without any predefined types other than Void, School is computationally complete. In partic-
ular, a boolean type can be declared and implemented in the language, with all expected operations.

Abstract Syntax

In order to simplify the formal definitions in the next sections, we will not use the syntax presented
above for our language. Instead, we define here an abstract syntax, equivalent to the previous one,
but without concrete details like reserved words and semi-colons. We assume the existence of a
primitive type Name, that corresponds to identifiers.

TypeDec :: name. : Name
superTypes : SuperType*
functions : FunctionHead*

SuperType :: name : Name
\ redef : Name*

FunctionHead :: name : Name
result : Name
parameters : VarDeclaration*

VarDeclaration :: name : Name

lype : Name
ImplementationDec :: name : Name
type : Name

superClasses : Name*
vars : VarDeclaration*
functions : Function*

Function :: header : FunctionHead
body : Erpression

Ezpression = Self | nil | Assignment | WhileEzp | IfEzp | VarEzp |
FunctionCall | NewEzp | Block

Assignment :: var : Name
exp : Ezpression

WhileEzp :: cond : Ezpression
do : Ezpression

IfEzp :: cond : Ezpression
then : Fzpression
else : Ezpression

VarEzp :: var : Name

FunctionCall :: recewer : Fzrpression
opName : Name
parameters : Fzpression*

NewEzp :: impl : Name

Block :: decl : VarDeclaration*
exps : Fzpression*

Finally, we can define a whole program as a sequence of specifications, then implementations,
and an expression to start its execution.
Program :: specs : TypeDec*
impl : ImplementationDec*
exp : Expression

3 The Type System of School

In the previous section we have described the language School. However, many type related con-
cepts, like compatibility and subtype, were not precisely defined. Here we put the type system in a
formal ground, using VDM. The main goal of this section is to provide two functions: the first one,
applied to specifications, returns their denotation. The second one ranges over implementations,
and returns a boolean indicating if that implementation is type correct or not.

School adopts a kind of name compatibility for types. That means that two types are considered
equivalent if and only if they have the same name.? Moreover, a type is considered a su btype of
another one only when there are declarations asserting that. Therefore, all types in a program can
be denoted by their names, and we will use a type environment to associate those names with the
actual type descriptions.

The first definitions are the domains to express names; all of them are equal to Name, introduced
in the previous section. The use of different identifiers is only a matter of clearness.

TypeName = OpName = ImpName = Name

We assume the existence of one constant, Void, belonging to this type. Void is (the name of) the
type without operations, and is a supertype of any other type.

A specification signature is a set of operations, each one with an arity. This can be modeled by
the following types:

Arity v result : TypeName
parms : TypeName*

Signature = OpName = Arity
A type consists of its signature plus a record of its supertypes:
Type :: sig : Signature
superTypes : TypeName-set

To keep track of all types in a program, we declare a type environment, that maps all type
names into their definitions:

TypeEnv = TypeName -~ Type

where

im € TypeName — N -
domm = dome A V¢ € dome - Vst € superTypes(e(t))-
st € dome A m{st) < m(t)

inv-TypeEnv(e) £ e(Void) = mk-Type({},{}) A

°This option can be contrasted with structural compatibility, where two types are equivalent if they have the same
structure. Section 6 shows how to adopt structural compatibility in School.

The invariant of TypeEnv avoids the existence of loops in the hierarchy. In order to do that, it
assigns a natural number for each type name, through the map m, and ascertains that supertypes
have smaller numbers than its subtypes. It also ensures that all supertype names have a definition in
the environment. The constant Void needs special treatment, to assure that it is always available,
without operations and without supertypes. The fact that all types have Void as supertype must
be dealt as a special case (see function subtype).

Variable declarations can be easily modeled by the following map:

VarEnv = Name -2 TypeName

A similar environment can be used to carry type information about implementations:
Implementation :: type : TypeName
superClasses : Name-set
vars : VarEnv
sig : Signature
bodies : Function*

ImpEnv = Name = Implementation

where

inv-ImpEnv(ie) A
dm € ImpName = N - domm = dom ie A
Vi € domie - Vsc € superClasses(ie(i)) -
sc € domie A m(sc) < m(7) A vars(ie(sc)) C vars(ie(s))

In the above structure, the fields vars and sig store all attributes for that class, including the
inherited ones, while the field bodies stores only the new operations. The invariant assures that
an implementation has all variables from its superclasses, with the same types. It also assures the
absence of loops in the hierarchy, like inv- Type Env.

A complete environment joins together specifications, implementations, and variables:

Env :: tEnv : TypeEnv
iEnv : ImpEnv
vEnv : VarFEnv

After defining the necessary domains, we can start the definition of some useful functions. The
first one defines the subtype relation:
subtype : TypeName x TypeName x TypeEnv — B
subtype(tl,t2,te) A& t2=VoidV i1 =12V
3t € superTypes(te(tl))- subtype(t, t2, te)

Notice that the invariant of TypeEnv assures the correctness of the recursion. It is easy to check
that, for any given environment, subtype is transitive, reflexive and anti-symmetrical.
The subclass relationship is defined in a similar way:

subclass : ImpName x ImpName x ImpEnv — B
subclass(il,i2,7e) & il=142VvIiec superClasses(ie(il)) - subclass(i, 12, te)

Another useful predicate describes compatibility between arities; it returns true if sl is a sub-
arity of s2 in an environment te.
subArity : Arity X Arity X TypeEnv — B

subArity(al, a2,te) A4
subtype(result(al), result(a2), te) A len parms(al) = len parms(a2) A
Vi € inds parms(al) - subtype(parms(a2)(i), parms(al)(i), te)

The next predicate checks compatibility between signatures:

subSignature : TypeName x TypeName x TypeEnv — B

subSignature(tnl, in2,te) 4
let s1 = sig(te(tnl)), s2 = sig(te(tn2)) in
dom s2 C dom s1 A Vf € dom s2 - subArity(s1(f), s2(f), te)

The above predicates have the following informal translation: A function f1 is compatible (sub-
Arity) with f2 if the body of f2 can be a call to f1, passing straight the input parameters into
f1 and returning the result value from f1. A type t1 is compatible with a type 2 if {1 exports
all operations that ¢2 exports, and each of these operations in ¢1 is compatible with its equivalent
in 2. Again, it is an easy exercise to prove that both predicates are reflexive, transitive, and
anti-symmetrical.

In order to ease the definition of the denotational functions, we define some auxiliary functions
to manipulate syntactic structures. Most of them only change formats, from some kind of sequence
to some kind of map.

param Type : VarDeclaration* — TypeName*

paramType(p) £ if p =[] then [] else cons(type(hd p), param Type(tip))

fh: FunctionHead — Signature
fh(h)y & {name(f)— mk-Arity(_'result(f),pammType(pammeters(f)))}

heads : FunctionHead™ — Signature

heads(h) & if b = []then {} else fh(hd h) U heads(tlh)

heads’ : Function* — Signature

heads'(h) & if h =[] then {} else fh(header(hd h)) U heads'(tl h)

st : Super Type* — (TypeName — OpName-set)
st(s) & ifs=/[]then {} else {name(hds) — elems redef(hd s)} U st(tl s)

vd : VarDeclaration™ — VarEnv

vd(v) & if v.=[]then {} else {name(hd v) — type(hd v)} U vd(tiv)

Notice the use of the U operation to join those maps. This assures that programs with an identifier
declared twice have no correct denotation.

An important feature of our language is that it allows free recursion among types. In order
to accommodate this requirement, the “type checking” is divided in two passes. The first pass
(done by functions type and types) checks only inheritance, and creates a TypeEnv with all types
in the program. Then the second pass applies the function checkTypes to ensure that all operation
redefinitions are consistent.

type : TypeDec X TypeFEnv — Type

type(t,te) &
let sts = st(superTypes(t)),f = heads(functions(t)) in
if dom sts C domte A (Jrng sts C dom f
then let ' = |, c dom 51 (515(5t) < sig(te(st))) in
mk-Type((f' U f), dom sts)
else Error

This function deserves some explanations. The if condition is a conjunction of two terms: the first
one checks that all supertypes are already declared, while the second term assures that the new
type supplies definitions for all functions whose names belong to a redefinition list. If that test is
satisfied, we can create the new type. In f’ we join all operations from supertypes that were not
redefined, and so the union of f* with f has all operations of the new type (inherited and new ones).
Again, the use of unions over maps assures there is no name clash among the operations inherited
from different supertypes, or between inherited and new ones.

When we have a sequence of specifications, we can create an appropriate environment with the
following function:

types : TypeDec* x TypeEnv — TypeEnv

types(tl, te) &
if tl =[]
then te
else let te’ = te U {name(hd tl) — type(hdtl, te)} in
types(tltl, te’)

The function checkTypes ensures that every type is compatible with its supertypes:10

checkTypes : TypeEnv — B

checkTypes(te) &
Vn € domte - Vst € superTypes(te(n)) - subSignature(n, st, te)

The above function only checks compatibility with direct supertypes. The following lemma assures
that every type is compatible with all its supertypes:

Lemma 1 In a correct type environment, every type has a signature that is a subsignature from
the signature of its supertypes. Formally:

checkTypes(te) = Vtl,t2 € domte - subtype(t1, 12, te) = subSignature(t1, {2, te)

1%7n fact, by the way we build each type, it is already known that every type provides all operations exported by its
supertypes. Moreover, operations which were not redefined are trivially compatible. Therefore, the only real check
performed by checkTypes is that the redefinitions are consistent.

Proof: The proof is by (strong) induction over the natural numbers assigned to each type name in
the invariant of TypeEnv. If t1 = ¢2 or {2 = Void, the result is trivial. Otherwise, if ¢1 is a subtype
of {2, there must be a t € superTypes(te(t1)) such that ¢ is a subtype of {2. By the invariant of
te, the number assigned to ¢ is smaller than the number assigned to t1, and so we can use the
induction hypothesis to conclude that subSignature(t,12,te). By the definition of checkTypes we
also know that subSignature(tl,t,te). Finally, from the transitivity of subSignature, we infer * 1at
subSignature(t1,12,te). |

Our next step is to build semantic functions for implementations. To allow free recursion a- ong
implementations we follow the same approach adopted with specifications: a first pass to ¢ .ect
all implementations and take care of inheritance (that can not be recursive), and a second pass
checking correctness.

The first pass is done by the functions inherimp and imps. The first function returns a new
environment including the given implementation. The implementation is stored with the fields vars
and functions augmented in order to include the inherited attributes.

inherImp : ImplementationDec x ImpEnv — ImpEnv

inherImp(mk-ImplementationDec(n, t, sc,v,f),ie) &
if elems sc C dom ze
then let v/ = allVars(sc,ie) U vd(v) in
let sig = allFuncs(sc,ie) heads'(f) in
ie U {n ~ mk-Implementation(t,elemssc, v, sig, f)}
else Error

Notice the use of U and { defining whether overwriting is allowed or not. In the above definition,
allVars and allFuncs are auxiliary functions that return all inherited attributes of an implementa-
tion, given its superclasses:

allVars : Name* x ImpEnv — VarEnv

allVars(nl,ie) 2 if nl =[] then {} else vars(ie(hd ni)) U allVars(tinl, ie)

allFuncs : Name* x ImpFEnv — Signature

allFuncs(nl,ie) & if nl =[] then {} else sig(ie(hd nl)) U allFuncs(tinl, ie)
The function imps joins a list of implementations:

imps : ImplementationDec* X [mpEnv — ImpEnv

imps(il,ie) & if il =[] then ie else imps(tlil, inherfmp(hd il, ie))

Finished the first pass, we turn our attention to how to check the implementations. In an
implementation we must assure three facts: that all superclasses have appropriate types, that the
implementation provides all functions (with correct arity) specified by its type, and that every new
function is correctly typed.

typelmp : ImpName x TypeEnv x ImpEnv — B
typelmp(n, te,te) 4

let mk-Implementation(t, sc,v,sg, b) = ie(n) in

(Vs € sc - subtype(t, type(ie(s)),te)) A

sg = sig(te(t)) A Vf € elems b - typeFunction(f, te, ie, n)

10

checkImps : TypeEnv x ImpEnv — B
checkImps(te,ie) & Vn € domie - typelmp(n, te, ie)

To check a function, we check if its body satisfies its result type; the body is evaluated in an
environment augmented with the formal parameters:

typeFunction : Function x TypeEnv x ImpEnv x ImpName — B

typeFunction(mk-Function(h, b), te, ie,n) &
let env = mk-Enuv(te, ie, vd(parameters(h))) in
typeEzp(b, env, n, result(h))

Now we need a function that checks if an expression satisfies a type in a given environment.

typeEzp : Expression X Env x ImpName x TypeName — B

typeExp(ex, env,in,t) &
cases ez of
Self — subtype(type(iEnv(env)(in)),t, tEnv(env))
) nil — true
mk-NewEzp(n) — subtype(type(iEnv(env)(n)),t, tEnv(env))
mk-VarEzp(n)— typeVarEzp(ez, env, in, t)
mk-Assignment(n, ex’) — typeAssignment(ez, env, in, t)
mk- WhileEzp(ex’, ex') — type WhileExp(ez, env, in, t)
mk-IfEzp(ex’, ex”, ex") — typelfEzp(ez, env,in, t)
mk-FunctionCall(r, 0, p) — typeFunctionCall(ez, env, in, t)
mk-Block(dec, exl) — typeBlock(ez, env,in, t)
end

The expression Self has always the implementation type, and nil satisfies all types. A new
object has the type given by its implementation.

The type of a variable is given by the variable environment, if the variable is local, or by the
implementation environment, in the case of an instance variable:

type VarEzp : VarEzp X Env X ImpName x TypeName — B

type VarExp(mk-VarEzp(n), env,in, t) &
let mk-Env(te, ie, ve) = env in
let vt = if n € dom ve then ve(n) else vars(ie(in))(n) in
subtype(vt, t, te)

An assignment is correct if the type of the expression satisfies the type of the variable:

typeAssignment : Assignment X Env x ImpName X TypeName — B

typeAssignment(mk-Assignment(n, ex), env,in, t) &
let mk-Env(te, ie, ve) = env in
let vt = if n € dom ve then ve(n) else vars(ie(in))(n) in
typeEzp(ez, env, in, vt) A subtype(vt, t, te)

11

To type check a while expressibn, we only need to check its sub-expressions. Notice that a while
expression only satisfies the type Void.

type WhileExp : WhileEzp X Fnv X ImpName x TypeName — B

type While Exp(mk- WhileEzp(c, d), env,in,t) 2
typeEzp(c, env, in, Void) A typeEzp(d, env,in, Void) A t = Void

An if expression is similar, but we must verify the result type:

typelfEzp : IfExp x Env X ImpName x TypeName — B

typelfExp(mk-IfEzp(ex, ex’, ex'), env,in, t) 2
typeEzp(ez, env, in, Void) A typeEzp(ex’, env, in, t) A typeEzp(ex”, env, in, t)

A function call is the most complex expression to type. First, we must check if the receiver
exports an appropriate method. Then, the real parameters are checked against the formal ones. If
everything goes fine, the type of the expression is the result type of the method.

typeFunctionCall : FunctionCall x Env x ImpName x TypeName — B

typeFunctionCall(mk-FunctionCall(ez, n, exl), env,in, t) &
let te = tEnv(env) in
drt € dom te -
typekzp(ex, env,in, rt) A n € dom sig(te(rt)) A
let mk-Arity(result, parms) = sig(te(rt))(n) in
subtype(result,t,1e) A len ezl = len parms A
Vi € inds ezl - typeErp(exl(i), env, in, parms(i))

In order to get the type of a block, we introduce its variable declarations in the variable envi-
ronment, check if all expressions have a correct type in the new environment. and check if the last
expression satisfies the given type.

typeBlock : Block x Env x ImpName x TypeName — B

typeBlock(mk-Block(dec, exl), env.in,t) &
let ve/ = vEnv(env)t vd(dec) in
let env’ = p(env, vEnv — ve') in
typeEzp(exi(lenezl), env’, in. t) A Vexr € elemsezl - typeEzp(ez, env’, in, Void)

Finally, we can put everything together to type check a whole program. The next function
returns true if the given program is correctly typed. The only predefined type is Void, that has no
supertypes and no operations. There is also a predefined implementation Void, without operations
or variables, which is used as the implementation of Self inside the main expression.

typeProgram : Program — TypeName

type Program(mk-Program(sp,im.e)) &
let ty = mk-Type({},{}) in
let te = types(sp,{Void — (y}) in
let imp = mk-Implementation(Void, { },{},{},[]) in
let e = imps(im, {Void — imp}) in
let env = mk-Env(te, te,{}) in
checkTypes(te) A checkImps(te,ie) A typeEzp(e, env, Void, Void)

12

An important property of the above functions is given in the following lemmas. These lemmas
assure that inherited functions preserve their correctness.

Lemma 2 Whenever a function is correct in an implementation sn, it is also correct in any im-
plementation n which has sn as a superclass.

checkTypes(te) A checkImps(te,ie) A sn € superClasses(ie(n)) =
typeFunction(F, te, ie,sn) = typeFunction(Fte,ie,n)

Proof: Notice that, by the definition of typeFunction, our lemma can be reduced to:

checkTypes(te) A checkImps(te,ie) A sn € superClasses(ie(n)) =
typeEzp(E, env,sn,t) = typeExp(E,env,n,t)

We prove the above formula by induction over the structure of the expression E. Notice that the
only expressions that use the parameter in in their type checking are Self, VarEzp, and Assignment.
If the expression is Self, the result follows by transitivity of subtype and the fact that, in a correct
environment,

sn € superClasses(ie(n)) = subtype(type(ie(n)), type(ie(sn)), te)

(see definition of typeImp). If the expression is an assignment or a variable, the result follows
from the invariant of ImpEnv, that ensures that an implementation always has all variables from
its superclasses, with the same types. |

Lemma 3 Whenever a function is correct in an implementation n, it is also correct in any subclass
of n.

checkTypes(te) A checkImps(te, ie) A subclass(sn,n,ie) =
typeFunction(F,te,ie,n) = typeFunction(F,te,ie, sn)

Proof: The proof is by induction on the length of the class hierarchy. If sn = n the result is
trivial. Otherwise, there is a superclass (let us call it ¢) from sn that is a subclass of n. By the
induction hypothesis, typeFunction(F, te,ie,n) = typeFunction(F, te, ie, c), and from the lemma
above, typeFunction(F, te,ie,c) = typeFunction(F,te,ie,sn). |

4 Execution of School Programs

After finishing with type correctness, we are going now to define formally the execution, or the
“meaning”, of School programs. An interesting point about the language School is that its execution
semantics is completely independent of type declarations. So, the only definitions we are going to
use from the previous section are the domains ImpEnv and Implementation, and the function mps.

As usual in denotational description of programming languages, we define some domains describ-
ing the state of a computation, and then denote operations and programs as functions mapping old
states into new ones. To reflect the referential semantics of object oriented programming languages,
all objects are accessed through unique identifiers (or pointers), that here will be represented by
natural numbers. We reserve 0 to denote the object Nil.

Obld = N
Nil =0

GlobalMemory = Obld = Object

13

An Object has a local state, that associates instance variable names with their values, and a
reference to its class, that is used to access its methods.

LocalMemory = Name — Obld

Object :: state : LocalMemory
class : ImpName

Besides objects, we also need to store classes. Classes contain methods for their objects.

ClassEnv = ImpName = Class

Class = OpName - Method

Our next domains are used to describe the semantics of methods (operations). A method acts
over a global state, a receiver and a list of parameters, and returns a new global state and a result.
To model this behavior we use the following declarations:

Method = GlobalMemory x Obld x Obld* — MethodResult

MethodResult :: state : GlobalMemory
value : Obld
The last domains we need are for expressions and lists of expressions. Expressions do not take
parameters; on the other hand, they access and modify not only a global state, but also local
variables. Expressions return values, while lists of expressions return lists of values.

Ezp = GlobalMemory x LocalMemory x Obld — EzpResult

EzpResult :: global : GlobalMemory
local : LocalMemory
value : Obld

ExzplList = GlobalMemory x LocalMemory x Obld — ExpListResult

LrpListResult :: global : GlobalMemory
local : LocalMemory

value : Obld*

Our next step are the denotational functions, that is, functions that take a piece of program
and return its denotation. The first one is a function to take care of expressions:

codeErp : Erpression X ClassEnv X ImpEnv — Ezp

codeFzp(ezx, ce,ie) L
cases e of
Self — Ag, [, s - mk-EzpResult(g,l,s)
nil = Ag, [, s - mk-EzpResult(g, [, Nil)
mk-Assignment(n, ex') — codeAssignment(ez, ce, ie)
mk- WhileExp(ex’, ex”) — code While Ezp(ez, ce, ie)
mk-IfEzp(ex’, ex”, ex) — codelfEzp(ex, ce, ie)
mk-VarEzp(n) — codeVarEzp(ez, ce, ie)
mk-FunctionCall(r, 0, p) — codeFunctionCall(ez, ce, ie)
mk-NewEzp(n) — codeNewEzp(ez, ce, ie)
mk-Block(dec, exl) — codeBlock(ez, ce, ie)
end

14

If the expression is nil or Self, then its denotation is a function that does not change the memory,
and returns the appropriate value. All other expressions are handled by more specific functions,
that we will see now.

codeVarEzp : VarEzp x ClassEnv x ImpEnv — Ezp
codeVarEzp(mk-VarEzp(n), ce,ie) &
Ag,l,s-if n € dom! ,
then mk-EzpResult(g,!,l(n))
else let mystate = state(g(s)) in
mk-EzpResult(g, |, mystate(n))

If the variable is local, then one only has to get its value. Otherwise, Self is used to access the
state of the object in the global memory.!!

codelfEzp : IfEzp X ClassEnv x ImpEnv — Ezp
codelfEzp(mk-IfEzp(ez, ex’, ex"), ce,ie) &
let € = codelrp(ex, ce,ie), e’ = codeEzp(ex’, ce,ie), " = codeErp(ez”, ce, ie) in
Ag,l,s-
let mk-EzpResult(g’,l',r) = e(g,l,s) in
if 7 # Nil then €’(g’,1', s) else €”(g, I, 5)

code WhileEzp : WhileExzp x ClassEnv x ImpEnv — Ezp

code While Exp(mk- WhileEzp(ez, ex’), ce, ie) £
let e = codeEzp(ex, ce,ie), e’ = codeEzp(ez’, ce,ie) in

prz -
Ag,l,s-
let mk-ExzpResult(g’,!',r) = e(g,l,s) in
if r = Nil

then mk-EzpResult(g’, ', Nil)
else let mk-EzpResult(g”,1",r) = €'(¢',1',s) in
z(g",1",5)]

As usual, we use the least fixed-point operator p to express the semantics of the while expression.
Let us now see how to create new objects. The function declare creates a new local memory
containing the variables of a given variable environment, with all variables initialized to Nil:

declare : VarEnv — LocalMemory
declare(ve) & {n Nil|n € dom ve}

The function allot allocates a new “position” in a global memory:

allot (g: GlobalMemory) i: Obld
post i ¢ domg A 1 # Nil

""'Notice that in a real implementation the decision about whether a variable is local or not could be done in
“compile time”, that is, outside the lambda expression. However, our goal here is simplicity, not “efficiency”.

15

Finally, the code to create new objects is given by:

codeNewEzp : NewEzp X ClassEnv X ImpEnv — Ezp

codeNewEzp(mk-NewEzp(n), ce,ie) A
let 0 = mk-Object(declare(vars(ie(n))),n) in
Ag,l,s-
let ¢ = allot(g) in
mk-EzpResult(g U {i — o},1,1)

The code of a block is the code of its expression list, executed in an environment augmented
with the local declarations. Notice the manipulation of local memories. First, we use the overwrite
operator to create a memory {’, so all new variables get the value Nil. Then, to create the final
local memory ({"'), we eliminate from [” the variables declared inside the block, and combine the
result with the initial memory. In this way, any variable that has been redeclared restores its
previous value (from [), while variables visible inside the block get the new value (from /7). The
value returned by the block is the value of the last expression.

codeBlock : Block X ClassEnv x ImpEnv — Ezp

codeBlock(mk-Block(d, el), ce,ie) &

let exl = codeExpList(el, ce, ie) in

let nv = declare(vd(d)) in

Ag,l,s-
let ' =11 nvin
let mk-EzpListResult(g’, 1", vl) = exl(g,’,s) in
let I"" = 1§ ((domnv)< ") in
mk-EzpResult(g’, ", vl(len el))

The function vd is defined in section 3, and only converts a list of variable declarations to a variable
environment. The function codeFzplList is shown below.

codeEzpList : Ezpression® X ClassEnv X ImpEnv — Frplist

codeFzpList(el, ce,ie) &
if eb=1]
then Ag, l,s - mk-EzpListResult(g,[,{])
else let ez = codeFrp(hd el, ce,ie) in
let ezl = codeExpList(tlel, ce,ie) in
Ag,l,s-
let mk-EzpResult(g’,l',v) = ez(g,l,s) in
let mk-EzpListResult(g", 1", vl) = ezl(g’,l',) in
mk-EzpListResult(g"”, 1", cons(v, vl))

An assignment to a local variable is straightforward. In the case of an instance variable, we
determine the object identifier through Self, and then do the necessary update:

16

codeAssignment : Assignment x ClassEnv X ImpEnv — Ezp

codeAssignment(mk-Assignment(n,), ce,ie) 2
let ez = codeExp(e, ce,ie) in
Ag,l,s-
let mk-ExpResult(g’,l',v) = ez(g,1,s) in
if n € dom (1)
then mk-ExpResult(g’, 't {n — v}, v)
else let st = state(g’(s)) {n — v} in
let 0 = pu(g'(s), state — st) in
mk-EzpResult(g't {s — o},l',v)

Our last case is a function call. The particularity here is the late-binding, that is, the fact that
the called function is taken from the class of the object resulting from the first expression; this class
can only be known at “run-time”, that is, inside the lambda expression.

codeFunctionCall : FunctionCall X ClassEnv x ImpEnv — Ezp

codeFunctionCall(mk- FunctionCall(e, op, p), ce,ie) &
let ex = codeEzp(e, ce,ie) in
let exl = codeEzpList(p, ce,ie) in
Ag,l,s-
let mk-EzpResult(g’,l',i) = ex(g,!,s) in
let mk-EzpListResult(g", 1", vl) = ezl(g’, !, s) in
if i = Nil
then L
else let ¢ = ce(class(g'(i))) in
let m = c(op) in
let mk-MethodResult(g", v) = m(g"”,i,vl) in
mk-EzpResult(g", 1", v)

Inside this function, c is the class of the receiver object, and m is the selected method. Notice that
if the receiver object is Nil, the meaning of the call is undefined.

Finished the treatment of expressions, our next step is how to code an operation. First we
define an auxiliary function to bind the real parameters with the formal parameters in a new local
memory.

bindParms : VarDeclaration* x Obld* — LocalMemory

bindParms(vd,il) &
if vd = [] then { } else {name(hd vd) + hd il} U bindParms(tl vd, tl il)

The code for a method is the code of its body, preceded by the binding of parameters.

codeFunction : Function X ClassEnv x ImpEnv — Method

codeFunction(mk-Function(h, b), ce,ie) &
let ez = codeEzp(b, ce,ie) in
Ag, s, p-
let | = bindParms(parameters(k),p) in
let mk-EzpResult(g',l',v) = ez(g,l,s) in
mk-MethodResult(g’, v)

17

The code of a list of functions is straightforward:

codeFunctions : Function* x ClassEnv x ImpEnv — Class

codeFunctions(fl, ce,ie) &
if fl=1]
then { }
else let ¢f = {name(header(hd fl)) — codeFunction(hd fl, ce,ie)} in
¢f U codeFunctions(tlfl, ce, ie)

Now is time to face implementations. In order to allow the kind of recursion that School
requires, we will need the least fixed-point operator. That is why we have been using a class
environment parameter in all code functions, when in fact these functions are supposed to build
the class environment. Let us see how to code one implementation:

codelmp : ImplementationDec x ClassEnv X ImpEnv — Class

codelmp(mk-ImplementationDec(n, t, sc,v,f), ce,ie) L2
joinParents(sc, ce) t codeFunctions(f, ce, ie)

joinParents : ImpName* x ClassEnv — Class

joinParents(nl,ce) &
if nl =[] then { } else ce(hd nl) U joinParents(tlnl, ce)

So, joinParents only puts together all methods from the parent classes; if the program is correct
we know there will be no clashes. Then, codeImp joins the inherited methods with the local ones.
The use of the overwrite operator () assures that, in case of redefinitions, the class gets the new

methods.
A list of implementations is coded as follows:

codelmps : ImplementationDec* x ClassEnv x ImpEnv — ClassEnv

codelmps(il, ce,ie) &
if i =[]
then ce
else let ce’ = ce t {name(hdil) — codeImp(hdil, ce,ie)} in
codeImps(tlil, ce’, ie)

Finally, we can give the meaning of a whole program. ‘A program executes its main expression
in an environment with all types, all implementations, and no local variables. The initial global
memory includes an object wherein the main expression is evaluated; this object has implementation
Void (therefore without variables or operations). The output of our program is an object identifier,
plus the global memory containing this object and any other objects referred by it.

18

codeProgram : Program — MethodResult

codeProgram(mk-Program(sp,im,e)) &
let smp = mk-Implementation(Void, { },{},{},[]) in
let ie = imps(im, {Void — imp}) in
let ce = p[Az - codelmps(im, z,1e)] in
let g = {1 +— mk-Object({ }, Void)} in
let ex = codeFEzp(e, ce,ie) in
let mk-ExpResult(g’,1,v) = ex(g,{},1) in
mk-MethodResult(g’, v)

5 Soundness of the Type System of School

In this section we present a formal proof that School is statically typed, according with the definition
stated in section 1. As most definitions and proofs along this section will need to refer to the type
and implementation environments (TypeEnv and ImpEnv) of a program P, we will assume they
are available under the names TE and IE, respectively. According, all definitions and proofs must
be understood “with respect to given environments TE and IE”. More formally, we assume that
the whole section is inside the following scope:

let ty = mk-Type({},{}) in

let TE = types(specs(P),{Void — ty}) in

let imp = mk-Implementation(Veid,{},{},{},[]) in
let IE' = imps(impl(P),{Void — imp}) in
checkTypes(TE) A checkImps(TE, IE) = ...

First some definitions. We say that an object identifier i satisfies a type ¢ if and only if the
type associated with the class of 7 is a subtype of ¢:

satisfy : Obld x TypeName x GlobalMemory — B

satisfy(i,t,g) &
if 7 = Nil
then true
else let t/ = type(]E(class(g(i)))) in
subtype(t', t, TE)

Notice the assumption that Nil satisfies any type. An important property of the above definition
is that, as subtype is transitive, whenever i satisfies a type ¢, it also satisfies any supertype of ¢.

A local memory is consistent with a variable environment if and only if all its variables have
values satisfying their types:

local-cons : LocalMemory x VarEnv x GlobalMemory — B

local_cons(l,ve,g) & domwve C domI A VYn € dom ve - satisfy(l(n), ve(n),g)

A global memory is consistent if and only if all its objects have states which are consistent with
the variable environment for their classes. In other words, all instance variables contain ob jects
with “appropriate” types.

19

global_cons : GlobalMemory — B

global_cons(g) & VYo €crgg-
let ve = vars(1E(class(0))) in
local_cons(state(o), ve, g)

An important property of a program is that it never changes the class of an object. We can
express this fact with the following predicate:

keep-classes : GlobalMemory x GlobalMemory — B
keep-classes(g,g9') & domg C domg’' A Vi € domg - class(g(i)) = class(g'(7))

Now let us see what we can say about methods. The intuitive property of a correct method is
that, whenever it is called with appropriate parameters (including Self), it returns an appropriate
result. Moreover, one can expect that a correct method keeps the consistency of the memory.

met_sat : Method x Arity x ImpName — B

met- sat(m, mk-arity(result, parms), in) &
Vg € GlobalMemory, s € dom g, p: Obld* -
global_cons(g) A (Vi € inds parms - satisfy(p(1), parms(i), g)) A
subclass(class(g(s)),in, [E)Am(g,s,p)# L =
let mk-MethodResult(g’, v) = m(g,s,p) in
global-cons(g') A keep-classes(g, g') A satisfy(v, result, g')

The test m(g, s, p) # L indicates that we only care about terminating methods; whenever a method
call does not terminate, we can say nothing about it. The condition subclass(class(g(s)), in, IE)
indicates that Self can be of any subclass of the class wherein the method is defined (in).

Lemma 4 Whenever a method salisfies an arity a, it satisfies any super-arily of a.
subArity(a, sa, TE) A met_sat(m, a,in) = met-sat(m,sa,in)

Proof: Define mk-Arity(parms. result) = a and mk-Arity(parms’, result’) = sa. From the defini-

tion of subArity, we know that subtype(result. result’, TE) and subtype(parms’(i), parms(1), TE).

Therefore, we have satisfy(z, parms'(i),g) = satisfy(z, parms(i),¢) and satisfy(x, result, g) =

satisfy(z, result’, g). The above implications, together with the definition of met_sat, close the
proof. |

We say that a class satisfies a type if it provides methods for all operations exported by the
type, and each method is correct with respect to the corresponding arity:

class.sat : Class x TypeName x ImpName — B

class_sat(c,t,in) &
let sg = sig(TE(t)) in
domsg C domc AVf € dom sg - met_sat(c(f), sg(f), in)

Lemma 5 Whenever a class satisfies a type t, it satisfies any super-type of t.

subtype(t, st, TE) A class-sat(c,t,in) = class-sat(c, st, in)

20

Proof: By checkTypes(TE), we know that subSignature(t,st, TE). Define sg = sig(TE(t)) and
sg' = sig(TE(st)). If ¢ is a subsignature of st, then domsg’ C domsg C domc. Finally, lemma 4
proves that met_sat(c(f), sg’'(f),in). |

Our last definition concerns environments. A class environment is correct if all its classes are
correct:

classEnvOK : Classbnv — B
classEnvOK(ce) & Vn € domce - class.-sat(ce(n), type(IE(n)), n)

For reasons that will become clear in the proof of lemma 9, we do not force correct environments
to have classes for all implementations (although they do).

Lemma 6 Any ezpression with a correct type, when called in a correct state, returns correct states
and a value that satisfies its type. Formally:

let env = mk-Env(TE, IE, lve) in

let ex = codeEzp(FE,ce) in

typeEzp(E, env,in, t) A classEnvOK (ce) A ex(g,l,s) # L A
class(g(s)) = in A global_cons(g) A local_cons(l, lve, g) =
let mk- ExpResult(g’,l',v) = ez(g,!,s) in

global.cons(g') A local_cons(l', lve, g') A

keep-classes(g, g’) A satisfy(v,t, g")

In the above formulae, the expression E satisfies type t, and has code ez. The local variable
environment is represented by lve, while in is the name of the implementation wherein the expression
is written. In the antecedent of the implication, the fourth term assures that Self has a correct
implementation, while the last two terms assert the consistency of the global and the local memories.
The third term restricts the lemma to terminating expressions; we can say nothing about expressions
that do not terminate. The consequent first states the consistency of both memories after the
execution of the expression, and then that the result of the expression has the correct type.

Proof: The proof is by cases and induction over the expression structure. First notice that no
expression deletes elements from the global memory, nor changes the class of an ob ject. So, it is
immediate to conclude that keep-classes(g,g'), and we do not need to worry about this term in
the consequent.

Self In that case, ¢’ = g, I’ = [, so the final memories are correct. We know that v — s, and
by typeEzp we have that subtype(type(IE(in)),t, TE). As we also know that class(g(s)) =
class(g(v)) = in, it is immediate that v satisfies ¢.

nil In that case, ¢’ = g, I’ = [, and the result v = Nil satisfies any type t.

mk-VarEzp(n) Again, g’ = g and I’ = [, so we only need to prove that the result has correct type.
If n € dom lve, then n € dom (because { is consistent with lve). But in that case r = l(n), and
again by consistency of | we know that satisfy(I(n), lve(n),g). By definition of type VarEzp,
we have that subtype(lve(n),t, TE), and by transitivity we conclude satisfy(l(n), t,g). If
n ¢ dom lve, then n € dom vars(IE(in)) (otherwise the expression has no type at all), and the
type vt = vars(IE(in))(n) is a subtype of t. If we define st = state(g(s)), we can infer, by
consistency of g, that local-cons(st,vars(IE(in)), g). Therefore, by definition of local_cons,
the final result r = st(n) satisfies v, and therefore also satisfies t.

21

mk-IfEzp(ex, ex’, ex”’) Left to the reader (remember that, by the induction hypothesis, the lemma
is valid for all sub-expressions).

mk-Assignment(n, ez) Let ¢’, I’ and v be like in codeAssignment, and vt like in typeAssignment.
By the induction hypothesis, we know that ¢’ and I are correct states, and that v satisfies the
type vt. As vt must be a subtype of ¢, we have satisfy(v, t,g’). Now we must check that the
final memories are also correct. There are two cases. If n € dom lve, the final global memory
is g, which is OK. The type vt is equal to lve(n). The final local memory is I { {n ~ v};
as we know that satisfy(v, lve(n), g’), we can conclude that this final memory is still correct
with respect to lve and g¢'.

If n € vars(/E(in)), then the final local memory is I, which is correct. Notice that, in
codeAssignment, when we create the final global memory we do not change the class of any
object, and only change the state of s. So, we only need to prove that the final state of this
object is correct. The type vt in such case is vars(IE(in))(n). Let us define st = state(g'(s)),
st = st { {n ~ v}, and gve = vars(IE(in)) = vars(IE(class(g'(s)))). Then, by consistency
of ¢’, we can infer that local_cons(st, gve,g’). This fact, together with satisfy(v, gve(n), ¢'),
leads us to conclude that local-cons(st', gve, g'). Therefore, the new global memory, ¢’ {s —
mk-Object(st’,...)}, is consistent.

mk-NewEzp(n) In this case, the local memory is unchanged, and the global memory receives a new
element (by definition of allot). So, the consistency of [is maintained. As Nil satisfies any
type, it is easy to check that local-cons(declare(v), v, ¢}, for any environment v and memory
g'. In special, for v = vars(IE(n)), and defining o = mk-Object(declare(v), n), we have that
local-cons(state(o0), vars({E(class(0))), g). Therefore, the final memory is consistent. Finally,
it is immediate to check that this new object satisfies the type t.

mk-WhileEzp(ez, ez’) The while expression is defined as a least fixed-point (Ifp). The Ifp of a
functional F", denoted by u[F], is given by (JZ2o FF'(L). Therefore, to prove that the ifp
satisfies a property, we are going to prove that all F'{(L) satisfy that property. using induction.
Our base case gives ez = L, that trivially satisfies the lemma. In the induction step we must
prove that, if z satisfies the lemma, then F(z) also satisfies it. This proof is similar to the
proof for an if expression, and again is left to the reader. :

mk-Block(dec, ezl) Left to the reader.

mk-FunctionCall(r, op,p) This is the most complex case. Let us define ¢/, I/, g", 1" vl, v and
1 like in codeFunctionCall. By the induction hypothesis, we know that ¢/, ¢”, I, and I”
are correct. If 1 = L, the whole expression evaluates to L and the lemma is trivially true.
So, let us see the case that ¢ # L. Let us suppose that rt is the type whose existence is
assured in typeFunctionCall, and let mk-Arity(result, parms) = sig(TE(rt))(op). Again by
the induction hypothesis, satisfy(i,rt,g’), and Vp € inds parms - satisfy(vl(p), parms(p), g").
Define rc = class(g’(i)). If rc ¢ domce, all its methods are undefined, and the whole ex-
pression evaluates to L. Otherwise, following the definition of classEnvOk(ce), we have that
class_sat(ce(rc), type(IE(rc)), rc), and by lemma 5, class_sat(ce(rc), rt, rc). By definition of
class.sat, we conclude that met-sat(ce(rc)(op), sig(TE(rt))(op),rc). As we have all the an-
tecedents of met-sat, we can conclude that ¢g” is consistent, and that satisfy(v, result, g").
Finally, as subtype(result, t, TE), we have that satisfy(v,t, g").

Although, for technical reasons, we have had to consider the situation wherein the class
environment ce does not contain a definition for the class of the receiver object (rc), such

22

case never occurs — see lemma 9. Also notice that, as we know that op € dom sig(TE(rt))
and that the class rc satisfies the type r¢, we have that op € sig(IE(rc)). Therefore, there is
no possibility of “message not understood” errors.

Lemma 7 Correct methods satisfy their arities.

let F' = mk-Function(h, b) in

let @ = mk-Arity(result(h), param Type(parameters(h))) in

let mt = codeFunction(F, ce,IF) in

classEnvOk(ce) A typeFunction(F, TE, IE,in) = met.sat(mt,a,in)

Proof: Let us define /, ¢’, I’ and v according to codeFunction. Because the real parameters satisfy
their types (hypothesis of met- sat), we have that [is consistent with lve = vd(parms(a)). Moreover,
if the function is correct, its body must be correct, that is, typeEzp(body(F'), env, in, result(a))
(where env = mk-Env(TE, IE, lve)). By lemma 3, its body is also correct in any subclass of in,
that is, subclass(sn,in,IE) = typeEzp(body(F),env,sn,result(a)). Therefore, the hypothesis
in met.sat give us all conditions needed to apply lemma 6 over the body of the method (with
substitutions [E + body(F),in — sn,t — result(a)]). |

Lemma 8 Correct classes satisfy their types.

let [= IE(n) in
let ¢ = codeImp(I, ce, IE) in
classEnvOk(ce) A typelmp(n, TE,IE) = class_sat(c, type(I),n)

Proof: A class, in order to satisfy its type, must provide methods for all functions of the type,
and these methods must satisfy their correspondent arities (see class-sat). According to codelmp,
a class includes all functions declared in its implementation, plus all functions inherited from all
superclasses. Moreover, typelmp assures that such set of functions has the same signature than
the type of the implementation (remember that the field sig in an implementation includes the
inherited operations). Therefore, a correct class has all operations from its type. Now we must
prove that those methods are correct. If the method is inherited from a class sc, classEnvOk tells
us that it is correct in sc, and so in any subclass of sc. If the method is locally declared, typelmp
assures that its definition is correctly typed, and applying lemma 7 we conclude that the method
satisfies the appropriate arity. |

Lemma 9 The class environment of a correct program is correct. Moreover, it provides definitions
for all implementations in a program. Formally:

let ce = p[Az - codeImps(impl(P),z,IE)] in
classEnvOk(ce) A dom IE C dom ce

(where P is the program that originates TE and IE — see the beginning of this section).

Proof: Again we have a definition using fixed-points, and again we are going to use the technique
used in lemma 6, for expressions while. In the present case, F = \z - codelmps(impl(P), z, IF).

e The base case is ce = L. In this case, the class environment defines no classes at all, and so it
trivially satisfies classEnvOk. Notice that, if we have defined that a correct class environment
must provide definitions for all implementations, we would be unable to prove this step.

23

e The induction step is that codelmps preserves the correctness of class environments. F. ormally:

let ce’ = codeImps(impl(P), ce, IE) in
classEnvOk(ce) = classEnvOk(ce’)

According to our general assumptions, P is correct. Therefore, all its implementations are
correct. Qur previous lemma assures that correct implementations generate correct classes.
Therefore, all classes added to ce are correct, and then ce’ satisfies classEnvOk.

We still have to prove that dom IE C dom ce. As codelmps adds definitions for all implementasi ions
in its first parameter, and impi(P) contains all implementations in the program P, we have that
dom [E' C dom codelmps(impls(P), ce, IE). Therefore, F'!(L) provides, for i > 1, definitions for all
implementations in the program, and so does the fixed-point of F. I

Finally, we are able to prove our main result:
Lemma 10 Correct programs run without type errors.

Proof: According to the definition of typeProgram, a correct program has a correct type environ-
ment, and a correct implementation environment. Moreover, its main expression is correctly typed.
The global memory ¢ has only one object, and it is consistent, because the implementation Void
has no instance variables to be wrong. The local memory, empty, is consistent with the empty
variable environment for that expression. Lemma 9 assures that the class environment ce is also
correct. Therefore we have all conditions to apply lemma 6 to the main expression of the program.

6 Some Extensions to School

In previous sections we have developed a simple programming language, mainly in order to facilitate
the proofs. Here we will show how some other facilities can be incorporated into School. Although
we do not present complete formalisms for these extensions, we will address some questions about
such formalizations. '

Structural Subtyping

As we have pointed out in section 3, School uses a kind of name compatibility for its hierarchy.
That means that a type is considered a subtype of another one only when there are declarations
asserting that. That is the approach followed by some important QO languages, like C++ [10] and
Simula [3]. Now we will see how School can incorporate structural subtyping. In this approach, a
type is considered a subtype of another one whenever their declarations are compatible.

Following the definitions in section 3, we can see that the main property we want for subt ping
is that it must imply subsignatures. Therefore, one can be moved to change the definition : the
subtype function to:

subtype : TypeName x TypeName x TypeEnv — B
subtype(tl,t2,te) & subSignature(tl,t2, te)

24

assuming that subArity now uses this new definition for subtype. Although very attractive, this
definition has one problem. If we define two types like:

Type A

Function X () : A
End A
Type B

Function X () : B
End B

then subtype(A, B, te) is undefined, because of the infinite recursion.

One way to avoid this problem, adopted in [2], is to get the largest solution of the recursive
definition, instead of the usual least fixed-point. However, this approach, changing the usual
meaning of a recursive equation, is not compatible with the semantics of VDM adopted here.
Moreover, it does not conform to our natural idea of a recursive definition. So, here we will adopt
a different solution, avoiding the recursion at all. In order to do that, first we define what we call
a hierarchy:

' Hierarchy = TypeName -~ TypeName-set
A hierarchy stores, for each type, the set of all its supertypes. Then we adapt the definitions of
subSignature and subArity to use a hierarchy:

subArity’ : Arity X Arity x Hierarchy — B

subArity’(al,a2,h) &
result(a2) € h(result(al)) A len parms(al) = len parms(a2) A
Vi € inds parms(al) - parms(al)(i) € h(parms(a2)(i))

subSignature’ : TypeName x TypeName x Hierarchy x TypeEnv — B

subSignature’(tnl, tn2, h, te) &
let s1 = sig(te(inl)), s2 = sig(te(tn2)) in
dom s2 C dom s1 AVf € doms2 - subArity'(s1(f), s2(f), h)

We say that a hierarchy is consistent when all its relationships satisfy the sub-signature criterion:

consistent : Hierarchy x TypeEnv — B
consistent(h,te) & Vil € domh -Vi2 € h(t1) - subSignature/(t1, 12, h, te)

Iinally, we say that a type is subtype of another one if there is a consistent hierarchy wherein that
relationship holds:

subtype : TypeName x TypeName x TypeEnv — B
subtype(t1,¢2,te) & 3h: Hierarchy - consistent(h, te) A 12 € (1)

25

The above definition avoids recursion, and it captures the intuitive notion of structural sub-
typing. Moreover, it is an easy task to prove that this definition satisfies our main criterion, that
subtyping implies subsignatures. Finally, as this new definition is also transitive, we can prove that
all results of section 5 are still valid if we adopt this definition in all type-checking functions of
section 3.

Another interesting result is that the above concept of subtyping is maximal, in the sense that it
is the largest subtyping relation that avoids “message not understood” errors. Any relation which
includes a pair <type,subtype> not accepted by the structural definition results in an unsafe type
system.

Private Methods

A private method is a method that is not visible outside the class where it is defined. Many OO
languages offer a special mechanism for this facility, e.g. C++ [10] and Eiffel [17].

School, with its separation between implementations and specifications, presents a natural way
to support private methods. Whenever a routine is defined in an implementation but not in its
correspondent specification, it is private. However, in order to support this simple idea, we must
change a little our language. With the present definition, all “local” functions are called through
Self. If a function is not exported, it is not present in the type of Self, and therefore can not be
called.

We solve this problem introducing in the language a facility for “early-binding” calls. The syntax
can be conventional: just the name of the function with eventual parameters, without a receiver.
Only local methods can be called that way. The semantics is also the conventional semantics for
early-binding routine calls in conventional languages. With this extension, public routines can be
called with late-binding and early-binding, while private routines must be called with early-binding.
The relationship between this facility and inheritance is straightforward. Because what we inherit
is the denotation of a method, all early-bindings of a method are kept when it is inherited. Lven
il a called method is redefined, the inherited calling method will still use its old version.

7 Conclusions

We have shown how we can prove the type-correctness of an OOPL, using a pragmatical (but
formal) concept of type. Our method deals with most typical features of OOPLs, like multiple
inheritance, recursive types, recursive classes, late-binding, etc.

We start with a denotational description of the language. Such description includes a definition
of valid programs (concerning type checking, variable declarations, etc), as well as the semantics
of valid programs. Then we proceed to prove that correct programs run without “message not
understood” errors.

A disadvantage of our approach is that it is too operational. Some object-oriented concepts,
like data abstraction, do not have an independent description. Many times, recursion is avoided
with the use of indirection, like in the definition of TypeEnv (types do not refer to other types, but
to names).

On the other hand, this more operational approach is what allows our method to deal with more
realistic OOPLs. Although School is an economical language, with no fancy control structures,
predefined types or libraries, the inclusion of those features would not change its main character.
Apart from this simplicity, School is a quite real OOPL, including most relevant features from
languages like Eiffel, Simula, Objective-C [8], or C++. In this sense, School is a more “typical”
OOPL than most languages adopted in theoretical approaches, like Quest [6] or FOOP [12].

26

Along the work, we have also gained a better understanding of how each 0O feature interacts
with other ones, and how this interaction affects the type system. An interesting example concerns
the separation of hierarchies of types and classes. This separation is a very attractive facility,
and has been adopted in many works (e.g. [2], [16], [11]). However, our work has demonstrated
that, in a statically typed language with Self, these hierarchies can not be completely independent.
Another interesting result is that structural subtyping, as stated in section 6, is the most permissible
compatibility check that still assures type-correctness. It is important to note that structural
subtyping assumes the antimonotonic rule for parameter passing.12

Although we have defined a new language to show our method, the method can be applied to
most OOPLs. Unfortunately, a great number of them is not statically typed, and some are not
typed at all. We hope this work can help changing this situation.

References

(1] R. Amadio and L. Cardelli. Subtyping with recursive types. In ACM Conference on Principles
of Programming Languages, 1991.

(2] P. America and F. van der Linden. A parallel object-oriented language with inheritance and
subtyping. Sigplan Notices, 25(10), 1990. OOPSLA/ECOOP’90 Proceedings.

[3] G. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Petrocelli Charter,
1975.

[4] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon. Common Lisp
Object System Specification. ANSI Common Lisp, 1988. Doc. 88-003, X3J13 Standards Com-
mittee.

[5] L. Cardelli. A semantics of multiple inheritance. In D. MacQueen, G. Kahn, and G. Plotkin,
editors, Semantics of Data Types: International Symposium. Springer Verlag, 1984. LNCS
173.

(6] L. Cardelli. Typeful programming. In notes of IFIP Advanced Seminar on Formal Description
of Programming Concepts, Petropolis — Brazil, 1989.

(7] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4), 1985.

(8] B. Cox and A. Novobilski. Object Oriented Programming: an Evolutionary Approach. Addison-
Wesley, second edition, 1991.

[9] S. Danforth and C. Tomlinson. Type theories and object-oriented programming. A CM Com-
puting Surveys, 20(1):29-71, 1988.

[10] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley, 1990.

[11] P. Canning et al. Interfaces for strongly-typed ob ject-oriented programming. Sigplan Notices,
24(10):457-467, 1989. OOPSLA’89 Proccedings.

[12] J. Goguen and J. Meseguer. Unifying functional, object-oriented and relational programming
with logical semantics. In B. Shriver and P. Wegner, editors, Research Directions in Object-
Oriented Programming. MIT Press, Cambridge, Mass., 1987.

12The antimonotonic rule states that, when a method is redefined in a subtype, its input parameter types must be
supertypes of the original ones.

27

[13] Adele Goldberg and Dave Robson. Smalitalk-80 : The Language and its Implementation.
Addison-Wesley, 1983.

[14] CLff B. Jones. Systematic Software Development using VDM. International Series in Computer
Science. Prentice Hall, second edition, 1990.

[15] B. Kristensen, O. Madsen, B. Mollen-Pederson, and K. N ygaard. Object-oriented programming
in the beta programming language, 1990. Draft.

[16] C. Lunau. Separation of hierarchies in Duo-Talk. Journal of Object-Oriented Programm g,
2(2):20-26, 1989.

[17] Bertrand Meyer. Eiffel — a language and environment for software enginnering. The Journal
of Systems and Software, 8(3):129-46, 1988.

[18] M. Wolczko. Object-oriented languages. In C. B. Jones and R. C. Shaw, editors, Case Studies
in Systematic Software Development, chapter 10. Prentice Hall, 1990.

28

