Monografics em Ciéncia da Computacdo
n° 18/92 ‘

Toweads Formal Coherent Meta-Models
for the Software Development Process

Armando M. Haeberer
Paulo A. S. Veloso
Thomas S. E. Maibaum

Departamento de Informdética

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE $SAC VICENTE, 225 - CEP 22453
RIO DE JANEIRO - BRASIE

PUC RIO - DEPARTAMENTO DE INFORMATICA

- Monografias em Ciéncia da Computagcdo, N¢ 18/92
Editor: Carlos J. P. Lucena Abril, 1992

Towards Formal Coherent Meta-Models
for the Software Development Process *

Armondb M. Hoeberer
Paulo A. S. Veloso
Thomas S. E. Maibaum #

#* Dept. Computing, Imperial College of Science, Technology and
Medicine; London

¥ This work has been Sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.

In charge of publications:

Rosane Teles Lins Castilho

- Assessoria de Biblioteca, Documentagdo e Informagdo

PUC Rio — Departamento de Informdtica

Rua Marqués de Sdo Vicente, 225 — Gavea

22454970 — Rio de Janeiro, RJ

Brasil

Tel. +565-21-629 9386 Telex +565-21-31048 Fox +55-21-511 5645

E-mail: rosane@inf.puc-rio.br , . ’
- techrep@inf.puc-rio.br (for publications only)

TOWARDS FORMAL COHERENT META-MODELS FOR
THE SOFTWARE DEVELOPMENT PROCESS

Armandoe M. HAEBERER'! Paulo A. S. VELOSO! Thomas S. E. MAIBAUM™*

ABSTRACT

A theoretical basis and a unifying conceptual framework are
essential for a coherent model of the processes invoived in
software development. Here we analyse basic needs of such
formal coherent meta-models, which lead to several levels, for
distinct objects and for relating them. These needs stem from
formal reasons, epistemological considerations and heuristic
convenience. The formal reasons arise from a precise analysis of
the goal of software development, the epistemological
considerations are connected to non-reductionistic explications,
‘and the heuristic convenience has to do with instantiating the
meta-model to cover various paradigms. We also outline a
multidimensional meta-model of the software development
process, which is based on these general ideas and centred
around logical concepts, such as interpretations between
theories, and an extended calculus of binary relations.

Key words:

Software development, formal methods, development
methods and paradigms, coherent meta-models, formal
‘logic, software development process, formal modeling,
program derivation calculi.

¥ Depi. Informética, Pontificia Universidade Cat6lica; 22453 Rio de Janeiro, Brazil
(Fax: (55) (1) 511 5645; e-mail: armando@inf.puc-rio.br., veloso@inf.puc-rio.br).
+ Dept. Computing, Imperial College of Science, Technology and Medicine; London SW7 2BZ, UK
‘ (Fax: (44) (71) 581 8024; e-mail: tsem @doc.ic.ac.uk).

RESUMO

Uma base tedrica e um arcabougo conceitual unificado sdo
-essenciais para um modelo coerente dos processos envolvidos em
desenvolvimento de software. Aqui se analisam as necessidades
basicas de tais meta-modelos formais coerentes, o que conduz a
varios niveis: para objetos distintos e para relaciond-los. Essas
necessidades decorrem de razdes formais, consideragdes
epistemolégicas e conveniéncia heuristica. As razdes formais
advém de uma andlise precisa dos objetivos do desenvolvimento
de software, as considera¢des epistemolégicas se relacionam a
explicagOes nao-reducionistas € a conveni€ncia heuristica tem a
ver com a possibilidade de instanciar o meta-model de modo a
cobrir vdarios paradigmas. Também se apresenta um meta-
modelo multidimensional do processo de desenvolvimento de
software, o qual se baseia nessas idéias gerais além de ser
centrado em torno conceitos ldgicos, come interpretagdes entre
teorias, ¢ um cdalculo estendido de relacdes bindrias.

Palavras chave:

Desenvolvimento de software, métodos formais, métodos
e paradigmas de desenvolvimento, meta-modelos
coerentes, légica formal, processo de desenvolvimento
de software, modelagem formal, cédlculos de derivagdo
de programas.

CONTENTS

I. INTRODUCTION 1
Il. TH_E SOFTWARE DEVELOPMENT PROCESS 1
11.1. THE GOAL OF THE PROCESS 1
11.2. THE ACTORS AND THEIR. ROLE 2

III. NEEDS IN MODELING THE SOFTWARE DEVELOPMENT

PROCESS 5
111.1. THE BASIC LEVELS 2
1I1.1.1. The Observable Level 2
ITI.1.2. The Program Text Level 3
JII.1.3. The Fundamental Relation 3
III.Z. FORMAL REASONS FOR MORE LEVELS 4
I11.2.1. The Need for Theoretical Levels 4
I15.2.2. The Need for Transversal Planes 5
I11.2.3. The Need for The Plane of I/O Relations 5
YI1.3. HEURISTIC CONVENIENCE OF THE MULTIPLICITY OF LEVELS 6
I11.3.1. Development within Theoretical Levels 6
111.3.2. Passage between Levels 7
¥IL.3.3. Tests, Proofs, Derivations, and Actions 7

II1.4. THE BASIC NEEDS IN MODELING THE SOFTWARE DEVELOPMENT
PROCESS 9

| IV. A MULTIDIMENSIONAL (META-)MODEL OF THE SOFTWARE

DEVELOPMENT PROCESS : 10
IV.1. THE STATIC PART 10
IV.1.1. The Static Dimensions | 10
I1V.1.2. Relations between Static Planes - 12
IV.2. THE DYNAMIC PART o 13
1V.3. THE WELTANSCHAUUNG OF THE META-MODEL '. - 13
V. CONCLUSIONS 14

REFERENCES 14

ACKNOWLEDGEMENTS

' Research reported herein is part of an on-going
research project. Partial fihancial support from British
and Brazilian agencies is gratefully acknowlédgcd, as
are the hospitality and support of the Dept. of
Computing, Imperial College of Science, Technology and
Medicine, and the Dept. of Informatics, Pontificia
Universidade Cat6lica do Rio de Janeiro. Helpful
conversations with Professor M. M. Lehman are’

gratefully acknowledged.

observable level a binary relation, like A, may be regarded as consisting of infinitely many atomic
sentences of the form 8Ap. Hence,

establishing a property of A or a relationship between A and mp, or any other object, involves inspecting #

each one of the infinitely many atomic sentences of the form SAp.

Since we are fegardin g both the application and virtual méchine as sets of 1/O pairs, we can clarify
the correctness relation between them. We shall say that

virtual machine myp is correct with respect to application A if and only if it halts for every appropriate
datum (belonging to the domain of the application A) and the /O relation realised by myp is included in (+)
the 1/O relation corresponding to A

One may distinguish between the observable plane, with applications and virtual machines, and the
plane of the I/O relations, with the denotations of specifications and of programs. The latter, called
the C-observable plane, is an abstraction of the former and they are connected by correspondence
rules C [Sup77]. But, for simplicity, we shall often neglect to distinguish between the objects x and
C(x). Likewise, we shall generally not make explicit the relationships connecting data and results for
the application and the program.

I11.1.2. The Program Text Level

A program (text) pis a syntactic object written in a formal language, with precise formation rules.
~ We thus introduce the executable (linguistic) plane consisting of these syntactic objccts; which are
rendered executable by interpretation by the target machine at hand.

The virtual machine myp is the device obtained by interpreting a program p on the given target
machine. This connection between p and myp, is established by an interpreter H, which is a part of the
correspondence rules enabling one to establish connections between properties of p and the
observable behaviour of mp. We can express this by H[p] = mp, which is, by definition, what we
mean by “virtual machine generated by a program text; correctness of the interpreter is not an issue.

III.1.3. The Fundamental Relation _

We can try to formalise the notion of correctness in I 1.1 as a precise definition, by translating it
into formal logic [H+V90]. For this purpose, it is convenient to introduce some notation related to the
actors of II.2. We have been using

A for the application and

my,, for the virtual machine generated by program p.

Now, let us denote by
SAp that the pair (3, p) belongs to application A; ‘
8DA that § is a possible datum of application A, i. e., & belongs to the domain of A;
m},ﬁlﬁ the fact that my, has been fed datum S;
Ffm,, t, 8) the fact that m,, when fed §, halts at instant t; and
R(m,, t,) the result produced at instant t by m applied to 0.

We can now formalise explanation (+) as
mp £ Ao Vo (DA A m,,zs — 3t (H(mp, t,d) A BAK(mp, t,8))) () -

But, definition (1) presents two fundamental problems, to be discussed in the sequel. The very
acceptance of expression (1) as definition of correctness allows us to show the need of some
"common places” of Software Engineering, for instance, the interpolation of a theoretical object in the
sdp, thereby recognising two - non-independent - phases [H+V90]

111.2. FORMAL REASONS FOR MORE LEVELS

We shall now discuss the problems presented by definition (1), for whose solution one is forced
into the explicit adoption of an appropriate world view, leading naturally to the need for theoretical
levels [H+V90].

I11.2.1. The Need for Theoretical Levels

The first problem concerning definition (1) has to do with decidability on the (C-)observable level.
" The need for theoretical levels arises from an analysis of the expression
3t (H(m p, t, 8) A SAR(mp, t, 8)).

Due to the quantification 3t, the above expression is not decidable on the (C-)observab]e level,
being non-refutable in principle [Sup77). In intuitive terms, the problem lies in refuting, on the basis
of observations, the eventual halting of m: if m,, when fed 8, has not halted yet, how can one
know that it will not halt after a few instants more? Also, m p Will produce an output only if, and
when, it has halted.

In order to overcome this problem, we can use the fact that myis the vntual machine "generated"”,
via H , by program p, the latter being a formal object whose termination is amenable to proof. If we
prove I(p). (termmanon of p).then we know that m, will halt. So we can Skolemise
3t H(my, t, 8) and introduce the functional symbol { so that {(8) denotes "an instant when the
machine, after being fed datum §, has halted". Thus, we can write:

Tp)rymy £ A & 2
VS (8DA A m A5 - (Him p L), 8) A SAR(M , £(8), 8)))

So, the problem of non-refutability in principle can be overcome by’means of a formal proof,
which ensures the eventual halting of m, But, the proof of termination of p relies on theoretical
reasoning about the syntactic object p. This formal proof takes place on a theoretical level, rather than |
on the (C-)observable one. Hence, overcoming the problem of non~refutab1hty in prmc1ple leads us
naturally to the need for theoretical levels. ’

Upon a closer look, one realises that one actually establishes that p terminates over a precondition
¢: one proves that p terminates for all data satisfying ¢ [B+W82]. And such a precondition comes
from a specification Spc. Such a (formal) specification is a declarative text, written in a specification
language with precise syntax and semantics, like first-order logic. We thus introduce a declarative

(linguistic) plane, containing these spcciﬁcatjons.‘

Both p and Spc are lin guistic objects, but they should be distinguished because of their intended
interpretation. For, p is supposed to be executable, being intended to compute oulpuls from inputs,
whereas Spe is intended to denote a relation between inputs and outputs.

I1X.2.2. The Need for Transversal Planes

The second problem concerning definition (1) is connected with the so-called operational
definitions [Sup77). We shall see this will lead naturally to the need for new planes.

Expression (1), being based on observing the behaviour of the virtual machine when fed
appropriate data, is a typical example of an operational definition. At first sight this might appear
unproblematic, because one tends to think of the verbs involved in the subjunctive mood: “if one
were 1o take a datum § and feed machine my, then.....”. But, if the connective — in (1) represents
the material conditional, then the verbs are to be thought of in the indicative mood. In this case one
will face the problem encountered by Carnap in trying to define dispositional concepts in this manner:
any virtual machine that is fed no datum whatsoever is correct with respect to an application.

Carnap tried to solve this problem, within extensional logic, by réplacing operational definitions
of the form Q & (P —» R) by reduction sentences (conditional definitions) of the form
P — (Q & R). Unfortunately, Carnap’s proposal presents some weak points and does not
actually solve the problem of counterfactual conditionals [Sup77]. ‘

Thus, the logic of the correctness relations on the (C-)observable level must be a conditional,
rather than classical, one | [Hac91] ‘We shall represent the counterfactual conditional by »+ in order to
distinguish it from the material conditional —. So, (1) shall be rewritten with ®+ in lieu of —, to
stress its reading in the subjunctive, rather than indicative, mood.

Thus, a new, transversal plane, for the logic of counterfactuals, appears. In fact, the need for
another transversal plane, had already been foreshadowed. Indeed, in 111.2.1 we saw that termination
is a relation between syntactic objects, but on distinct planes. In fact, termination is part of total
correctness [B+W82], and we shall denote the latter by pESpc (pis an implementation of Spc). We,
thus, need a further plane for reasoning about the connection between p and Spc, a plane for the logic
of program verification.

II1.2.3. The Need for The Plane of I/O Relations

The PW model [Leh84].of the sdp splits it into two legs: abstraction (from A to Spc) and
reification (from Spcto p) Of course, the reification process can be carried out in a stepwise manner
(see I11.3.1). But, as already observed by Turski,

the verification that a “more concrete” specification is an implementation of a “more abstract™ one is not
sufficient for the acceptance of the former as a basis for a pew development step; in any case, after the ™

formal correctness proof, one still needs an acceptance test with respect 1o the application .

A formal justification for this factorisation into two legs can be provided [H+V90]. If we use
Spe <= A for “Spc is a (correct) specification for A”, we can show

‘Z‘(p)!—H.SpccAApE.Spc—) m,ZA . ?3)

Nevertheless, p&Spc and Spc <= A in (3) are not on the same level, for p& Spc relates two
linguistic objects, albeit of distinct kinds, whereas Spc <= A relates a linguistic object to an
observable one. According to (#), the only way to study the correctness of Spc with respect to A is
by means of validations (tests). For these tests one needs to refer to the I/O behaviour of A, on the
plane of I/O relations.

A precise definition for Spc <= A would involve a universal quantifier of the form
(VO(DAS — ...) as in (2). Now, except in the rare cases where Dom{A) is finite, it is not finitely
examinable, and (V3)(DAS — ...) does not terminate in finite time. Thus, in generating tests one
replaces (V8)(de Dom(A) — ...) by (V8)(8e W — ...), where W is a finite subset of Dom(A).
Then, the implication « of the biconditional in (2) presupposes an induction, which introduces non--
monotonicity into the sdp. So, from the Weltanschauung we were able to derive the formal need of
Turski’s assertion (*) about the non-independence of the factorisation.

II1.3. HEURISTIC CONVENIENCE OF THE MULTIPLICITY OF LEVELS

Software development can proceed within the theoretical levels, as in cases modeled by LST (see
II1.3.1), or on various levels, as in prototyping paradigms (see II1.3.2). We have already discussed
formal needs for the introduction of several levels. We shall now consider heuristic convenience and
epistemological reasons, which, in modeling, can be as important as formal needs.

I11.3.1. Development within Theoretical Levels

Some program construction paradigms, like the transformational method of Bauer and Wossner
[B+W82], are based on linguistic transformations. The LST model of the reification process [LLeh84]
is particularly appropriate for such cases. »

According to the LST model, one tries to obtain a series of "canonical (development) steps” -
implementations of specifications - until a level that is directly supported by the target machine of the
process. It is based on a theoretical explication of (part of) the reification process [VMS85; T+M87].
The central ideas are regarding a specification as a presentation of a (logical) theory and an
implementation as an interpretation into a conservative extension, which yield the compositionality of '
implementations. :

Clearly, several models, like those based on the refinement of an operational specification
[Agr86], can be easily modeled by the LST model. Also, in the CIP method [B+W&82], both the
objects and the transformations themselves are already of linguistic nature.

In principle, one could model several paradigms on the basis of the LST model by placing all the
objects on a linguistic level and viewing transformations as canonical steps. But then, one would be
confounding a program specification with the program itself. Failure to distinguish between these
objects, and their logics, would lead to logical reductionism; and one should not base modeling on

reductionistic explanations.

I11.3.2. Passage between Levels

One could, in principle, mode! prototyping paradigms via a linguistic (meta-)model. But any
explication based on the idea of transformations between linguistic theories is clearly biased.

Let us examine first the classical prototyping paradigm [Agr86]. Here, after developing,
exercising, correcting and accepting a prototype, a process of refinement proceeds on the same plane
until attaining the desired program. In this case one needs two planes, namely an observable plane
(containing the application and the virtual machi'ne) and the plane of the prototype. And the process of
formal construction will take place on the latter plane, rather than on a linguistic plane, which is the
only one offered by linguistic (meta-)models, like LST and PW.

In prototyping, the central concept is that of “simulation”. A prototype is an object that behaves as
the virtual machine one is trying to build, a crucial characteristic being that of iconic model:
paraphrase of the behaviour of the object being modeled [Sup77]. So, in developing a prototype one
has an I/O relation in mind.

Thus, a prototype can be best regarded as a term over basic I/O "building blocks", rather than a
linguistic object. We thus see the convenience of introducing a plane for terms over binary relations.

Indeed, consider now the hybrid prototyping paradigm [Agr86]. In this paradigm, after accepting
a prototype, one extracts from it a specification Spc and continues the process within a

transformational paradigm. One sees the convenience of having three planes [Hae91]:
a linguistic one, where the transformational part of the process is carried out;
a plane for the I/O relations, containing the denotations of Spc and of the program; and
a plane for the prototype, which is a term over basic 1/0 "building blocks".

So, if one insists on modeling prototyping paradigms by linguistic (meta-)models, then one would
be forced to view a prototype as an a axiomatic theory, which would mask the central characteristics
of the prototype in favour of a formal theory of the behaviour of the application. And it is exactly the
difficulty in constructing such a theory that leads one to building prototypes in the first place. A
serious drawback of this manner of proceeding is that it would provide only a reductionistic logical
explanation (without preserving the structure of the object being modeled), rather than an
epistemological explication, which would be much more enlightening [Sup77].

IT1.3.3. Tests, Proofs, Derivations, and Actions

Software development often proceeds in a stepwise manner from one version to the next one. Each
such refinement step can be based on heuristics or calculi. When relying on heuristics, once obtained
the new version, one must ascertain its acceptability, whether by formal proofs (verification) or by
means of tests (validation).

Reliance on heuristics + tests is probably most common in the so-called "handcraft" approach to
software development. Some software development methods (like M. Jackson’s method) do provide
a set of rules for helping in this process, but are not sirong enough for supporting a proof by
construction of the satisfaction of the correctness relation.

The usage of heuristics. + proofs is usual with methods based on linguistic planes with enough
power for supporting the development of correctness proofs, but without a calculus for developing

7

proofs by construction. This case is typical of the software development methods based on heuristics
but including obligations of verification. B

For instance, in the hybrid prototyping paradlgm [Agr86], one does not generally have a ca]culus
for constructing a formal specification from the prototypc. So, the a-posteriori acceptance of the
specification must be based on verification, if there exists an appropriate formal language, or on
validation. -

When one can count on a calculus, one can, and perhaps should, still use the strategy heuristics +
proofs, a simple, but pervasive, example being the introduction of eurekas in calculi. Nevertheless,
this usage should be reduced to a minimum: the greater part of the heuristics is formalised and most
proofs are by construction.

A calculus, for the llngulsuc or the transversal planes, provides still other benefits. For, one can
specify (or model) development methods by relying on the formal manipulations of these calculi. For
instance, assume that one has a calculus of binary relations with sufficient expressive and
manipulative powers. Then, one can develop a software method based on the hybrid prototyping
paradigm, in which the plane of linguistic development is represented by the CIPL language
[B+W82] and the plane of the prototype by this calculus. In this case, one can pass from the
prototype to the specification by means of calculations, much in the same manner as in the
development of programs in CIP. Of course, this possibility hinges on some assumptions about the
calculus, which are satisfied in our example meta-model (see IV.1). |

We will now briefly discuss how one can ascertain the satisfaction of some of the correctness
relations between objects of the sdp, as well as the role of actions in it.

The relation pESpcis one of interpretation between specifications (theory presentations), perhaps
in distinct logics, and its satisfaction can be ascertained in the meta-language (see I11.2.2 and 1I1.3.1)

A calculus with sufficient expressive and manipulative powers provideé two possible approaches.
On the one hand one can directly prove the satisfaction of the correctness relation between the objects,
on the other hand one can construct a new object from the given one so as to satisfy correctness
relation. »

In contrast (see II1.2.3), the "verification" of m, Z A involves an induction on atomic sentences
for a finite subset of Dom(A). Hence, such "verification" is not a real proof in the usual sense. It is
rather an experimental test for which the world view selected should provide a procedure, based on
the hypothetico-deductive model [Sup77; H+V90], or on "bootstrapping” [Hae91], etc. But, such
tests involve actions.

In III.1.3 we have already seen an action, of feeding virtual machine m, with application datum o
(represented by m ,A0), which is inescapable in modeling the sdp. This is due to the expressive
power and form of proof of the (C-)observable level (see (#) in III.lll).

But, action m ;438 is not the only one to be taken into account in the sdp. This action is just an
"obligation” in the "proof" of m, £ A. NoW, the proof itself is an obligation and, hence,
presupposes an action, much as any other verification or validation obligation in software

’9 t

development. Thus, "developing p from Spc”, "verifying p € Spc" and "testing p with respect to
A’ are examples of actions that should be modeled.

Hence, we need formalisms for reasoning about actions. We would like to deal with tests within a
formal framework similar to that of proofs proper. Since tests involve actions, a condition for the
coherence of a model of the sdp is the inclusion of a dynamic dimension that allows one to talk, and

reason, about actions in a precise manner, much as one deals with formal proofs.

111.4. THE BASIC NEEDS IN MODELING THE SOFTWARE DEVELOPMENT PROCESS

We are interested in a theoretical basis and a unifying conceptual framework that permit
combining software methods and paradigms into a coherent process model. We have seen that
such a framework requires several levels, as well as formalisms for relating objects of distinct planes
and supporting reasoning about actions, which enable it to place itself in a position “meta” with

respect to the processes.

PLANE OF RELATIONSHIFS
BETWEEN LOGICS

LEVELS SUPPORTING
FINITE CORRECTNESS
PROOFS

FROGRAM TEXT

FLANE FOR TERMS OVER /O RELATIO}

LINGUISTIC
PLANES

l

LEVELS NOT '
SUPPORTING FINITE

FLAKE OF
CONDITIONAL LOGIC

]

C-OBSERVABLE PLANE
(/0 RELATIONS)

Figure 1: Multiple levels

Our argument, which we shall stress in the sequel, on the basis of results form ongoing research,
is that there are are some minimal requirements for this. In particular, one should have the possibility
of mcludmg, as indicated in figure 1, the following basic planes:

* a(C-)observable plane of I/O relations(see I11.1.1 and I11.2.3),
e aplane for the program text (see I11.1.2 and 1I1.2.1),

* aplane for formal specifications (see I11.2.1),

* aplane for terms over I/O relations (see 111.3.2);

as well as some transversal planes (see I11.2.2):

« a plane for relationships between logics: a logic of program venficanon (see 11.2.1).

» aplane of a logic for the counterfactual conditional (see I11.3.3);

In this section we have discussed some basic needs in modeling the sdp, which led to the
introduction of several levels. Thesc needs stem from distinct sources, namely formal reasons,
epistemological considerations and heuristic convenience. We have seen the importance of placing the

- various objects on distinct planes and of creating new planes for accommodating the transformations
between objects on distinct planes. In the next section we shall outline a multidimensional meta-model
of the sdp, under elaboration, which is based on these general ideas.

IV. A MULTIDIMENSIONAL (META-)MODEL OF THE SOFTWARE
" DEVELOPMENT PROCESS '

As a concrete exemplification for our general considerations, we shall now briefly present a
multidimensional meta-model of the sdp that is under elaboration. This meta-model, which is centred
around general concepts of interpretations between theories [VMS85] and an extended calculus of
binary relations [H+V91; V+H91], can be naturally divided into into two parts: a.static and a dynamic
one. The former will be concerned with the objects involved in the process and the correctness
relations, whereas the latter will concentrate on the actions along the process (see II1.3.3). Within the
static part one establishes, for instance, the obligation of satisfying a certain correctness relations,
without worrying about how this is carried out (by construction, verification, etc). The dynamic part
will be concerned with the prescription, within MAL [Kho88] of how such a “proof” is to be carried

out.

IV.1. THE STATIC PART

The static part of this meta-model consists of the observable and theoretical levels together with the
relationships among planes.

IV.1.1. The Static Dimensions.

The observable level comprises applications and virtual machines (or their abstractions as I/O
relations: the C-observable level). On the theoretical level one finds programs and specifications,
which are formal objects one can reason about without having to deal with infinite objects. This two-
level reasoning is inevitable (see IIL4), if one is to construct an object that is to satisfy m, £ A.

The observable level will be represented by the C-observable plane of /O relations. This will
provide a semantics for the various linguistic planes of the theoretical level, as well as a semantic
"hinge" for connecting planes (see IV.2.2).

The theoretical level consists of four linguistic planes:

 the plane of the programming language,

» the plane of first-order logic,

* the plane of the extended calculus of binary relations,
» the plane of the n-ary relations.

in addition to the transversal planes (see figure 2)

10

wSIC0UL., SSANLOANYOD ALINLL
ONLLEOJINS LON SZOVONY']

SNOILVIZY O1
MIZAZT TIVARISEC(D)

SSIZATT I TYVAEISAO

d uoprjussaadas

SI00UL SSANLDTXUCD ALINIS
L0448 LVHL SASVAONV]
SIIATT IVOLLTUOAHL

FOVNONYT ONINAVISOUd

SNOLLVIIY AdV-N

R

10
dwwo.o
-

e

o

-—

ol .
-

Figure 2: Example meta-modél
We have already argued for the need of the plane of the programming language in III.1.2 and

11

111.2.1. So let us examine the remaining ones.

A rationale for the plane of first-order logic is allowing one to accommodate the logical theory of
data types [VMS85; T+M87], which provides the theoretical basis for the LST model of the sdp.

The plane of the extended calculus of binary relations comprises a calculus of (partial) binary
relations [Hae91; H+V90, 91; V+H91] developed by extending Tarski's calculus of binary relations
[Tar41] by a few finitary operations, which are natural because the universe is now structured. An -
advantage of this plane is its enabling one to regard a prototype as a term over VO relations (see
I11.3.2); for then the refinement of a prototype may become a process of calculation. The standard
denotation of a term over binary relations is a set of /O pairs, as those on the C-observable plane,
and the preservation of the /O concept throughout algebraic manipulations renders this calculus very
adequate for capturing the idea of iconic models in prototyping paradigms.

The plane of the n-ary relations provides the usual semantics for first-order logic as well as for
logic programming languages (like Prolog). Thus, in order to cover paradigms involving logic
prograrmming, we include this plane. Another reason for this plane is our desire of covering Moller’s
calculus of (higher-order) n-ary relations [M6191], as well as Codd’s algebra of n-ary relations; the
former for exploring hybrid software paradigms and the latter for investigating paradigms involving
relational data bases. '

I1V.1.2. Relations between Static Planes.

If one wishes to model hybrid software paradigms, involving distinct languages and logics, then
one must establish formal relationships among the objects on the various planes. In our case, we
should analyse figure 3, which is a "transversal section” of figure 2. o

In figure 3 we have:

a first-order formula @, with n free variables,

the n-ary relation ¢3 defined by formula @ on structure 3,

the denotation 11[] of formula ¢ on structure 73: the binary relation (set of /O pairs) which is
the representation p(¢®) of ¢,

a term t over binary relations,

the denotation puff] of term 1 on structure 3, an /O relation.

In the extended calculus of binary relations one can express quantifiers by terms. This has two
important consequences:

the quantifiers become decomposable, which is of importance in program derivation [H+V91]

a translation .Zof formulae into terms is constructed [V+H91] so that) is a term denoting p[@].

Thus, the diagram in figure 3 commutes, which allows us to deal with correctness relations on and -
between distinct planes. For instance, on the the plane of the extended calculus of binary relations: '
t,cet, iff 1t and Donty) S Domlty) [H+VI1]. Moreover, this enables the analysis of transversal
planes, like the one in figure 3, as well as the definition of functions, relations, restrictions and
diagrams within such planes, which shows that our meta-model can place itself in a position “meta”
with respect to the processes, as required in IIL4.

12

/N
SN
N |

\Nqﬂ

Figure 3: Translation of formulae into terms

IV.2. THE DYNAMIC PART

We need formalisms for reasoning about the counterfactual conditional »+ and about the actions
occurring in the sdp, in order to to deal with them in a precise manner. Given the restricted nature of
our universe of discourse, where cotenability [Nut83] is not relevant (see (#) in IIL1.1), the
counterfactual character of these conditionals may perhaps be captured by a logic that is more studied
and established than that of the conditionals

Let us consider a semantics of similarity of worlds for these conditionals [Nut83]. In our restricted
universe, it is reasonable to expect that the counterfactual character is due merely to the fact that, in
" evaluating the conditional only in the real world, some actions (like m,A08) may have had no effect.
Then, it suffices to evaluate it also in the worlds similar to the real one where these actions have
already been realised. Thus, we can envisage that the counterfactual character of our conditional =
may be captured by a modal logic of actions, like MAL [Kho88]. Hence, we can rewrite (1) as:

m, £ A ¢ V8 (3DA — [m,A8] 3t (H(mp, 1. 8) A SARmM 5, 1, 8)))

Moreover, the same formalism will enable us to handle actions like the ones mentioned in IT.3.3.

1V.3. THE WELTANSCHAUUNG OF THE META-MODEL

One of our theses is that the “world view” (Weltanschauung) of models like our example, is in part
based on a generalisation of Carnap’s verificationistic theory of meaning [Sup77]. The basis for this
thesis is the view that the objects that purport to represent software artifacts, on any one of the planes
of the theoretical level, should be connected by a "chain" of interpretations, implementations,
translations, extensions, etc. The purpose of such a "chain” is the establishment of test procedures of
this artifact of software with respect to the application A. Thus, such world view, presupposes, at
least, a logic of actions and a meta-language, where one can talk about diagrams like the one in figure .
14, as well as the C-observable plane of the /O relations.

The meta-language should be formalised in order to provide a formalism with which one can
reason about proofs, tests, interpretations, implementations, and manipulations of theories in general.

13

Then we shall be heading towards the establishment of a general framework for the construction of
models like the one exemplified here. Also, we shall then have a general concept of coherence, which
may serve as a bench-mark for the coherence of particular models of the sdp.

V. CONCLUSIONS

We have analysed some basic needs of a theoretical basis and a unifying . conceptual
framework, which are essential for coherent meta-models for the software development
process. They arise from formal reasons (stemming from a precise analysis of the gbal of software
development), epistemological considerations (related to non-reductionistic explications) and heuristic
convenience (connected to instantiating a meta-model to cover various paradigms).

These needs lead to several levels, for distinct objects and for relating them, as well as to a
" formalised meta-language, where one can reason about proofs, tests, interpretations,
implementations, and manipulations of theories in general. This analysis also provides a general
concept of coherence, which may serve as a bench-mark for the coherence of particular models of the
software development process.

We have also outlined a multidimensional meta-model of the software development process, based
on these general ideas and centred around general concepts of interpretations between theories
[VMS85], an extended calculus of binary relations [H+V91; V+H91] and a modal logic of actions
[Kho88]. This illustrates how the various formal and practical tools, as well as the various models,
methods and paradigms of programming could be organised into a coherent process, which is
essential for the design of integrated programming support environments.

REFERENCES

{Agr86] Agresti, W. (ed) - New Paradigms for Software Development. IEEE Comp. Soc. Press, 1986.

- [B+W82] Bavuer, F. L.; Wossner, H. - Algorithmic Languagc and Program Development. Springer Verlag,
Berlin, 1982.

[Hae01] Haeberer, A. M. .- Fundamentos para um Metamodelo Descritivo e’ Prescritivo do Processo de
Desenvolvimento de Software. D. Sc. diss. , Pont. Universidade Cato6lica, Rio de Janeiro, 1991,

H+V90] Haeberer, A. M. ; Veloso , P. A. S. - Why Software Development is inherently non-monotonic: a
formal Jusuﬁcauon Txappl R. (ed.) Cybernetics and Systems Research, World Scientific Publ.
Corp., London, p. 51-58 , 1990. '

[H+V91] Haceberer, A. M., Veloso P. A. S. - Partial Relations for Program Derivation: adequacy, inevitability
and expressiveness. Moller, B. (ed.) Constructing Programs from Specifications; North-Holland,
Amsterdam, p. 319-371, 1991,

[Kho88] Khosla, S. - System Specification: a deontic approach. PhD diss., Imperial College of Science,
Technology and Medicine, Dept. Computing, London, 1988.

[Leh84] Lehman, M., M. - A Further Model of Coberent Programming Process. Proc. Software Process
Workshop, IEEE Comp. Soc. Press, Feb. 1934,

Mo191] Moller, B. - Relations as a Program Development Language. Moller, B. (ed.) Constructing
Programs from Specifications; North-Holland, Amsterdam, p. 373-397, 1991

[Nut83] Nute, D. - Conditional Logic. Gabbay, D.; Guenthner, F. (eds) Handbook of Philosophical Logic,
Vol. I, p. 387-439. Reidel, 1983.

[Sup77] Suppe, F. - The Structure of Scientific Theories. University of Illinois Press, Urbana, 1977.

14

[Tard1)
(T+M87]

{v+H91]

[VMS85)

Tarski, A. - On the Calculus of Relations. Journal of Symb. Logic, 6(3), p. 73-89, 1941.

Turski, W., M.; Maibaum, T., S., E. - The Specification of Computer Programs. Addison-Wesley,
Wokingham, 1987. :

Veloso , P. A. S.; Haeberer, A M. - A Finitary Relational Algebra for Classical First-Order Logic.
Bull. Section on Logic (Polish Acad. Sciences), 20(2), p. 52-62, Jun. 1991.

Veloso, P. A. S., Maibaum, T. S. E., Sadler, M. R. - “Programme development and theory
manipulation”. Proc. Intern. Worksbop on Software Specification and Design, London, p. 155-162,
Aug. 1985.

15

