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ON THE MODULARISATION THEOREM
FOR LOGICAL SPECIFICATIONS:

its role and proof

Paulo A. S. VELOSO

ABSTRACT

This paper examines the role played by the Modularisation
Property and presents a proof of the Modularisation Theorem
for logical specifications, i. e. those presented by a set of first-
order sentences of a (possibly many-sorted) language.

The importance of (some version of) the Modularisation
Property in this context has been noted by several
researchers, for it may be regarded as involving the
preservation of modular structure under refinements. The
Modularisation Theorem amounts to a basic logical tool
guaranteeing this preservation, in particular providing both
composite implementations and instantiated specifications in
a natural and direct manner. ,

The proof of the Modularisation Theorem presented here is
based on two central ideas: Craig’s Interpolation Lemma from
logic and the concept of kernel of an interpretation.

Key words:

Formal specifications, software development, formal
- methods, Modularisation Property, formal logic,
Craig’s Interpolation Lemma, interpretation, -
conservative extension, implementation,
parameterised specifications.



SOBRE O TEOREMA DA MODULARIZAGAO
PARA ESPECIFICAGOES LOGICAS:

seu papel e demonstragio

Paulo A. S. VELOSO

RESUMO

Este trabalho examina o papel desempenhado pela Propriedade
da Modularizagcdo ¢ apresenta uma demonstragdo do Teorema da
Modularizacdo para especificagdes légicas, i. e. aquelas descritas
por um conjunto de sentencas de primeira ordem de uma
linguagem (possivelmente poli-sortida).

A importincia da Propriedade da Modularizagio (em alguma
versdao) nesse contexto tem sido apontada por varios
pesquisadores, uma vez que ela pode ser vista como envolvendo
a preservagio de estrutura modular sob refinamentos. O
Teorema da Modularizagdio vem a ser uma ferramenta légica
bdsica garantindo essa preservagido, em particular, fornecendo
maneiras naturais e simples para se compor implementa¢des e
para se instanciar especificagdes parametrizadas.

A demonstragdo do Teorema da Modularizagdo apresentada aqui
se baseia em duas idéias centrais: o Lema da Interpolagdo de
Craig, da 16gica, ¢ o conceito de nicleo de uma interpretagio.

Palavras chave:

- Especificagdes formais, desenvolvimento de programas,
métodos formais, Propriedade da Modularizagdo, légica
formal, Lema da Interpolagdo de Craig, interpretagdo,
extensio conservativa, implementacdo, especificagodes
parametrizadas. ' ‘
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1. INTRODUCTION

This paper examines the role played by the so-called Modularisation
Property and gives a proof of the Modularisation Theorem for logical
specifications. By a logical specification we mean a formal specification
presented by a set of first-order sentences of a (possibly many-sorted)
language. In this context, the importance of Modularisation Property
stems from its use in composing implementations and in instantiating
parameterised specifications. The Modularisation Theorem is a basic
logical tool providing in a natural and direct manner both composite
implementations and instantiated specifications.

The motivations for the logical approach to formal specifications come
from two related sources. On the one hand, logical axioms employ the
language and concepts related to program verification [Manna '74]; on
the other hand, the logical formalism accommodates 'liberal’
specifications, which provide flexibility for specifying what one wishes
without forcing over-specification [Maibaum+Veloso '81;
Maibaum+Turski '84; Veloso+Maibaum+Sadler '85; Maibaum '86]. In
addition, this logical approach has been instrumental in extending some
of these ideas to problem solving [Veloso+Veloso '81; Veloso '88].

The Modularisation Property of logical specifications is very useful in
the context of formal specifications, particularly for dealing with
program development by stepwise refinement and abstract data types
[Turski+Maibaum '87; Maibaum+Veloso+Sadler '84; Veloso '87]. The
importance of (some version of) the Modularisation Property in this
context has been noted by several researchers. The Modularisation
Theorem may be regarded as guaranteeing the preservation of modular
structure under refinements.

In the context of logical specifications, the central role played by the
Modularisation Property was pointed out by T. S. E. Maibaum, and
connections between the latter and Craig's Interpolation Property have
been exploited by M. R. Sadler in early formulations of the
Modularisation Theorem [Maibaum+Sadler '85]. :

In this- paper we discuss the importance of the Modularisation Property
for stepwise refinement of logical specifications and prove the
Modularisation Theorem for such specifications. We also briefly discuss
the role played by Craig's Interpolation Property in this context. The
core of this paper is in section 3, where we present and prove the
Modularisation Theorem.



This paper is structured into a main text followed by a few appendices.
The main texts gives the general ideas and lines of argument whereas .
some more technical details are left for the appendices.

The main text discusses the role of the Modularisation Property and
presents a proof of the Modularisation Theorem and comments on the
importance of Craig's Interpolation Property for modularisation. Its
structure is as follows.

Section 2 examines the Modularisation Property and discusses its
importance in the formal development of specifications and programs in
a stepwise manner. We start by reviewing the concept of
implementation as an interpretation into a conservative extension. We
then go on to explain how the Modularisation Property is instrumental
in composing such implementations in a natural and direct manner.
Next, we review some basic ideas concerning parameterised logical
specifications and indicate the central role of the Modularisation
Theorem for instantiation of parameters.

Section 3 presents and proves the Modularisation Theorem for the
simple case of logical specification in one-sorted languages. We first
show the construction involved in the Modularisation Theorem for this
simple case. Then, we prove it by relying on some lemmas, whose proofs
are left for appendix 2.

Section 4 deals with the extension of these ideas to many-sorted
specifications and the role played by Craig's Interpolation Property for
modularisation. We first indicate how these ideas can be adapted to
many-sorted specifications by formulating them in simple categorical
terms. Then we comment on the role of Craig's Interpolation Property
for modularisation, indicating in which sense they are actually
equivalent.

Finally, section 5 presents some concluding remarks and comments.

The appendices present the versions of Craig's Interpolation Lemma
used and contain some details involved in the proofs of the claims on
which our proof of the Modularisation Theorem rests.

We adopt usual notation and terminology. For more information
concerning logical aspects the reader is referred to standard textbooks,
for instance [Enderton '72; Ebbinghaus+Flum+Thomas '84; Shoenfield '67;
van Dalen '89]. For the few simple categorical concepts employed in
section 4, some useful references are [Arbib+Mannes '75; Goldblatt '79].



2. THE ROLE OF THE MODULARISATION PROPERTY

In this section we shall informally introduce the Modularisation
Property. We shall also point out its importance in the formal
development of specifications and programs in a stepwise manner
[Maibaum+Turski '84]. This importance arises mainly in two situations,
namely in composing implementations and in instantiating
parameterised specifications.

2.1 Implementations of Logical Specifications

Let us start by considering implementation of abstract data types
[Ehrig+Mahr '85; Maibaum+Veloso+Sadler '84]. One has an abstract
specification A which one wishes to implement on a (more concrete)
specification C. For this purpose, one has to provide on top of C some
support for the abstract concepts of A. One account of what is involved is
as follows [Turski+Maibaum '87; Veloso '87].

Let us examine more closely what is involved in implementing an
abstract specification A in terms of another one, C. The result will be a
module representing objects of A in terms of those of C, and operations
and predicates of A by means of procedures using operations and
predicates of C. We can abstract a little from the actual procedure ‘texts
by replacing them by specifications of their input-output behaviours.
These amount to (perhaps incomplete) definitions of the operations and
predicates of A in terms of those of C and can be regarded as axioms
involving both the symbols of A and of C. Similarly, the representation
part gives rise to axioms capturing (some of) the so-called
representation invariants [Guttag '77].

Now, let us describe this situation in terms of theories presented by
axioms. '

One extends the concrete specification C by adding symbols to
correspond to the abstract ones in A, perhaps together with some
auxiliary symbols. Since one does not wish to disturb the given concrete .
specification C, this extension B should not impose any new constraints
on C. This can be formulated by requiring the extension B » C to be

conservative (or non-creative) in the sense that B adds no new
consequence to C in the language of the latter.
$

One then wishes to correlate the abstract symbols in A to corresponding
ones in. B. But, the properties of A are important, for instance in
guaranteeing the correctness of an abstract program supported by A.
Thus, in translating from A to B, one wishes to preserve the properties of
A as given by its axioms. This can be formulated by requiring the



translation i: A — B to be an interpretation of theories in the sense
- that it translates each consequence of A into a consequence of B.

We thus arrive at the concept of an implementation of A on C as an
interpretation iof A into a conservative extension B (sometimes called a
mediating specification) of C. This is depicted as a triangle below in

figure 1.
B
}e
C

Figure 1. The implementation triangle.

A B

It is interesting to notice that the mediating specification in an
implementation triangle as above may be regarded as a solution to a
problem with conflicting goals, in the following sense. First, consider the
problem of interpreting A. Clearly, if one can interpret A into B, then so
can one into any specification stronger than B. That is, the stronger the
specification B, the easier it is to interpret A into it. Now, consider the
problem of extending C conservatively. Clearly, if B is a conservative
extension of C, then so is any extension of C that is weaker than B. So,
now the weaker the specification B, the more likely it is to be ‘a
conservative extension of C. Thus, the mediating specification B in an
implementation triangle has to be both strong enough to interpret A and
weak enough to be a conservative extension of C.

2.2 The Role of Modularisation in Composing Implementations

In stepwise development it is highly desirable to be able to compose
refinement steps in a natural way. Let us consider the situation depicted
in figure 2. Here, one has a first implementation of A on C (with
mediating specification B) and a second implementation of C on D (with
mediating specification E).

Now, one would wish to compose these two implementations, in an easy
and natural manner, so as to obtain a composite implementation of A
directly on D. An immediate question that arises is: what would its
mediating specification be?
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Figure 2: Composition of implementations.

This is where Modularisation Property comes into play. For, it will allow
one to obtain such a mediating specification M, together with the
required interpretation k of B into M and a conservative extension g of E
into M. In other words, it will enable one to complete the square,
thereby obtaining a composite implementation of A  directly on D,
.consisting of a composite interpretation of A into M  together with a
composite conservative extension of D into M, as illustrated in figure 3.

Figure 3: Composite implementation.

Here it is worthwhile noting that this composition mimics exactly what a
programmer does by simply putting together the corresponding
modules. This is possible because we do not require that the given
mediating symbols be eliminated in constructing the composite one.



2.3 Parameterised Logical Spéciﬁcations

One of the long standing research goals in work on formal specifications
is the provision of standard building blocks from which larger
specifications might be constructed and that may be re-used in different
situations. In particular, the structuring of a specification into a “context”
and "parameter” has been found to be particularly useful. The idea is
that the context can be plugged into different situations by appropriate
choice of values (instances) for the parameters. Such structured
specifications are called parameterised (or generic) specifications
[Ehrig+Mahr '85].

Let us consider a simple example: SEQ[DATA] (sequences of, as yet,
unspecified values), where DATA is the formal parameter and SEQ is
what we referred to above as the context. Thus, DATA should be a part
of SEQ[DATA]. One may visualise this situation as in figure 4.

SEQ

DATA

Figure 4: Parameterised data typé SEQ[DATA].

Now, one would like to instantiate DATA by various actual parameters
to get 'normal' specifications. So, if NAT and INT are specifications of
natural numbers and integers, respectively, then SEQ[DATA replaced
by NAT] and SEQ[DATA replaced by INT] should give specifications for
sequences of naturals and sequences of integers, respectively. One
wishes to instantiate DATA in SEQ[DATA] by NAT to obtain SEQ[NAT] by

'replacing' the formal parameter DATA by the actual parameter NAT.

Our intuition tells us that SEQ[NAT] should look like figure 5.

SEQ

NAT

Figure 5: Instantiated data type SEQ[NAT].

That is, one just replaces the DATA part by NA T within the context SEQ.
Thus, for each given specification for DATA, SEQ[DATA] produces an
instantiated version, like SEQ[NAT].



The above intuition suggests regarding SEQ[DATA] as a function on
specifications. Indeed, this is the idea underlying the semantics of a
parameterised specification as a (partial) function from models to
models, or as a (partial) function from specifications to specifications.

Another viewpoint is provided by considering the properties of the
specifications. First, one should expect SEQ[NAT] to inherit all the
properties of SEQ[DATA] that concern only sequences, such as

tail(cons(x,l)) =1

Also, DATA is supposed to be a part of SEQ[DATA], but not an arbitrary
one, in the following sense. In going from DATA to SEQ[DATA], one
would not expect to gain any more knowledge about DATA. In other
words, no new constraints on DATA are placed by the addition of the
context SEQ[ ]. (This is not to say that every parameter is appropriate for
every context.)

2.4 The Role of Modularisation in Instantiation of Parameters

The simple tools of conservative extension and interpretations between
theories provide us with a quite straightforward account of
parameterisation.  The parameterised types have specifications which
are essentially the same as those of normal types. Thus SEQ[DATA]
should be a specification just like SEQ[NAT]. Their meanings (theories)
are the same as for normal specifications and not (partial) functions
between specifications or models. Instantiation of a formal parameter
by an actual parameter rests on a straightforward application of the
Modularisation property [Maibaum+Veloso+Sadler '85].

Indeed, a_ specification § is said to be parameterised by a sub-
specification X (called parameter) whenever § 1is a conservative
extension of X, and a parameter instantiation 1is an interpretation
p:X — Y. We thus have a situation, depicted in figure 6, similar to the
one encountered in composing implementations.

p
X B Y

Figure 6: Parameterised specification with parameter instantiation.



Once again the Modularisation Property comes into play. It will enable

us to complete the square, thereby yielding the fesulting instantiated
specification, as illustrated in figure 7.

p'

X o

Figure 7: Instantiated specification resulting from figure 6.

Here it is worthwhile noting that the construction of this instantiated
specification mimics exactly what was suggested above in figures 4 and
5. Moreover, the instantiated specification 7T 1is still a conservative
extension of the actual argument Y.



3. THE MODULARISATION THEOREM AND ITS PROOF

In this section we shall formulate the Modularisation Theorem and
indicate its proof. It can be formulated in categorical terms, but for the
sake of simplicity, we shall adopt another approach. We shall first
formulate the Modularisation Theorem, and prove it in simple terms, for
one-sorted specifications. In the next section we shall indicate how it
can be expressed, in categorical terms, for many-sorted specifications,
and indicate how the proof idea can be adapted to this more general
case.

3.1 The Modularisation Construction: simple version

Consider the following situation. We have:

specifications P, Q and R, with R consistent;
a conservative extension e : Pc Q , and

an interpretation f: P — R.

‘This situation is depicted in figure 8 below.

P bR
f.

Figure 8: The situation of the Modularisation Theorem: a conservative
extension and an interpretation of a specification.

Without loss of generality, we may also assume that the underlying
languages Loy and Lg, of O, and R have no symbols in common.

Let A consist of the new symbols added to the language Lp of P to form
that of J. Consider the following construction.

We first form a new language L by adding A to the language Lp of R.
We then extend the translation f from Lp to Lg to amap g from Ly to
the new language L. ‘
Now, we use this map g to translate specification Q, thereby obtaining a
new specification g(Q) in the language L.

Finally, we construct specification R as the union § = g(Q) U R.

This construction is illustrated in figure 9 below.
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Figure 9: The construction of the Modularisation Theorem:
completing the square with a specification.

Theorem: The Modularisation Theorem (simple version)

Given
specifications P, Q and R, with R consistent,
a conservative extension ¢ :Pc Q , and
an interpretation f: P — R;

the above construction yields

a conservative extension S of R, and
an interpretation g :Q — S.

Thus, the Modularisation Theorem completes the square with the
construction of a new specification § satisfying the conflicting
requirements mentioned in 2.1, namely it extends R conservatively and
interprets Q.

Also, notice that the above construction actually yields a 'reasonable’
presentation for S from the given situation, provided that it is
'reasonable' as well. For instance, it constructs a finite specification for §
provided that the given ones for P, Q and R are so.

8.2 Proof of the Modularisation Theorem: simple version

First of all, since R is assumed to be consistent, notice that so are:

P, because it can be interpreted into R; and
Q, because it is a conservative extension of P.

Also, by construction, S is specified by g(Q) u R. Thus, we clearly have

g interprets Q into S, and
S.. is an extension of R.

Thus, it only remains to prove that

the extension kA : R c S is conservative.

10



The proof idea is actually simple:

all would be fine if g ( and f ) happened to be bijective;

we shall resort to Craig’s Interpolation Lemma to take them as
surjective, so to speak;

all that remains is to make them injective (thlS is the purpose of the
kernel to be 1ntroduced below).

The version of Craig’s Interpolation Lemma we shall use appears in
Appendix 1.

Define the kernel of f to consist of the biconditional sentences of the
language of P such that f identifies both components. More precisely

KO ={ @0 v)e Sent(Lp)) ! f(9) = [y) }.

We now construct two new specifications, namely P' =P u K(f) and Q' =
0 v K(). »

Notice that this does not change their languages: Lp = Lp and Lo =Lg.

- Claim 1:

a) Q' is a conservative extension of P’.

b) f interprets P’ into R and g interprets Q' into S.

) AP') = f(P) and g(Q") = g(Q).

d) P’ and Q' are consistent.
In view of claim 1, we may replace P by P' and Q by Q"

Claim 2:

The symbols of Ly that g translates to symbols of Lz are exactly the
translations under f of the symbols of Lp, that is

flLp) = g(Lg) N L.

Claim 3
a) For each sentence 6 of Ly, if g(Q')F g(8), then Q' F 0

1.e., the interpretation g : Q'— g(@Q') is faithful (conservative).
b) In particular, g(Q') is consistent.

Now, consider a sentence o of Ly such that o is in Cn S.

Since

f(Lp) = g(Lp) N Lg, by claim 2, and
g(Q") is consistent, by claim 3.b,

we can apply Craig’s Interpolation Lemma.

11



It yields a set J of sentences of f(Lp) such that

(i) g(Q") F 1, for each sentence t of J, and
((i)RuU J E o.

Claim 4

J = f(I), for some set of sentences I of Lp.

Hence, (i) yields, since g extends f,

(iii) g(Q") F g(o), for each sentence o of I.

From (iii), by claim 3.a, we have, for each sentence © of I,
Q' E o, whence, since ¢ isin Lp, P'F ©.

Thus, since, by claim 1.b, f interprets P’ into R,'we» have

R E f(c), for each sentence o of I, i.e.,

R E 1, for each sentence t of J, in view of claim 4.
Therefore, because of (ii),

R E «.

This establishes the conservativeness of the extension A : R c §,
thereby concluding the proof of the Modularisation Theorem.

The proofs of these claims appear in Appendix 2.

12



4. THE MODULARISATION THEOREM: COMMENTS AND EXTENSIONS

In this section we indicate how to adapt the previous construction and
proof of the Modularisation Theorem for specifications in many-sorted
languages. We shall also briefly comment on the relationship between
the Modularisation Property and Craig's Interpolation Property.

4.1 The Modularisation Theorem: many-sorted, categorical version

The construction of the Modularisation Theorem can be described as an
amalgamated sum: a pushout rectangle. Since this rectangle involves an
extension, it turns out to be a pullback as well. This viewpoint is
particularly appropriate for the case of specifications in many-sorted
language.

A many-sorted language consists of an alphabet of symbols, a set of
sorts and a declaration assigning to each symbol its profile of sorts of
arguments and results. A translation between such languages is
required to preserve declarations. A many-sorted specification consists
of a set of sentences of such a many-sorted language.

The construction of the Modularisation Theorem can then be adapted to
many-sorted specifications as follows.

We are given:
spécifications Ty, T1 and T, with T, consistent;
a conservative extension e :Toc T, and
an interpretation f:Tg — Tj.

We first form language L3 as the pushout of the language diagram
underlying the given specifications. The construction of pushout of
languages parallels the one given in [Ehrich '82] for algebraic languages.
This yields language translations g :L; — L3 and h: Ly —» L3, with &
being a language extension. :

We then use these maps to translate the given specification of T into
the new language L3 and construct specification 73 as before:
T3 =g(T1) v T,

Now, it is not difficult to see that these four theories do form a pushout
diagram. Moreover, since T is an extension of T, T'3 turns out to be an
extension of T, as well and the language diagram underlying these
specifications is seen to be a pullback.

13



Theorem: The Modularisation Theorem (many-sorted version)
Consider a pushout rectangle of theories '

4

w

To : T2

with T, consistent and e : To < T; a conservative.
Then, h : To < T3 is a conservative extension as well.

The proof of this many-sorted version of the Modularisation Theorem
follows basically the same idea as before. The only difference is that we
have to resort to a many-sorted version of Craig's Interpolation
Theorem (see Appendix 3) and claim 2 now becomes:

The induced rectangle of language inclusions

g(Lj) c L;
U v
fLo) c L

is a pullback.
4.2 The Role of Craig's Interpolation Property for Modularisation

We have seen that Craig's Interpolation Property plays a crucial role in
establishing the Modularisation Theorem. It has been pointed out that a
version of this property is, not only sufficient, but also, in a certain
sense, necessary for the modularisation property [Sadler '84
Maibaum+Fiadeiro+Sadler '90].

The above connection has a somewhat 'global' nature. But, a somewhat
stronger, and more 'local’, connection can be established as we shal now
indicate.

Both the Modularisation Theorem and Craig's Interpolation Lemma have
to do with theories over languages arranged in a certain pattern.

In order to take a closer look at the relationship between these two
properties we shall consider a pushout rectangle R of language
translations

14



L,

L -—-—————>
I h
LO-——————-z»L

where e : Lo < Ly is an extension of Lo to Lj.
Thus, we also have:
h:L,c Lz is an extension of Ly to L3; and

the rectangle R of language translations is a pullback.

Now, Craig's Interpolation Property is concerned with theories over
languages L; and L, and the 'common’ sub-language Lo, in the sense that
one can find a set of interpolant sentences in this common ﬂub -language
Ly.

On the other hand, the Modularisation Property is concerned with
theories over languages L1, L, and L3, where one wishes the property of
conservative extension to be preserved.

Now, given a language extension e : Lo c L and a theory 71 over L,
the so called restriction T{lLg = CnT; n Sent(Lg) gives a theory over L;
that 7; extends conservatively [Shoenfield '67, p. 95, exercise 9]. (Notice
that this restriction is the pullback of the inclusions j: T < Sent(L))
‘and e : Sent(Lg) < Sent(Ly).)

By means of the construction of restriction one can establish a "local
connection between theories with Craig's Interpolation Property and
theories with the Modularisation Property. In this sense, having Craig's
Interpolation Property is a necessary and sufficient condition for the
modularity of a diagram. '

15



5. CONCLUSIONS

This paper has examined the role played by the Modularisation
Property and presented a proof of the Modularisation Theorem for
logical specifications, i. e. those presented by a set of first-order
“sentences of a (possibly many-sorted) language. The motivations for this
logical approach to formal specifications come from two related sources:
being close to concepts and notation related to program verification and
accommodating 'liberal' specifications, which provide flexibility without
forcing over-specification [Maibaum+Veloso '81; Veloso+Maibaum+Sadler
'85; Turski+Maibaum '87].

The importance of (some version of) the Modularisation Property in this
context has been noted by several researchers, for it may be regarded
as involving the preservation of modular structure under refinements.
The Modularisation Theorem amounts to a basic logical tool
guaranteeing this preservation, in particular providing both composite
implementations and instantiated specifications in a natural and direct
manner.

We have started in section 2 by reviewing the Modularisation Property
and discussing its importance in the formal development of
specifications and programs in a stepwise manner, both for
implementation and for instantiation. The Modularisation Theorem itself
has been dealt with in two stages, in order to single out the main ideas.
In section 3 we have presented and proved the Modularisation Theorem
for the simple case of logical specification in one-sorted languages; and
in section 4 we have indicated how these ideas can be adapted to many-
sorted specifications by formulating them in simple categorical terms, in
addition to commenting on the role of Craig's Interpolation Property for
modularisation. ‘

Section 2 has been intended to situate the Modularisation Property for
formal development of specifications and programs in a stepwise
manner and indicate its importance in this context. We have first
reviewed the idea of implementation triangle (an interpretation into a
conservative extension). It then becomes quite clear why the
Modularisation Property is instrumental in composing such
implementations in a natural and direct manner. Next, we have
reviewed the basic ideas of parameterised logical specification as a
conservative extension and parameter instantiation as an interpretation.
Once again, the central role of the Modularisation Theorem for defining
the result of parameter instantiation is immediately clear.

16



The core of this paper is section 3, where we have presented and proved
the Modularisation Theorem for the simple case of logical specification
in one-sorted languages. We have first shown the construction involved
in the Modularisation Theorem for this simple case. Then, we have
established it by relying on some lemmas, whose proofs have been left
for appendix 2. '

Here two central ideas deserve some comments. As we have already
mentioned, the proof idea is actually simple: one would wish the
interpretations involved to be bijective. Now, Craig’s Interpolation
Lemma allows us to assume them as surjective, so to speak. (We shall
come back to the central role played by Craig's Interpolation Property.)
The other important idea is the introduction of the kernel. It allows us
to replace the given source theories by stronger ones, without changing
the target theories, but yielding the payoff that the interpretations now
become faithful as desired.

Section 4 has concentrated on the extension of these ideas to many-
sorted specifications and the role played by Craig's Interpolation
‘Property for modularisation. We have indicated how these ideas can be
easily adapted to many-sorted specifications by formulating them in
simple categorical terms. Then we have commented on the role of Craig's
Interpolation Property for modularisation, indicating in which sense
they are actually. equivalent.

We shall conclude with two general remarks. The first one concerns
Craig's Interpolation Property: one should bear in mind that there are a
few versions of this property, which may be appropriate for distinct
specification formalisms [Maibaum+Sadler '85; Maibaum '86; Rodenburg
+ van Glabbeek '88]. The second one has to do with the technique
employed in our proof of the Modularisation Theorem: the central idea
of kernel is readily seen to be connected to the concept of quotient, a
point to be examined in more detail in a report in preparation.
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APPENDICES
APPENDIX 1: CRAIG'S INTERPOLATION LEMMA (siinple version)

The version of Craig’s Interpolation Lemma we use can be stated as
follows.

Theorem: Craig's Interpolation Lemma

Assume that we have first-order languages such that Lo = L n Ly,
-and consider sets of first-order sentences T, of L, and T3, of Ly, such
that T; is consistent.

Given any sentence ¢ of L, such that Ty U T, & ¢, there exists a set of
sentences I of Lo (called interpolants) such that.

()T, F o for every 6 € I and
i) Tou IE §.
APPENDIX 2: PROOFS OF THE CLAIMS

Claim 1: _

a) Q' is a conservative extension of P’

b) f interprets P’ into R and g interprets Q' into S.

¢) AP") = f(P) and g(Q") = g(Q).

d) P' and Q' are consistent.

Proof.

a) follows from the fact that the sentences in K(f) added to P and Q are
all in Lp.

Indeed, consider a sentence 6 of Lp such that Q'F 6.

Then, by compactness, for some finite conjunction y of sentences of K(f),

Qu{y }F 6, whence Q F (x — 8).
Now, since (y — 6) is a sentence of Lp, by conservativeness we have

PE (y —» 8), whence P'F 0.

b) and c) follow because whenever (¢ ¢ y) is in K(f), then f(¢) = f(y)
and g acts identically on ¢ and y.

d) The consistency of P' follows from the assumed consistency of R and
from part b, whence the consistency of Q' follows from part a.

OFD

Claim 2:

The symbols of Ly that g translates to symbols of Lg are exactly the
translations under f of the symbols of Lp, that is
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JLp) = g(Lg) N L.

Proof.

This follows because, by construction, g acts identically on the symbols
of Ly that are not in Lp.

OFD

Claim 3

a) For each sentence 6 of Ly, if g(Q")F g(6), then Q' 6

i.e., the interpretation g : Q'— g(Q") is faithful (conservative).

b) In particular, g(Q') is consistent.
Proof.

First, form an auxiliary presentation T by adding to Q' the following set
of sentences: '

for each symbol t in f(Lp) choose a symbol s in Lp such that t = f(s) and
add the corresponding equivalence sentence: (t & s)

{ e.g. for a unary predicate symbol add Vx ( t(x) <> s(x) ),

and for a unary function symbol add VxVy ( y=t(x) & y=s(x) ) }.

(i) For each atomic formula p of Lp, since @' includes K(f), we have:

TE (fu) & p)—

(ii) For every sentence p of Ly, since, g is the identity on symbols of Lg
not in Lp, we have, by induction:

TFE (g(p) & p).

(iii) T is an extension of g(Q").

Because, for each axiom m of Q:

TEn, since Q' c T; and

Tk (g(n) < m), by (ii).

Thus, T E g(n).

(iv) T is a conservative extension of Q. _

Because, each new symbol f(s) added to Q' to form T is introduced by a
corresponding definition in terms of a (single) symbol s of Lp. -

a) Cdnsider a sentence 0 of Lo, such that g(Q") F g(8).

Then, since, by (iii), T extends g(Q"), T F g(0).
Also, by (ii), TE (g(6) & 0). :
Hence, Tk 0, with 6 a sentence of Lg.

Thus, by (iv), Q'E 8.
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b) Claim 1.d and (iv) yield the consistency of T, whence, by (iii), that of
g(Q).

QD

Claim 4

J = f(I), for some set of sentences I of Lp.

Proof.

This follows from claim 2, since J is a set of sentences of f(Lp).
OFD

APPENDIX 3: CRAIG'S INTERPOLATION LEMMA (many-sorted version)

The many-sorted version of Craig’s Interpolation Lemma we use can be
stated as follows.

Theorem: Craig's Interpolation Lemma (many-sorted version)

Assume that the following rectangle of language extensions

Ll
eI
L

0

S ————
L3

Ih
L

is a pullback and consider sets of first-order sentences Ty, of Lj, and T3,
of L,, such that T is consistent. ‘
Given any sentence ¢ of L, such that Ty u T E ¢, there exists a set of
sentences I of Ly (called interpolant&) such that

g

————————
f

(i)T F o for every c € I and
(ii) To U I E ¢.
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