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Abstract

The purpose of this paper is to analyze the algebraic structure of sets of functional complete
subproblems of relations. The motivation was due to the fact that these functions correspond
to the runs of a virtual machine when fed with data belonging to an application domain. We
also discuss the relationship between the presented structure and the algebraic structure of
partial relations.
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Resumo

O propésito deste trabalho é analisar a estrutura algébrica dos conjuntos dos subproblemas
funcionais completos de relagdes. A motivacio deve-se ao fato de que estas fungdes corres-
pondem as corridas de uma mdguina virtual quando alimentada com dados pertencentes a
um dominio de aplicagio. Também, discutimos a relacio entre a estrutura apresentada e a
estrutura algébrica das relacdes parciais.
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1 Introduction

The purpose of this paper is to analyze the algebraic structure of the functions corresponding
to the runs of a virtual machine (by convention a virtual machine m,g means the device build
up by a given program p, an interpreter %, and the piece of hardware H acting as the object
machine of such an interpreter) when fed with data belonging to an application domain, i.e.
acceptable data as inputs for the “real problem” in consideration.

Following [HV90b] we consider that an application A means the extensional knowledge (the
input-output information) about the “real problem”. Thus, inputs and outputs are any pair
of “observable events” related by the application, in the sense of belonging to the extension of
the real problem. Also, we take from [HV90b] the relation of being-an-engineering-model which
connects a virtual machine m,y to an application A (denoted m,; < A) and it is defined

through an operation that involves a systematic activity with the following steps :

e Aninput § from the domain A is selected and introduced into the machine myH, then, if

mpg does not halt, it is not the case that m,gz < A.

e If m,y halts but the output is not an acceptable output for A corresponding to the input

0 then —~(m,y < A).

o If myp halts and it gives an acceptable output then, we may assume mpg < A (this is
the “correspondent concept” in the Observational Layer to the total correctness in the

Syntactic Layer).

Actually, there exists a translation-abstraction function g between data and result of A and

myH, but this is of no importance to our subject.



For the present discussion we will accept the scenario described in [HV90b], [HV90c] and

[HV90a], which is despicted in figure 1.

Figure 1

In figure 1 we consider an application A with some known instances (&', p'), specified by a
specification Spc denoting a relation ¢’ build up by pairs (d,r) which are, also, the component-
wise translation of (6, p’) through a given function f.

It is important to notice that the application A is an observable object, which can be (and
almost always is) ill-determined because of lack of knowledge about its extension. If we knew
the whole application it would perform a relation, but, because we have a partially known
object we are unable to define the relation it performs. We permit ourselves to consider the

relation performed by an application A in order to clarify some ideas.



The translation-abstraction functions (i.e. f,g) do the needed connection between inputs-
outputs of different layers or between different abstraction levels of the same layer. Because we
are not going to deal with these connections and they don’t play any role in our discussion, we
work in a loosely way forgetting the effect of these functions.

As it was discussed in [HV90c] and [VH], in the Syntactic Layer we have terms of the algebra
U =< Py,+,8,—,00,1,15,15,;,~,%, X >, which denote partial relations in the Semantic
Layer. Thus, Spc and p are terms of U, p involving only algorithmic operations and relational
constants “understandable” by h. It should be noticed that q = u[p] «eu[Spc|] = ¢ (this means
that ¢ is a subrelation of the relation ¢’ and Dom(q) = Dom(q’'), in this case we say that g is a
complete subproblem of ¢') is the semantic counterpart of the relation p < Spe, where < denotes
total correctness. This is so, because p is the unique homomorphism assigning to each term of
the Syntactic Layer the problem it describes (in the Semantic Layer),i.e., u is the function that
assigns one semantic value to each syntatic term, in our case the semantics is given by partial
relations which we call problems.

Here, “Spc specifies A” means that ¢' = u[Spc] «eA (where we allow a notational license
because, actually, we are refering to the relation realized by A) [HV90b]. On the other hand,
q = p[p] is the relation realized by m,y and since ¢ «—eq’ then, mpr < A denotes, if we admit
some notational liberality, ¢ «eA.

Therefore, we will establish the meaning of run as follows. If we introduce in a virtual
machine m,y a data § belonging to the domain of an application A, it eventually halts and
produces a result p, which, if m,p is an engineering model of A, will be an acceptable output

for A corresponding to input §. We have called each pair (6,p) an instance of A. Also, the set



{(8i,p:) : ¢ €I} (where {6; :4 € I} = {&: ()} if ¢ is the precondition of p ) of pairs
resulting of the introduction in m,z of a set {é; : ¢ € I} of data belonging to the domain of
A, will be called a run (notice that p; may not be an expected result by the application A).
Let us consider, for the sake of simplicity and without any loss of generality, complete runs,
i.e., runs exhausting the set of data denoted by the precondition of p. Each complete run of
myy is the set of pairs of a Skolem function of y[p] restricted to the precondition of p, and, if
myr < A, each complete run of m,y is, consequently, the set of pairs (the graph) of a Skolem
function of A.

We should notice that what we say above is a somewhat formal non-operational definition of
“being-an-engineering-model”. Since in the Observational Layer we are dealing with extensional
objects, the “image” in this layer of the syntactic correctness relation p < Spc (or, what is the
same, of the relation pu[p] «—eu[Spc], in the Semantic Layer) is the relation of non-strict inclusion
of the corresponding sets of graphs of Skolem functions. In other words, if we call M the set of
graphs of Skolem functions of the relation realized by m,pg,i.e. of ¢, and A the set of graphs of
Skolem functions of the relation realized by A, then m,y < A < M C A.

Since, as it was discussed in [Leh84] and formally shown in [HV89), testing (specification
validation, validation of each one of the products of the different derivation steps, and finally
program testing) is inevitable, and it is apparent, on the basis of the above discussion, that
the formal analysis of black-box testing should be done on the basis of the algebraic structure
of the inclusion of sets of graphs of Skolem functions, it seems to be of great importance to
analyze in deep such a structure in itself and its relationship with the algebraic structure of

partial relations discussed in [HV90a].



2 Basic Concepts of the Algebraic Theory of Problems

In this section we present some theoretic concepts which are needed for understanding our
future developments.

In [HV90c] , [HV90a] is presented a Calculus of Binary Relations in order to develop a
Programming Calculus. In those papers, it was shown that if we want to derive programs using
partial relations, the needed information we should give about relations can be presented as
a 3-tuple < D, R,q > such that ¢ C D x R. Such objects are called problems, since their
structure resembles the notion of problem introduced by G. Polya [Pol57] and later developed

by P. Veloso [Vel84].

Definition 2.1 A problem P over an universal set U (U is the closure of a given set B under

X, + and the operation 7 ) is a 3-tuple P =< D, R, ¢ > where:

¢ D is a nonempty subset of the universe & . We will refer to the set D as the domain of

data.

e I is a nonempty subset of the universe U. We will refer to the set R as the domain of

results.

® ¢ C D X R, is the condition or requirement of the problem.

Definition 2.2 We call a problem P =< D, R.q > viable iff for every d € D thereisr € R

such that (d,r) € ¢, that is, the relation g is total over D.

Definition 2.3 We say a problem P’ =< D' R',¢' > is a subproblem of a problem

P =<D,R,q> (denoted by P'C P ) iff :



o All data of P’ is data of P (D’ C D).
o All result of P’ is result of P (R’ C R).
e If a result of P’ is admissible, then it is admissible in P (¢’ C q).

When occurs the special case D' = D , R = R, and ¢’ C g, we say that P’ is a proper

subproblem of P.

Definition 2.4 We say a problem P’ =< D', R',q' > is a complete subproblem of a problem

P =< D,R,q > (denoted by P’ <P ) iff : P'C P and Dom(q') = Dom(q).

The notion of complete subproblem involves the idea of total correctness, i.e. it means that
all input-output pairs which belong to the problem P’ must also belong to the problem P ,
and all inputs for which the condition ¢ gives a result in R, the condition ¢’ must also give an
admissible result in P’. In other words, if P and P’ are models of specifications, P is a weaker

specification (more general) than P’.

When the special case D' = D, R' = R, Dom(q) = Dom(q’) aﬁd q' C q occurs, we say that
P’ is a restriction of P. If we consider that P and P’ are models of (angelic) non-deterministic
programs, then P’ is a more deterministic program than P. In operational terms, the set of
runs of P (the set of Skolem functions of ¢) includes the set of runs of P’ (the set of Skolem

functions of ¢).

Definition 2.5 Let P =< D,R,q > , P' =< D',R',q’ > and P” =< D",R",q" > be
problems then we say that P is the addition of P’ and P" (and we writte P = P’ + P") iff

D=D'UD" R=RUR" and q=¢ Uq".



Deﬁnition 2.6 Let P =< D,R,q > ) P, =< D,levql > aﬂd P” =< D,,yR”)q” > be
problems then we say that P is the intersection of P’ and P" (and we writte P = P’ o P")iff

D=D'NnD", R=RNR" and ¢=¢'Ng".

Let Fy be all problems over the universe ¢/ then, ( Py, C) is a lattice with the addition of two
problems as their l.u.b. (the least upper bound), and the intersection as their g.1.b. (the greatest
lower bound). This lattice is algebraic, distributive, modular, complete, copseudocomplement,
is bounded by < U,U,U x U > and by < §,0,0 > and has atoms (its atoms are problems with

the form 0, =< 0, {y},0 > or 0, =< {z},0,0 >) [HV90a].

It is important to notice that whereas in the addition case we have the nice fact that
Dom(p U q) = Dom(p) U Dom(q), in the intersection case, in general, only holds
Dom(p N q) € Dom(p) N Dom(q) [Sup60]. This has an immediate consequence, for example,
that the intersection of two viable problems can not be viable. Furthermore, as is formally
shown in [HV90a], there is not a componentwise manner of determining the intersection of
two partial relations . This means that the ¢.l.b. of two problems (or two partial relations),
as defined above, does not behave exactly as an “expected” g.0l.b., in the sense that, from the

components of p and ¢ we are not able to determine all of the components of p N q.

Let P, be the set of all subproblems of a given problem P then, (Py,C) is a complete
lattice. And, let Pg the set of all complete subproblem of a given problem P then, (Pg, <) is
an upper semilattice which is an upper subsemilattice of (P;, C).

It wecall ® = {0p =< D,0,0 >, VD et} U {0R=<0,R0>,VReU} U

{0p + 0%, VD,R€ U} then, (O, ) is a sublattice of (Py,C) with first element < uu,p >



and last element < §,0,0 >= 0, [HV90a].
Let Vi be the set of all viable problems in ¢ then, (Vy;,C) is an upper semilattice which is

an upper subsemilattice of (P, C).

3 Algebraic Structures

3.1 The functions ¥ and ¥

Let D and R be a domain of data and a domain of results respectively. We define the function

Ypr: P(D x R) — P(D — R)! such that

¢— Ypr(q)={f: D — R/ fCq, Dom(f)= Dom(q)}.

)3 p,r(q) is the set of functional complete subproblems of the relation ¢ C D x R, we call it
the set of runs of q.

Each ¢ C D x R corresponds with exactly a problem, the problem P =< D,R,q >.
Thus, for briefness we will use without distinction the relation ¢ C D x R and the problem
P =< D,R,q >. In the following, we consider arbitrary but fixed D and R, and so, we will
write 3(g) instead of ¥p r(q).

Let’s study some properties of the function 3.

Proposition 3.1 £(¢) C 3(¢) = ¢C ¢.
Proof : Let be (a,b) € q # 0 then, there exists f € 3(q) # 0 s.. fla) =b. Then, f € 3(¢') and
thus, (a,b) € ¢'.

IfS(q) =0 CS(¢) then, ¢=0 C¢. O

Corollary 3.2 3 is an 1-1 map.

lHere D ~ R is a set of all (partial and total) functions from D to R.



Proposition 3.3 If ¢ C ¢’ and Dom(q) = Dom(q') then ©(q) C %(¢').
Proof : Let be f € (q) and g # 0 then, f CqC ¢, and f: D — R. Also, we have
Dom(f) = Dom(q) = Dom(q') and then, f € E(q’).

Ifq=0=¢, then, () = {0p,r} = 2(¢). 0

We have as a result that 3 is not an onto map because if we pick D and R with 2 elements
di #d, € Dandr # 71 € R we can take f,f' : D — R constant functions such that,
fdy=r, f'(d)=r" VdeD.
If f € 3(q) then, Yd € D (d,r) € ¢. And, if ' € 5)(q) then, Vd € D (d,') € ¢. Now, we can
define

o ={ 7 4z

Then, g € ¥(q) but g # f and g # f'.

Notice that it is not the case that if |D| < 2 and |R| < 2 then ¥ is onto. Let be:
|D| = {d} and |R| = {r}. Then we have that P(D x R) = {0,{(d,r)}}.
And D — R={fo=0pg, fi = {d— r})}2.

And, there is not any relation q in P(D x R) s.t. 3(q) = 03 € P(D — R). a

Some others remarks about this functions are:

1. {0pr} € Img(L), since g =0 performs E(@) = {0pr}.

?Here, f is the partial function which has the element d in its data carrier, the element r in its result carrier
but it does nothing.
30 is the empty set.



2. All unitary sets {f} of functions from D to R are in the Img(Y), since if ¢ = f then

S(q) = {f}-

3. RP ¢ Img(%), since ¢ = D x R is such that ¥(q) = RP.

Lemma 3.4 Vg ¢ =U3(q).
Proof: Let be (a,b) € g # 0 iff 3 € 5(q) s.t. f(a) = b iff (a,6) € US(q). [Fg=0=US(q) .

O

I mg(z) comprises the sets of runs of all problems with domain of data D and domain of
results R.

Maybe it would be more natural to define the set of runs of a problem P =< D, R, ¢ > as
the set of total functions in D which are included in g, i.e., the set of total Skolem functions of
its relation. This can be done through the function Xp g : P(D x R) — P(RP) s.t.

g— YSpr(¢g)={f:D— R/ fCyq, f total function}. But, we can observe that ¥ and 3
perform the same result when ¢ is a total relation and in any other case ¥ is equal to §. Then,
in a more general way, we can work for all practical purposes with ﬁ], because all we can do with
3 we can also obtain with 3. We have presented the function 3 which reflects the fact that the
runs of a “partial program” are the Skolem functions of its “partial condition”. Or what is the
same, if we think that in the result carrier R we have a distinguished element L (this element
contains no information, it serves to model the values of computations that never produce any
information), runs should be the total functions defined by : if d € Dom(q) then, f(d) = r s.t.
(d,r) € ¢q,if d € D — Dom(q) then, f(d) = L. It is important to notice that if ¢ is viable then,

% only includes total functions and if ¢ is non-viable then, ¥ only includes partial functions.

10



In other words, given a program P its runs are all total functions or all partial functions in

agreement with its condition.
3.2 The algebraic structure induced by ¥

If we are interested in obtaining the algebraic structure induced by the function 3, we have to
define an adequate relationship between the elements in / mg(%). For example, it must exist
the l.u.b.(F, F'), when F,F' € Img(%) and F is a set of total functions and F” is a set of
partial functions. If our relationship is the C of sets then, F' and F’ are included (as sets) in
the l.u.b.(F, F'). Thus, L.u.b(F,F') is a set with some total functions and with some partial
functions then, l.u.b(F, F") & Img(%) because we have already observed that a set in I'mg (%)
only includes total functions or only includes partial functions. Thus, I mg(2) will not be a
sublattice of (P(D — R), Q).

We define the following partial order relation :

Definition 3.5 VF, F' € Img(Xp p)wesaythat

FLF' iff VfeF 3feF st Yde Dom(f) f(d) = f(d).

Note that we have not defined F < F' iff UF C F’' because this is not a
partial order relation (the antisymmetry law doesn’t hold). Moreover, let’s observe that if we
take F, F' € Img(X) then, the relation < corresponds to the set inclusion, but < allows us to
hand together sets of partial and total functions without confusion.

Also, note that < is not a partial order relation in P(D — R) (the antisymmetry law
doesn’t hold, because any set of functions {fi, ... yJo} < {BpR, f1,-- -, fn} and

Op.r, fr,-- 5 fu} < {f1,. .-y fn}, but they are different sets).

11



Lemma 3.6 For all F in Img(3p r) we have that S(JF) = F.

Proof :

Obvious. If F € Img(X) we have that ezists q C D x R s.t. F = E(q) andg=UF. o

Proposition 3.7 (Img(3p ), <) is a lattice.

Proof:

o Let’s define for all F,F' € Img(3p g), Lu.b.(F,F') = 3( (UF) U (UF")).

~ Lu.b.(F,F") is in Img(2).

— We have that F < FUZF’ then
UF € UFUF) = (UF)U(UF). Then,
F=3%UF) < S((UF)UUF))). Idem for F".

— Let’s assume that there exists another u.b. Z then, FUF' < Z . Then,
UFUF)=UF)UUF) € (UZ). Thus,

S(UF)UWUF)) < 5(UZ2) = Z.

o Let’s define for all F,F' € Img(EppR) , g.L.b.(F,F)) =S((UF) N (UF))

~ g.L.b.(F, F') is in Img(%).

— We have that (UF) N(UF') € (UF).Then,
L(UF)NUF) < S(UF) =F.

— Let’s assume that there exists another Lb. W then, W <« F and W < F'.
Thus, W CUF and UW C UF' and then, UW C UF (| UF'. Therefore,
SUW) =W < S(UFNUF) .

12



o The element called unit is RP, because for all F we have F < RP.
 The element called zero is {Qp r}, because for all F' we have {@p g} < F. O

Proposition 3.8 SDJ; is a monotonic map with the order <.

Proof:

Let be 7é q © ¢' and Dom(q) = Dom(q'). Then for all f € ©(q) we have that f € E(Q’).
Thus, for all f € (q) there exists fr=rfed() st f(d) = f'(d). Therefore, %(q) < S(q').

Let be § # q C ¢ and Dom(q) C Dom(q'). Let’s take f € S(q), thus, Uf C qg C ¢. Also,
let’s pick f' € 2(q) st I Domi@y = [ (f' is an extension of f, this function exists because
q € q). Thus, for all f € 3(q) ezists f' € 3(¢') s.t. f(d) = f/(d) for all d in Dom(q). And
then, $(q) < S(q).

If 0 = q C ¢ is obvious. ]

Proposition 3.9 If ¥(¢) < 3(q') then, q C ¢'.
Proof: Let be (a,b) € ¢ # 0 then, there exists f € 5(q) s.t. f(a)=b. Then, there is fes(q)

s.t. f'(a) = f(a) = b. And, therefore, (a,b) € ¢ ' 0

The next result gives the meaning of the l.u.b. and the g.l.b. If F is the set of runs of a
problem P =< D R,q >, and F’ is the set of runs of the problem P’ =< D,R,q" >, the
l.u.b.(F, F') is the set of runs of the problem P + P’ =< D,R,qU ¢ >, and the ¢g.l.b.(F, F') is
the set of runs of the problem Po P’ =< D,R,qN ¢ >. Formally, we have:

Proposition 3.10 If F = E(q) , F' = S(q’) then,
Lub.(F,F")=%(qU¢q') and g.L.b.(F, F') = £(¢N ¢').
Proof:

13



1. Lu.b.(F, F') = S((UF) U(UF")) = £(U%(q) U U(¢)) = B(qU ¢) = S(Lu.b.(q,¢))

2. g.Lb.(F, F') = S((UF)N(UF") = £(US(g) N UE(¢)) = £(¢N¢) = B(g.Lb(g,q)) O

If we take F' € Img(X), this set of functions univocally determines the problem
P =< D,R,q>s.t. %(q) = F. If we go down through the lattice (Img(®), <), starting from a
fixed F, and taking any chain in address to the first element, we have a descendant succession of
sets of functions which are sets of functional complete subproblems of the proper subproblems
of P. This succession always includes the unitary sets (the atoms of the lattice), which are the
problems with functional relation, and it finishes at the set {0p r}. The different options to
choose a chain accord with the following idea : “given a problem there is more than a way to
refine it”. Thus, we have the next result that means that for a non-deterministic program we
have a more non-deterministic program than it, which gives the same runs if restricted to the
domain of the first program. (i.e., the sets of functional complete subproblems of all the proper
subproblems of a given problem P, are relationated by < with the set of functional complete

subproblems of P).

Proposition 3.11 Given ¢, we define R, = {q' / ¢ C q} and
Fig = {F' € Img(8) | F' < £(q)}. Then, £(R,) = Fy,y-
Proof :

o If we take q' € Ry we have that ¥(q) € %(R,). Because ¢ C q we can argue,

3(¢') < %(q) and then %(¢') € Fi0)-

o Letbe F' € Fy,, that is I < 5(q) and F' € Img(S). Then, there is aq that S(q') = F'.

Thus, we have %(q') < (q), and then, ¢’ C q. Therefore, 2(¢) € B(R,).

14



3.3 The algebraic structure induced by &

Given F' C P(RP) we can define its closure by means of the following three sets :

1. The functional closure is the set:

F:@:D~+R/Vd€Dﬂf€Fﬂ®=ﬂ@}::@:D—»R/gguﬂ

2. The under “gluing” closure
Let P be a partition of D, we call an assignment a: P — F of gluing data. The result
of gluing is a functiona: D — R s. t. d+— (a([d])) (d). And we define the closure
under gluing of F' fo be the set:

F={a/ a:P-—F, P partition on D}

3. The product closure (or “Bertrand Russell version ”)
Let F't (d) = {f(d) e R / f € F}. Then, F1: D — P(R) can be viewed as the family
of D-sorted set F1= (F1 (d))sep. Thus, we define the closure of F:

NFt={h:D — R | h(d) € F{ (d)}

Proposition 3.12 ' = F = ILFT

Proof :

sECF
Let be a € F then, there exists the assignment a : P — F for some partition P of D.
Because a([d]) belongs to F' we can define f = a([d]) € F. And, a(d) = a([d])(d) =

f(d) VdeD.

o [IFCF
Let be h € IIF'T. Consider the partition P of D with singleton blocks. Notice that for

15



each {d} € D, since h(d) € F1 (d), there exists f in F such that h(d) = f(d).
So, the Aziom of Choice gives us a function a : P — F such that for every d in

D, a([d])(d) = h(d). Hence, h=a € F.

o FCIIFT
Letbeg: D — R st Yde D 3f € F g(d) = f(d). Because f(d) € F7 (d) holds for

each f in F, we have that g(d) = f(d) € F1 (d). And so, g € ILFT . O

Observations :
1. In the under “gluing” case a behaves as a([d]) on the block [d] of P.

2. In the under “gluing” case we consider all the partitions P of D, but the best partition
is the partition whose elements are the unitary sets of elements of D. With this only
partition (and all the assignments a for it) we can obtain all functions which are included

in F.
3. In the product closure, A : D — R are the Skolem functions of the D-sorted set F7.

Proposition 3.13  ~: P(RP) — P(RP) is a closure operator over RP.

Proof :

1. FCF

Letbe f: D — R s.t. f € F then, f C UF and so, f € F.

2. FCF — FCF

Let be F' C F' then, JF C UF'.And so, we have that Vg, g: D — R if g CUF
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then, g C U F'. And then,

F={9:D—R/gC UF} S {9g:D—R/g C UF}=F"

9. F=F

First let’s observe that : JF = UF

e UF CUF, direct of 1.

e UFCUF.
Let be (a,9(a)) € UF then, by definition of F, we have that if a € D then, g(a) €R
and there ezists f € F s.t. g(a) = f(a) and then (a,g(a)) € UF.

Andso,wehaveﬁz{g:DﬁR/gQUF}:{g:D———)R/gQF}zi. 0

Also we have the following results :

~

[ ] @ = 0
« (=11
o FUF # FUF' . We see this inequality with an example :
(1) Let be D = {1,2} and R={A,B} then RP ={ f, = {(1,4),(2,B)},

f2 = {(I’A)a(sz)} s f3 = {(I,B),(Q, B)} 3 f4 = {(173)7(2’ A)} }

Let be F''= {fo} and F' = {f3}, then FUF" = {fy, fs} but FUF’ = {f1, fa, 3, fu}.

Proposition 3.14 If D is infinite and |R| > 2 then, is not an algebraic operator.
Proof:
We have to prove that it is not the case that if f € F, then feF for some finite F' C F.

Let us see an example :
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Let be F' = {fo, f1, fay- -+ fny---} , where
fo:N— N st folz) =2 Yz e N

fi:N—N st

_J 0 dfzx=1
h(z) = { T otherwise
fo: N — N st
_J O =2
falz) = { T otherwise

faoi: N— N st
)0 ifr=n
e ={ 2

otherwise

We can pick f : N — N s.t. Yz € N f(z) = 0 belongs to F'. But it does not exist any
finit subset of F, F", such that {(0,0),(1,0),(2,0),...,(n,0),...} that belongs to JF' = |JF’

(which means f € F'). O

Proposition 3.15 Img(X) is the set of fized points of 7 that is Img(X) = {F | F = F'}.

Proof :

o Let be F # 0 € Img(X), that is, there is a viable ¢ € P(D x R) s.t. ¥(q) = F. Then,

UF =UX(9) = ¢

Then, F={g9:D—R/g C UF}={9:D—R/g C q}=F.
o Letbe)#F=F={g:D—R/g C UZF'}. Let us define ¢ = JF. Then,
S(g)= X(UF) = F=F
Let’s see that S(JF) = F. Let be f € EUF) iff (because UF € P(D x R)) fC (UF)
iff feF.
o The case with § is obvious. O
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Proposition 3.16 Img(X) is a complete lattice with respect to the set inclusion.
Proof : see [Gr78, pag.184]. a
Lemma 3.17 Let F,F' € Img(X). The l.u.b.(F,F') = FUF', and g.Lb.(F,F') = F( F".
Proof :
o — FUF € Img(), because FUF' = F ) .
- FUF' is an upper bound of F' and F', because F C FUF' C FUF'.
— FUF" is the least upper bound of F and F".

Let Z be another upper bound of F' and F'. And so , F\JF' C Z, then,

FUF'CZ =2

o — Lethe F,F' € Img(X). We have that F = F', and F' = F', and then,
FNF' =FNF.
Let be g € FOF'  but this is the same that to say Yd € D 3f € FAF s.t.
9(d) = f(d) then, ¥d € D
Af € F st g(d) = f(d) andVd € D 3f € F' st g(d) = f(d) iffg € F
and g € F' iff g€ FNF' iff g € FN\F". Thus, we have FNF' = FOF, and so
FNF' € Img(T).

— FNF' is a lower bound of F and F'.

— F'N\F' is the greatest lower bound of F and F'. |

Some properties that hold in this lattice are:

L. Img(X) is not a distributive lattice.
Let be, for example, F, F', F" € Img(%), s.t. F = {fo}, F'={fs}, F" = {f1} are as in
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the example (1).

Then, F"(FUF") = {f1}. But, (F*"NFYU(F"NF') = 0.

. Img(X) is not a pseudocomplemented lattice.

Let D and R be s.t. we can define three or more different functions f : D — R (it is
sufficient that [D| > 2 and |R| > 2, 0or |R| > 3). Let be F, F',F" € Img(Z) s.t.
F,F',F" are atoms of Img(X). Then, g.L.b(F, F') =0 = g.l.b.(F, F") and F' € F" and

F" g P,

. Img(X) is not a copseudocomplemented lattice.
Let F' = {fi,f2} , F' = {fi,fs} , F" = {fo, fs} be as in example (1). Then,

Lu.b(F,F') = RP = L.u.b(F,F") and F'¢ F" and F" g F'.
. Img(X%) is a bounded lattice because § and R are in Img(%).

. Img(X) is a complemented lattice (note that Img(X) is not a distributive lattice) .

The complement of F' € Img(X) is L(J F). Let’s prove this result:

e FN Z(UF) =0. Suppose that F N S(UF) + 0, then there is some finF=F
and fisin S(UF). Then, f C (UF), then f € (UF),andso f ¢ F = F, but

this is a contradiction.

o F U/L.‘\(U_F) = RP .The only thing to see is that F U/E\(U—F) D RP.If feRP

—

and f € F then, f € FUS(UF). f f ¢ F = F then, f ¢ UF then, f C UF

then, f € Z(UF) and so, f € F U/E\(W)
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10.

Img(X) is not a modular lattice: a lattice L is called modular sii
Vo2 z= (zAy)Vz=zA(yVz), [GrT8].
Let be, as in example (1) = = {fi, fo} , 2= {fi}, y = {fs, f1}. Then,

zNy)Uz={f} # eN@U2) = {f, fa}-

Img(X) is not a lattice of finite length.
If D = Nand R = N, given a n € N we always can get a set F' of n functions
fi:N— N, 1<i<n, and F € Img(X) (for example if the n functions fi are all

different each other only in one same point, and equal in the rest).

Img(X) has atoms, because the unitary sets are in the lattice and they cover to (). Thus,

Img(X) is an atomic lattice.

Img(X) is an atomistic lattice: a lattice L is an atomistic lattice iff every element of L is

a join of atoms, [Gr78].

Let be F' € Img(X). We have for all f € F that {f} € Img(Z) and it is an atom of

Img(%), thus User{f} = F.

Img(X%) is not a continuous lattice: a lattice L is a continuous lattice iff for all

a€ L aNVD=V{aAz [ze D} for any directed subset D of L, [Gr78].

Let be D = {G;}ien — N", where the G; are as in Proposition 3.18 below.

Thus, JD = NNV.

And, if we take H = {id: N — N / id(z) = z} we have that, HN{(JD = H. On the
other hand we have that, because the Img(id) is an infinity set, ¥ G; € D , 1d & G, and

so {td}NGi =0, VG; € D. Therefore,
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0{{id}NG:, ¥G; € D} = 0.

Proposition 3.18 Given F' C RP there is not the greatest G C F s.t. G € Img(%).
Proof :

Letbe F = {f: N — N [ Img(f) is a finite set } C F' = NV
Gi={f:N— N /Img(f) C{0,1} } = G,

Gy={f:N— N /[Img(f) C{0,1,2} } = G,

Gy ={f: N — N /Img(f) C{0,1,2,3} } = G

Gn={f:N— N/Img(f)C{0,1,...,n} } =G,

Then, Gy CGa CGsC...CGo C...CFCF

Proposition 3.19 Given F' C RP there is the smallest H € Img(X) s.t. F C H.

Proof :

Let’s define Mp = {H /| F C H and H € Img(X)}. This set is not empty because RP € Mp.
(MFp,C) is a partially ordered set , we shall show that it has first element, that is there exists
an element H € My s.t. for all other H' € Mp H C H'.

We shall prove that F is the first element.
o F'c Img(Z) and F C F thus, F' € Mp.
o Let be H' € My that is, F C H' then, F C H' = H'. 0

Lemma 3.20 (Mp, C) is a bounded sublattice of (Img(%), C).

Proof : |

Let be Hy, Hy, € Mp thét is, F C Hy and F C H; then F C Hy(\Hy and we have already seen
that Hi(H; € Img(X) when Hy, H, are in Img(X). Then, Hi(\H, € Mp and
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glb(Hl,HQ) = Hl an
Also, we have F C H,JH, and this element is in Img(X). Then, HHUH, € Mg and
l.u.b(Hl,Hg) = HlUHz.

F is the first element and RP is the last element of Mp. a

Lemma 3.21 Img(%) = Upep(ro) Mr.

Proof :
o Let be F € Img(X) then, F € Myp and hence F € Ureproy MF.

o Let be H € Upep(roy MF then, there is F € P(RP) s.t. H € My, and then,

H e Img(%). ' a
Finally, as in the case with the function ¥ we have the following result:

Proposition 3.22 If ¢ and ¢’ are both viable or empty and F = Y(q) , F' = X(q') then we
have that l.u.b.(F, F') = X(qU ¢') and g.1.b.(F,F') = £(¢ N ¢').

Proof:

1 lub(FF)=FUF =
E(UF U F") = B(Userur f) =
EUserf U User /) =S(UF U UF) =

%(qU ¢) = E(lu.b.(q,¢))

2 gLb(F,F) = FNF = XUser /) N S(User f) =
2(g) NE(¢)=2(¢Nn¢).
Let’s see that the last equality is true.

23



Let’s assume that $(q) N E(¢') # 0 then,
fFeX(@NE(Y) if feX(q) and fFEX(e) iff fSqand fCq iff
fSangd iff feX(gny).

Now, let’s assume that 2(q)NE(¢) =0 iff

~((3f) (feRP N feX(e) A feEX(?) iff

“(@f)(feRP A fCq A fCY)) iff

~(3f) (FeERP A f Cqng)) iff T(gng)=0 O
4 Relating Lattices

In this section we study the possibility of relating the algebraic structures involved in the
previous sections.

First of all, let’s notice that (Img(X),C) is a sublattice of (Img(X), <) (all the elements
of Img(X) are in Img(X) because ¥ is the restriction of % to viable or empty relations. And,
if F, F' are in Img(X) then the l.u.b.(F, F') and the g.0.b.(F, F") are equal in both lattices).

But, actually, we are interested in knowing what the relationship between the algebraic
structure of problems (i.e., the semantics of angelic non-deterministic programs) and the alge-
braic structure of their functional complete subproblems (i.e., the sets of runs of the programs)
is.

Let’s define PSpr = {< D,R,q > [ ¢ C D X R} the set of all the proper subproblems
of < D,R,D x R >. We have that (PSp g,C) is isomorphic to (P(D x R),C) and then, we

have a distributive, complete, complement lattice with unit element < D, R, D x R > and zero

element < D, R, () >.
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The l.u.b. of two elements < D, R,q >,< D,R,q' > in PSppis < D, R, qU ¢ > and the g.l.b.
is <D,R,qN¢ >. Thus, (PSpr, C) is a sublattice of (Py,C). Then, we define the function
Ipr: (PSpr,C) — (Img(Xp ), <) s.t.

<D,R,q> — Zpgr(q)={f€RP/fCq}

Proposition 4.1 T'p g is an isomorphism of lattices.

Proof:
o I'pris I-1, because ED,R 1s.

o I'p r is onto. Obvious.

I'pr(< D,R,0>)=%pr(d) = {0pr}.

Tpr(< D,R,D x R>)=3pp(D x R) = RP.
o I'p r preserves l.u.b. Direct because ED,R(qu’) = Ypa( (U ZD,R(q)) U (USp.r(g)).

e I'pr preserves g.1.b. Direct because Z']D,R(qﬁq') = ZD,R( (U ZD,H(q)) N U ZD,R(q')) ).

O

Therefore, the lattice (I mg(X.]D,R) , <) has the same algebraic structure and properties

than the lattices (PSpr , C) & (P(D x R),C).

Now, we want to obtain a relation between the algebraic structure of problems and their
sets of total Skolem functions.
Let Vpr = {< D,R,q > / q C D x R, q viable} be the set of all the restrictions of

< D,R,D x R > for a fixed pair D, R.
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(Vp,r,E) is an upper semilattice with unit element (the problem < D, R,D x R >). The
l.u.b. of two problems P and P’ in Vpr is the addition problem P + P’ =< D,R,qU ¢’ >.
Thus, (Vp,r, C) is an upper subsemilattice of (Py, C).

Let’s define the function Qpr: (Vor, E) — (Img(EZpr), C)s.t.

<D,R,q> v+ Zpr(q)={f€Ryg(q)”/fCaq, ftotal function}.

Proposition 4.2 Qpr is a one-to-one, meet-homomorphism (or meet-embedding) of upper
semilattices. Also, Qp r takes unit into unit.

Proof:

e {lpr is not an onto map. Because for all q the problems < D,R,q > are viable ones

then, X(q) # 0.
o Opris -1, because Lp g is 1-1.

® Qpr(< D,R,D x R >) = Eppr(D x R) = RP. Thus, Qppr preserves the unit of the

lattice.

o Opr(lu.b(<D,R,q><D,R,q >))=
Qpr(< D,R,q>U<D,Rq >)=
Qpr(< D,R,qU¢ >) =
Ypr(qUq) =
%p,a(q) USpr() =
lu.b.(%p.r(q),Xpr(¢)) =
Lu.b.(Qpr(< D,R,q >),Qr(< D,R,q' >)). Thus, Qppr preserves the lu.b. of the
lattice. O
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Then, (Img(Ep,r) , C) is a meet-homomorphic image of (Vp & , C).
Note that we have not chosen the lattice of proper subproblems of (D, R,D x R) (for a ‘
given pair D, R), because with this definition of Yp,r we can only obtain an onto map from
this lattice to (Img(Xpr) , C). Tp,g only preserves l.u.b. and g.0.b. when we deal with viable

relations, therefore we couldn’t obtain an homomorphism of lattices.
5 Conclusion

In the preceding sections we have studied and analyzed the algebraic structure determined by
the sets of the functionél complete subproblems of relations ¢ C D x R . This kind of
subproblem is an extension of the well-known Skolem functions in order to cope with partial
relations. We have proved that there is some sets of runs from a set D to a set R that do
not correspond to any poséible condition in D X R. Also, we have verified some interesting

properties of these sets of functions and finally, we related them to the lattice of problems.
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