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ABSTRACT

Research reported herein is part of an on-going effort in using
relational formalisms for formal program construction. This paper
emphasizes three main points: first, the distinction among
specification and programming languages and derivation formalisms
(as illustrated by the role of intersection); second, that the
construction of a theory of the application, and its expression,
involved in formal program development can, and perhaps should,
be distributed and intertwined along the process; third, how
derivation insights and rationales can be captured within a
formalism with the goal of reusing them and automating their
application.

Our formalism ‘is based on an extended version of Tarski's calculus of
binary relations, amounting to the addition of relativized identities
and a couple of new operations, rendered natural because the
universe is now structured. This extended calculus has the
expressive power of first-order logic, which makes it appropriate for
expressing, and reasoning about, programs, as well as strategies and
design decisions. This gives a truly coherent framework, based on the
single unifying concept of input-output relations over structured
universes, covering the entire derivation spectrum, from

Key words:

Formal program construction, formal methods, program
derivation calculi, calculus of binary relations,
specification languages, programming languages,
derivation formalisms, derivation methods and
strategies.



RESUMO

Os resultados aqui apresentados sdo parte de um esforgo continuado
no uso de formalismos relacionais para construgdo formal de
programas. Este trabalho enfatiza trés pontos principais: primeiro, a
distingdo entre linguagens de especificagio e de programagido e
formalismos de derivagdio (conforme ilustrado pelo papel da
_interse¢do); segundo, que a constru¢cdio de uma teoria da aplicagio, e
sua expressdo, ocorrendo no desenvolvimento formal de programas,
pode, e talvez deva, ser distribuida ao longo do processo; terceiro,
como idéias e estratégias de derivagdo podem ser captadas em um
formalismo, a fim de reutilizd-las e automatizar sua aplicagdo.

Nosso formalismo se baseia em uma versio estendida do cdlculo de
relagdes bindrias de Tarski, envolvendo o acréscimo de identidades
relativizadas e algumas novas operagdes, que sdao naturais uma vez
que o universo agora € estruturado. Nosso calculo estendido tem o
poder expressivo da l6gica de primeira ordem, o que o torna
apropriado para expressar programas, estratégias e decisdes de
projeto, bem como para raciocinar sobre eles. Isso fornece um
arcabouco realmente coerente, baseado no conceito unificador de
relagdes de entrada-saida sobre universos estruturados, cobrindo
todo o espectro de derivagio, desde especificagdes até programas,
ambos encarados como termos relacionais.

Palavras chave:

Construgdo formal de programas, métodos formais,
calculos de derivagdo de programas, cédlculo de relagdes
bindrias, linguagens de especificagdo, linguagens de
programacdo, formalismos de derivagio, métodos e
estratégias de derivagio.
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1. INTRODUCTION

Research reported herein is part of an on-going effort in using relational formalisms
for formal program construction. Our formalism is based on an extended version of
Tarski's calculus of binary relations. This extension amounts to adding relativized
identities and to structuring the universe, which makes natural the addition of a couple
of new operations. .

Our extended calculus has been shown to have the expressive power of first-order
logic. It is also appropriate for expressing, and reasoning about, programs, as well as
strategies and design decisions. So, our framework, based on the single unifying
concept of binary relations over structured universes, is a truly coherent tool covering
the entire derivation spectrurh, from specifications to programs, which are viewed as
relational terms. ,

This paper emphasizes three main points. First, the distinction between specification
and programming languages, on the one hand, and between these and derivation
formalisms, on the other hand. Second, that formal program development involves the
construction of a theory of the application, and its expression within a reasonable
formalism, and both can, and perhaps should, be distributed and intertwined along the
process. Third, how derivation insights and rationales can be captured within our
formalism with the goal of providing machine support for clerical symbolic
- manipulations. ’

As regards the first point, it is sometimes suggested that operations, like intersection
of relations should not be present in a programming language, because it tends to yield
extremely inefficient programs. But, should it be eliminated from specification and
derivation languages, which have distinct objectives, as well? We shall argue that the



answer is no. As an illustration, we show how to derive an efficient program from a
specification, used as an argument for banning intersection [Hoa86]. o

We illustrate the second point with some derivations, which show how the
processes of a formal specification and program construction help each other. We also
develop formal machinery for these purposes. Our formalism is especially appropriate
for this task, since we can represent sets by relativized identities and also internalize
relations by coding input-output pairs as objects of the universe. ' '

As for the third point, let us notice that formalisms offer the advantage of precision
and trustworthy manipulations. But, and perhaps more important, they also enable the
clear separation between the creative parts and mere manipulations. Moreover, carying
out such manipulations by hand is both boring and error prone. So, we indicate how
insights and rationales can be captured within our formalism with the goal of reusing

them and automating their application.

2. SPECIFICATIONS, PROGRAMS AND DERIVATION

It is important to bear in mind what is involved in deriving a program from a
specification. In a nutshell, the purpose of a derivation is transforming a, possibly non-
executable, specification into an executable program, ideally an efficient one. We shall
now expand this by some simple remarks, which are meant to be introductory and to be

complemented by further, and more substantial, observations later on.

2.1, PROGRAM DERIVATION

As a running example to illustrate and clarify some ideas, we shall often use the case
of deriving a program for an application like palindrome or list reversal. These are
problems about lists, and perhaps Booleans; so these data types are given as underlying
the specification of the task; let us call them basic data types. The data type lists comes
equipped with some basic sorts, operations and predicates. We shall call them
(application) specification primitives, because, being already well understood, they are
available as building blocks for specifying other sorts, operations and predicates. 1t is .
useful, however, to draw a distinction connected to the idea of hidden operations
[Gut78]. Some specification primitives, like head and tail, are assumed to be already
implemented; let us call them (application) programming primitives, because they are
available as building blocks for writing executable programs. Thus, for instance, an
operation gccurs for checking whether an element occurs in a list might be a
specification primitive, but not a programming primitive. Let us use target data types

for the restriction of the basic data types to their programming primitives.



Of course, the starting point of the derivation process is a specificaticn of the
problem to be solved. In specifying such a task, one relies on a specification
formalism, which provides some basic general specification constructs. For instance,
first-order logic provides propositional connectives and quantifiers. The specialization
of the specification formalism to the language of the basic data types for the problem at
hand is the applica.tion specification language. For our running example, this may be
the first-order language of lists with Booleans. The problem specification consists of
formulas in this application specification language.

At the other end of the spectrum one has an executable program. As in he case of the -
specification, this program is a syntactic object of the target language, the latter being
the specialization of a general programming language, which provides some basic
general programming constructs (like conditional constructs), to the given target data
types. More concretely, a reasonable target language for our running example may be
Pascal, with its usual features, where one may freely invoke procedures for the
programming primitives for lists: head, tail, etc.

Now, what is involved in deriving a program from a specification? Cleatly, one
has to transform the given problem specification into a program. Recall that the problem
specification is a syntactic object built from specification primitives by means of
specification constructs. Thus, one must express the specification constructs and
primitives occurring in the problem specification in terms of the available programmirig

constructs and primitives. For instance, if occurs and the existential quantifier are part

of the problem specification, then one must express occurs by means of a program in

terms of programming primitives for lists, as well as the existential quantifier in terms
of programming constructs, the latter being indicated in 3.2.3.

2.2. PROGRAMMING AND SPECIFICATION LANGUAGES

The preceding discussion has paved the way for some general remarks concerning
specification and programming languages. A programming language is required to be
executable, preferably in an efficient manner. This is why non-algorithmic operations
are not expected to be part of such a language. Also, Hoare and Jifeng He [Hoa86]
exclude intersection from their programming language mainly for reasons of efficiency.
We shall argue, though, that intersection is a nice construct to have in a specification
formalism (see 4.2 and 5.1). A specification language, or formalism, is not required to
._‘b‘e executable. Its prime features should rather be expressiveness and ease of
expression. Roughly speaking, the more restricted (but still universal) a programming ‘
language is, the more likely it is to attain its goals of efficient executioh; whereas a very
broad specification language (say, in the spirit of CIP's wide-spectrum language) is
more likely to achieve its specification, and derivation, goals. |



Here our specification formalism and programming language will both be based on
an extended version of Tarski's calculus of binary relations (reviewed in 3.1). This
extension amounts to considering structured universes, which makeés it natural to add a
couple of new operations on binary relations, as well as relativized identities (see 3.2).
Our specification formalism will consist of relation-theoretic terms, and has been
shown [Hae91; Vel91] to posses the expressive power of first-order logic (see 3.2.3).
We obtain our programming language by restricting the terms to those contaning only
algorithmic operations. So, our framework, based on the single unifying concept of
binary relations over structured universes, supports a truly coherent wide-spectrum
language, as we shall illustrate throughout the paper.

2.3. SPECIFICATION OF PROBLEMS AND PROGRAMS

Let us now briefly comment on some views on specifying application problems.

First of all, since we have the full expressive power of first-order logic at our
disposal [Hae91; Vel91], we can express in extended relational terms any application
originally given by a first-order presentation.

But, an application specification is a theory about the application, expressed in its
specification language. It often happens that one knows more about the application at
the end of the derivation process than at the beginning. This occurs because, by
tackling the derivation, one comes to grips with aspects of the application that were not
envisioned at the outset. Thus, it may be wise, and profitable, to start the process with
the initial, albeit incomplete, knowledge of the application embodied into some axioms,
and let the derivation process guide one in enriching this specification. We shall
illustrate how this can be done within our relational framework in 4.1 and 6.1.

Typically, the specification of the input-output behavior of a program consists of a a
pair of formulas: ¢(x) and y(x, y) with variables x ranging over inputs and y over
outputs, and the latter can always be written as y(x, y) A §(y). Now, by means of
relativized identities, we can immediately represent this behavior by a term consisting of
the composition of three relations, corresponding to the formulas ¢, ¢ and g (sace 5.2
and 7). Furthermore, this specification can be regarded as a generate-and-test
procedure. Of course, in order to derive more reasonable, and efficient, algorithms,

some strategies are useful.

2.4. FORMAL PROGRAM DERIVATION

We have already mentioned that our framework, based on a single unifying
concept, supports a truly coherent wide-spectrum language. We shall now give some
indications concerning the appropriateness of our relational formalism for deriving and

reasoning about programs.



‘Now, a good formalism for derivation purposes, in addition to being based on a
coherent wide-spectrum language, should also be able to express, and manipulate,
strategies and design decisions.

As mentioned, the specification of the input-output behavior of a program can be
represented by a term, which can be reg“érded as a generate-and-test procedure. In view
of the expressiveness of our relational formalism [Hae91; Vel91], one can be sure that
any reasoning performed within first-order logic can easily be translated into our
relational framework. Thus, we can freely employ usual logical reasoning, as illustrated
in 6.1, |

Also, some general problem-solving and algorithm design strategies can easily be
expressed, and manipulated, within our relational formalism. Some examples are case
division, reduction, trivialization, and divide-and-conquer. In a similar fashion, one can
also express design decisions, "curckas”, and ideas akin to weakest pre-specification
[Hoa86], as we shall illustrate in sections 4 and 6. '

Furthermore, our relational formalism allows one to take advantage of the flexibility
afforded by nondeterministic expressions. A simple example is the decomposition of a
list into two sublists, from which the original list can be retrieved by concatenation.
Such a decomposition is useful in expressing the idea underlying sorting algorithms of
the merge-sort family. )

Finally, the algebraic character of our formalism enables one to employ two possible
kinds of intuitions in reasoning about a program. On the one hand, one can rely on a
programming-like operational intuition concerning input-output behavior. On the other
hand, one can also resort to algebraic intuitions, like distributing, commuting, etc. We
shall illustrate these features in sections 4, 6 and 7.

Of course, many formalisms tend to be like a straight jacket, in that one has to carry
the burden of some "formal noise" as a price for their advantages. Our formalism does
have a non negligible amount of formal noise, but it is easily overcome once one gets
the knack of it, and also amenable to automation, so that one can let the system take
care of these matters, as indicated in section 8.

3. RELATIONAL ALGEBRAS

In this section we will first review Tarski's Theory and Calculus of Binary
.Relations [Tar41], and then introduce our extension, together with some introductory

comments on its usefulness in expressing some simple aspects of program derivation.



3.1. TARSKI'S THEORIES OF BINARY RELATIONS

We now introduce Tarski's Elementary Theory of Binary Relations and Calculus of
Binary Relations [Tar41], briefly analyzing then the algebraic structure of their intended
models. ’

3.1.1. The Elementary Theory of Relations

Tarski develops his Elementary Theory of Binary Relations as an extension of first-
order logic by introducing variables ranging over two sorts, namely individuals,
denoted here by X, y, z, ..., and relations, denoted by italic letters r, s, ¢, .... The
atomic sentences are of the form r(x, y) (or x ry -we will use both notations
indistinctly - meaning "x is in relation r with y") and r= s (where the symbol =
denotes equality of relations). As usual, the compound sentences are built from atomic
ones by means of logical connectives A, Vv, ¢, =, =, and the quantifiers V and 3.

The symbols introduced by Tarski are, in our notation, oo (for the universal
relation), O (for the null relation), 1 (for the identity relation) and § (f()r‘the diversity
relation), as relational constants, together with the following operations on relations :
~ (complement), ~ (converse), + (sum), o (intersection), ® (relative sum), and ;
(relative product). The symbbls oo, 0,7, + and e are sometimes called absolute or
Boolean, whereas 1, £, ", ® and ; are called relative or Peircean.

Finally, Tarski takes as extra-logical axioms the following 12 sentences:

EA1  UxVy(eo(x, y))
EA2  YxVy(- 0(x, y))
EA3 Vx(1(x, x))
EA4 VxVyVz{(r(x, y) A 1(y, z) = r(x, z)))
EAS  WXVy(P(x, y) & - 1(x,y))
EA6  YXVy(FT(x, y) & = r(x,y))
EA7 VxVy(F(x, y) < r(y,x))
EA8  VxVy(r+s(x,y) ¢ (r(x, y) v s(x, y))
EA9  VxVy(res(x,y) & (r(x,y) A s(x, y)))
EA10  VxVy(r® s(x,y) & (V2)(r(x, z) v 5(z,y)))
EA1l  VxVy(r;s(x,y) & Qz2)(r(x, 2) A s(z,y)))
EA12 r=s5e VXVy(r(x,y) & s(x,y))
3.1.2. The Calculus of Binary Relations
Tarski's Calculus of Binafy Relations may be regarde as the part of his Elementary
Theory without any variables over individuals. In order to develop his Calculus of

Binary Relations, Tarski derives from the axioms of his Elementary Theory an
appropriate set of theorems whose variables are exclusively relational cnes. He then



takes these theorems as the extra-logical axioms of his Calculus of Binary Relations.
His axioms can be naturally divided into three groups as follows.
Axioms of the Boolean (absolute ) symbols:

CAl r+s=s85+r

CA2: res=ser

CA3 (r+ s)et=(ret)+(set)

CA4 (res)+t=(r+t)o(s+1t)

CAS r+0=r |

CA6 reoco =r

CA7 T+ 1r=00

CAS8 rer=20

CA9 o =0

Axioms of the relative (Peircean) symbols:

CA10 r=r

PR

CAll T77s=5;T71

CA12 r;(s;t)=(r ;s ;t

CA13 r;1=r71

Axioms relating Boolean and relative symbols:
CAl4* 1 joo =00 voo ; T=o0

CAI5 (r;8)et=0—> (s;it)er=20
CAl6 @ =1 ’

CA17T r® s=71;3§

Shorter axiomatizations have been provided [J6n52; Chi50]. We adopt the above
one in view of our interest in program derivation. Some of these results (marked with
*) were later found too restrictive - in that they hold only for special classes of
structures - and then dropped. This is the case of CA14*, as well as of Theorem C.14%*
below. Our development will not rely on them.

Some examples of the theorems of the Calculus of Binary Relations derived by
Tarski are the following ones (notive that they do not mention individuals).
Theorem C.1  ((r;s) e t= 0iff (s;#) e 7=0) and

4 ((r;s)et=0iff (F; 1) e 5=0)

Theorem C.2 If res=0then 7o5=0

Theorem C.3 T+ s=s+T71

~

Theorem C.4 0=20

Theorem C.5 Ifsef=0then (r;s)er;t=20
Theorem C.6 ri(s+ t)=(r;s)+(r;t

nd&) = o0

o



Theorem 2.7 r;0=20

Theorem C.8 Ifres=0Othen (rjt)es; t=0
Theorem C.9 (r+ s);t=(r; )+ (s, 1)
Theorem C.10 0 ;r=20

Theorem C.11 I=1

Theorem C.12 1;r=7r »
Theorem C.13 If (oo;s) @ t= 0then (oo; t) o s=10
Theorem C.14* If r# oo then (o0 ;7) ;o0 = oo
3.1.3. The Structure of Tarski's Algebras

The intended stanidard models of Tarski's calculus are relational algebras of the
form R =(R, +,9,7,00, 0, ;, S, =, 1, ), where B is a set ofbinary relations over
a universe U closed under the Boolean and relative operations and constants. Let us
consider such a set B of binary relations and analyze its algebraic structure under the
relation & (where, as usual, 7€ smeans r+ s= ).

It is easy to see that:

i. Cisapartial order,ie. (R, Clisa poset;
ii. for every pair of relations rand sin B, the relation 7+ s (respectively 7o s) is
the least upper bound (respectively greatest lower bound) of rand s.

Hence, (B, <) is a lattice [Bur80, Gri71]. Thus, both + and e are associative,
‘idempotent and satisfy the absorption laws r=r1+ (se ) and r=r1e (s+ #). It
is also easy to notice that oo = [ub(R) and 0 = gl6(R).

From axioms CA3 and CA4 the lattice (B, <) is distributive,. and axioms CAS5
through CAS imply that (R <) is a Boolean algebra. 1t is quite clear that the relations
of the form a = {(x, y)} are its atoms, i.e., the only elements r& R that satisfy
r C aare 0and a. Hence, (R, ©) is a complete atomistic Boolean algebra [McK40],
in that for every r# 0 there exists an atom 4 such that r & 4.

3.2. THE EXTENDED CALCULUS OF BINARY RELATIONS

We shall now extend Tarski's Calculus of Binary Relations, by means of some new
operations and constants, in order to obtain a relational calculus appropriate for
program derivation.. As already noticed by Tarski [Tar41], the expressive power of
his Calculus of Binary Relations falls short from his Elementary Theory of Binary
Relations, as well as from first-order logic. This is partly due to the fact that his
calculus does not have individual variables.

Betore dealing with our extension, let us notice that we can already express some

concepts, like determinism and refinement, relevant to program derivation.



A deterministic relation is a functional one: a, perhaps partial, function. The
determinism of a relation r can be expressed in algebraic terms by any one of the
(equivalent) conditions: 7; r< 1, 0or 7;7; r=T.

A simple, but typical, example of refinement is provided by the case of passing from
a guarded conditional to an if_then_else command. The idea is reducing the
nondeterminism, so decreasing the choice for input-output paths, without decreasing
the domain, which is the intuition behind our concept of complete sub-relation.

Given relations rand s we say that ris a complete sub-relation of s (denoted 7 < s)
iff ris a subrelation of s with the same domain. More precisely:

r<4s & rcsADom(r)=Dom(s).

Let us now turn ot our extension. It may be naturally regarded as consisting of two
steps. The first one is the introduction of relativized identities, in addition to the overall
identity 1 on the entire universe U, and the second one amounts to the introduction of
two new operations, made reasonable because we shall have structured universes, with
tree-like objects, rather than mere points.

3.2.1. Relativized Identities

An important motivation for the introduction of relativized identities is expressing
pre-conditions, invariants, and the like, as well as having the advantges of many-sorted
languages.

A simple-minded special case comes from reexamining our preceding
considerations. We have mentioned that, in the case of palindrome, one would naturally
have several basic sorts: C (for the elements of the lists), L* (for the lists with elements
of (), etc. Now, relation rev is intended to reverse lists; so we would like to restrict it
to L*, for it is there that it means reversal. For this purpose, it would be convenient to
be able to have L' represented as a binary relation. A quite convenient representation is

by means of the identi_ty over lists:
Ip={{x,x):xe L'}

We can express the pre-restriction of 7ev to lists by means of 1+ ; rev.

In general, a basic sort X will be represented by its relativized identity Iy, and the
pre-restriction of a relation rto X can be expressed by Iy ;7. Notice that indeed
I sr={{x,y) :{x,y) € rAxe X} and Dom(1lx ;1) =X N Dom(r).
Dually, we can have post-restrictions 1; 1.

Another example of the usability of these relativized identities comes from viewing
the set of lists as partitioned into L! (with the lists with length 0 and 1) and L* - £}
(with the longer lists). If we use relativized identities 1.+ and 1% ), then we can



express this sort decomposition by means of 1zr= 17+ Izs- g If we now wish to
pre-restrict rew to lists of length up to one, this is expressed by 1r) ; rev.
3.2.2. Coping with the lack. of Individual Variables

From the viewpoint of reasoning about programs, the absence of program, as well
as individual, variables can be very advantageous [Bac78]. But, it has a somewhat
undesirable side effect. For instance, consider the problem of checking whether a list is
a palindrome. A very straightforward way of doing this is as follows: make two copies
of the input list, reverse one of them, and compare the result with the other one, let
untouched. For this purpose, it would be convenient to have a copying operation.

In a relational framework, the desired copying operation should be regarded as a
relation. It should receive an object x as input, and output two copies of x. But, what is
"two copies of x" supposed to mean? We do not want a ternary relation, for we wish to
retain the input-output character. One way of getting the best from both worlds, so to
speak, is to make the output a pair of the form [X, x]. Thus, we shall have this copying

relation 2, which is described by
2={{u,[u,u]):ue U}.

Let us, now, explain in more precise terms what we have done. Our universe U is

assumed to contain some set B of basic sorts. In the case of list reversal, sorting and
palindrome, one would naturally have B = Cu L* U Bool, consisting of elements

(atoms), lists of these atoms and Boolean values. We also wish our universe to contain
pairs of its elements: €U is supposed to closed under the pair-formation operation
with u * v = [u, v]. Thus, our universe U is assumed to contain all trees over

some set B of basic sorts. In this sense, we now have a structured universe, rather than
a mere set of points. Notice that operation = is non-associative (which will be important
later on for some distributivity properties), that is why we talk of trees, rather than
Strings ).

The structured, tree-like, character of our universe U renders natural the
introduction of some new structural operations on binary relations, namely fork and

direct product. _
We call fork of relations pand g the relation

pVg={{u,vesw):(u,vie pa{u,w)e q}.
and we define the direct product of relations pand qas
p® q::{(u*v,w *z):(u,W)EAPA(V,Z)E q}

where * is the above structuring operation on the universe 7L

10



These new operations enable us to describe some interesting behaviors, especially
form the programming viéwpoint. In particular, recalling that 1 is the identity on U, we
can now define our copying relation by means of 2= 1V 1. Also, since we now
have structured objects, it is natural to have operations to "unpack” them: relations with
behavior

Mi={(usv,u):u, ve UYand.Ih={{u=*v,v):u ve U}

These projections , which decompose objects into their components, are convenient
shorthand for some special relations, in that they can be defined as follows

[Ij=1V o andllp=0V 1

3.2.3. Algebras of Relations over Structured Universes
An intended standard model of our Extended Calculus of Binary Relations involves
a set S ofbinary relations over a structureduniverse U closed under the absolute,

relative and structural operations and constants. In more detail, we start with a base set
B of basic sorts,. and close it under the non-associative pair-formation operation *, by
including trees of elements of B; this gives us our universe U. More precisely, the
universe U = B* is the free groupoid generated by the base set B. Thus, given a set B
of basic sorts, our intended standard models are structured relational algebras of the
form §=(S,+,9,7,0,0, ,®,7, 1, £, (I)xeB, V, ®). Since & is a special
kind of algebra of binary relations, its algebraic structure under the relation C is that of
a Boolean algebra.

Some properties of the structural operations on relations are

(i) distributivity of fork and direct product over sum:

pV (r+s)

i

(pV D+ (qV s)

pO®(r+8)=((p®®nN+(g® s

(i) distributivity of converse over direct product:

TR s=7® 5
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(iii) distributivity of fork and direct product:

(pV ¢); @ s)=(p;nNV(g;H!

(iv) distributivity of deterministic relétion over fork:

t;(pVgq) =( (i;p)V (t;p)); whenever t;t;t=t

So, we now have binary relations over structured universes, .consiting of objects
with an internal tree-like structure, rather than simple points. This is then our extension
to Tarski's Calculus of Binary Relations .

In our Extended Calculus of Binary Relations we can express, in an algebraic
manner, several interesting properties of relations, as well as input-output behavior of
programs. We have already seen how to express deterministim. Termination can also
be simply expressed, for r terminates over X iff X ¢ Dom(r) iff I, c 1 7. Also,
projections are handy for rearrangement purposes: we can express the commutativity of
union by un= (Il V I11) ; un, or, more conspicuously, by

11 VIIo);un= (I, VII1); un

As mentioned before, our Extended Calculus of Binary Relations has the expressive
power of first-order logic, in the following sense. Given .any first-order formula
¢ with variables partitioned ‘into input variables and output variables, one can
effectively construct a term Z() of the Extended Calculus of Binary Relations that
defines the same input-output relation. More precisely, we have the next result [Hae91;
Vel91].

Theorem Given a first-order language L, there exists a function
T:® (L) = 3(L), such that for every structure & for L,
Iog = € [T(9)), for every formula @ of L,where logis the
relativized identity over the set ¢€ defined by formula ¢ and
€[ 7(p)] is the binary relation denotating term T@) on structure &.

A formal proof of this theorem and a more detailed discussion of expressiveness of
our extended calculus of binary relations can be found in [Vel91]. We shall here just
indicate the main ideas. It is clear that one can simulate the propositional connectives by
means of the Boolean operations. For instance, assuming, inductively, that we already |
have relational terms T (y) and 7(6) corresponding to formulas y and 6, respectively,

! This is one place where the non-associativity of the pair-forming operation * is

convenient.
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then Z(y v 0) = T(y) + 7(0) and T(y A 8) = T(y) e 2(8). The crucial

remaining step is the simulation of the quantifiers, which we can do by 7T
Ay 6(x,y)) = ﬁl ; T(0) ; I11. It is interesting to notice that this expression is of

the form generate and test, where generateis [11 =1V e and test is T(6), Iy
being the extraction function. The rearrangement of variables can be expressed by a
suitable combination of projections, forks and direct products (see Sections 7.4 and
8.2).

4. SOME MOTIVATING DERIVATIONS

In this section, we shall outline derivations of programs for reversing and sorting
lists. These introductory examples are intended to play a twofold role: illustrating the
use of our Extended Calculus of Binary Relations as well as paving the way for some
more general considerations. ' '

Before going on with the illustrative examples, let us introduce the basic data type
list. We will deal with lists of elements from a given set C. So, if we denote by A the

null list, the domain of lists is L* =i€KI<I’Li, where L1 is the set of all lists of length

between 0 and i, with £0= {A}. Its specification and programming primitives are

hd= {(x,c):xe L*-LOAce CAarc=headX)}
tl={{x,y):xe L*- LOAy =tail(x)}

cens = {{[c,x],z):ce CAn xe L*Az=cons(c,Xx)}
init={(x,y):xe L*- LOAy =initial(x)}
t={(x,c):xe L*-LOAce Cnac=1last(x)}

app :{(‘[x, c,y):xe L*A ce Cay=append(x, )}
lhd= {{x,y) :x e L*=~ LO Ay =cons(head(x), A)}
[st={{x,y):xe L*- LAy =cons(last(x), A)}
md=(x,y):xe L*- L Ay =initial(tail(x))}

Here, cons, head and tail are the usual list operations (acting at the beginning of a’
list), whereas append, last and initial are their counterparts acting at the end of a list.

One should bear in mind ther distinction between the list structure on one hand and the
underlying universe structure on the other: [c, x], for instance, is a structured object of

our universe, rather than a list beginning with ¢ and followed by x, the latter being
cons(c, x). ‘

13



4.1, LiST REVERSAL

Let us examine a possible derivation of a program for reversing lists.

We shall start from its definition in the elementary theory of relations, ie.,
Vx\?’y(rw(x, y) > x € L' Ay = X), where X denotes the reversal of x.

We will use the knowledge of what rev should be in order to construct a theory for
it within the calculus of relations, instead of deriving a translation into a relational
specification directly from the above definition of rev.

Let us start with the trivialization of rev into two cases by pértitioning the list
domain L£* into £! and L* — L1, which can be expressed by the equation

Ig*;rev=(1p1+ Ip*.p1) ;rev (1)
By distributing ; over + according to theorem C.6, (1) becomes

Igc;rev=1p1;rev+ 1p*- 11 ;Tev )

The rationale for this decomposition was the realization that the reversal of any null
or unitary list is itself. This is expressed as 1z ; rev= 1r1. Thus

rev= 11+ 1p* 1 ;71ev 3)

So, we are left with the reversal of a non-trivial list: revy = 1. — g1 ; rev. This is
probably a good point to introduce a eureka. We can try to take advantage of the
indﬁctivc structare of the domain L*. But, instead of tackling an inductive solution in a
divide-and-conquer fashion, we can actually derive it by reasoning as follows.

We can imagine the last "part" of our program as a kind of join, such as the
concatenation of the [fd, the middle part and the st of a decomposed list whose

reversed parts we already have. Hence, we can write the following equation:
x ; erk = revi - . -4

So the eureka should be something like

ek, = (([fzc[ Vmd)V [Kst)

‘We will usually write this kind of expression in the form
erk = (((6d ¥ md )V lst).

The idea behind (4) is that we are looking for a, yet to be determined, relation x
which, multiplied on its right by erk,, yields rew;. Now, by multiplying both sides of
(4) by the converse of erk, we have
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x ;erk; erk = revy ; erk, 6

‘Since Q{ﬂn(ZFK) = Domerk) and e?wkis deterministic, we have
erk‘;:é?k = Ipom(erk). SO, X = revy; erk is a solution for (4), which, in view

of (5), we can write as

x= 1701 ;rev ; ((RdAV md V [st) | (7

Now, since revis deterministic, we know that it distributes over fork (see property
(iv) in 3.2.3). Thus, we can replace in (7) rev ; ((AdV md V [lst) by
(rev; thd) V (rev ; md) V (rev ; lst) to obtain

x=1rp1;[ Crev; (Ad) V (rev ; md) V (rev ; [st) ) (8)

At this point it is heuristically simpler than at the very beginning of the process to
express the following three axioms of our theory of rev

rev ; hd = [[st
rev ; st= [hd

rev ; md = md ; rev

Notice that an earlier specification and derivation of rew would probably lead one to
choose something like rev ; [Ad = lIst and rev ; t[= t[; rev as (part of) the
theory of rev. This would be heuristically less useful for the case at hand, in view of
the structuring principle embodied in the eureka.

Continuing with our derivation, we can rewrite (8) as

x=1r5r1;(UstV (md ; rev) V (Rd)

which can beunfolded into (4), yielding

revi=1g-11; (UstV (md ;rev) V [Ad) ; erk | . )

Finally, by unfolding (9) into’(3), we obtain:

rev=1p1+ 1p-p1; (st V (md ;rev) V (hd) ; erk. (10)
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This is a final expression for rev.
For the sake of clarity we shall use sometimes resort to a two-dimensional
notationfor our relational terms. In this notation (10) will have the following aspect

(st )
v
rev=1,+1. i\ md;rev|;ek
\%
| i

Now, by definition, whenever x € L**! withn > 1:
if (x,z) e mdthen, ze Lol c L0 (i elpnnt jmd=md ; 1zs),
if {x,z) e [hdthen, z ¢ L1 < L" and
if (x,z) e [lstthen, ze L1 c LO.

Thus, equation (10) expresses a recursive algorithm for reversing lists. The
termination of this algorithm hinges on the fact that successive applications of md
eventually reduce any list to one with length at most 1. This can be expressed in the
infinitary version of our formalism as

T | (11)
1,;md’ =1, _

~ . . .
where p™ is the closure Z p , with p/ being the product of p by itself n times

neN

Ge. pO=pand pn+1l = p; pM)and ZP=UP~

neN neN

In other words, equations (10) and (11) together express the following inductive

argument.

Basis: _ _
If x e L1 then the reversal of x is x itself.

Inductive step:
If xe Lr+1 withn > 1, then we have two possible cases:

i) xe LN then, the problem is solved by inductive
hypothesis,

ii) xe L" then, we can
decompose x into three lists: cons(head(x), A),

cons(last(x), A), initial{tail(x)), each of which

belonging to £, obtain their reversals (by inductive
hypothesis) and join appropriately these reversed lists.
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We still have some further comments about the derivation we have developed. First,
after introducing the eureka, the derivation of a term for rev is simple calculation.

Also, the requirement of equality in equation (4) is usually too strong, refinement being
enough: we can require simply that x ; erk < revy (i. e. x; erk c revy and

Dom(x ; erk) = Dom(revy) as introduced in 3.2). It is also worth pointing out that
one solution of the equation x ; erk < revy, turns out to be the weakest pre-

specification introduced by Hoare and Jifeng He [Hoa86]. Our solution for
X ; erk = revy amounts to their strongest pre-specification.

A Begriffsschrift-like diagram for (10) appears in figure 1.

<1

{lst:

Figure 1: Begriffsschrift-like diagram for rev

Notice that the rightmost part of the preceding diagram, i.e. erk, can be detached
when rev is used, as in this case, as part of a larger algorithm as was the case in

[Hae91], where it is used in derving palindrome..

4.2. LIST SORTING

It is sometimes suggested that the operation e (intersection of relations) should not
be present in a (relational) programming language because its usage tends to yield
" extremely inefficient programs. But, should it also be eliminated from (relational)

specification and derivation languages?

As an example, assume that one wishes to derive a sorting program, call it sort, and
that one already has available the following two (nondeterministic) programs:

to_ord, which assigns to a given list an arbitrary ordered list;

perm, which assigns to a given list an arbitrary permutation of it.

Then; one can write
sort= to_ord e perm (12)

which is, at the very least, an extremely inefficient program for sorting [Hoa86].
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This is the example is used by Hoare and Jifeng He [Hoa86] in presenting their case
against the inclusion of intersection e in a programming language.

But, let us ask ourselves: should we also elirninate o from a program specification
and calculation languages? In other words, sort= to_ord e perm is clearly an

undesirable program, but, is it an undesirable specification as well? A relational, as
opposed to operational, reading of (12) yields: a pair (x, y) of lists is in the relation
sort iff y is ordered and y is a permutation of x. This expression is a relational

instance of the axiom of separation , and we certainly would not wish to prevent the use
of such a powerful specification tool simply by eliminatin g o from our language.

Our point is twofold. First, sort = to_ord s perm is, to be sure, a poor program,
but it is a fairly reasonable specification for a sorting algorithm. Second, we can
construct from this specification a good (i.e., efficient) program within our relational

calculus. Let us proceed to indicate how this can be done.
Let 1 ,bethe 1dent1ty over ordered 11sts Then we can wnte

to__onleL, joos 1

ori

We can now eliminate ¢ form (1), by applying a general result (see Corollary 5.2
below in 5.1) to obtain

sort =to_ord e perm =1 . iperm ;1. (135

Now, consider a program merge that merges two lists into one. Then, perm has the

following property .
perm=1,+1. ,; coic ; (perm ® perm) ; merge
By unfolding the latter expression for perminto (13) we obtain

sort=1. ; (1 +1,, i E07iC ; (perm ® perm) ; merge) i1
=1,+1. ,;C0ofiL ;(perm® perm);merge; 1,

=1,+1, ],conc,(penn®penn) (1 ®1 );mergc;lmf
Since 1L,+1M=1L.,wecannowwrite

sort=1,+1. . ;Co0E ;(perm® perm);

[(IL‘ ® 1L' ) ( ord ® lor ):l s mege i 1‘”‘{

and, by distributing + over ; and commuting both terms, we can arrive at
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sort=1,+1, ,;C00C; ; (perm ® perm) ; (1 ®1 );me(ge;lmf+

1,+1, 1,conc,(per‘m@perm) (1 ®1 );me;qe;lmf

The latter is an expression of the form sort = sort + x. But, x <sort, as defined in

3.2.1, so we can use the following refinement
sort=1,+1, ,;Co0C; (perm ® perm) ; (1 , ®10n{); merge ; 1,
=1,+1. ,;cont ,(( . ; perm ; 1 )®(1L* ;perm;lm,))

;(1m[ ®1‘m{);nwrge; 1.,
Now, by folding now (13) into this expression, we get

sort=1,+1, 1,conc,(.sort@sort) (1 ®1 );merge;lord

Finally, by calling merge_ord = (1or ,®1 ‘{) ;merge ;1 ., we obtain
sort = 1,+1, ,iConc ;(sort® sort) ; merge_ord

which is a typical merge-sort algorithm.

Thus, from a specification, which, as a program, is quite inefficient, we were able to
derive a quite reasonable program in terms of efficiency. The morale of this
development is that there is a huge difference between choosing the repertoire of
constructs for a programming language and for a formal program construction

language.

5. SETS AND RELATIONS

‘The previous section has paved the way for some theoretical considerations of”
interest to program derivation, especially the use of partial identities and intersection.
We shall examine them in this section, where we first clarify the role of intersection and
then use it in specifying sets, after briefly considering the algebra of partial identities.

5.1. THE ROLE OF INTERSECTION

In view of the remarks in 4.2 concerning the role of intersection in programming,

specification and derivation languages, it is generally convenient to be able to rewrite
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intersection in terms of more efficient constructs. A special, but quite frequent, case is

dealt with in the next result. ‘

Proposiiion 5.1 Let rand s be relations such that r=1a F ¥ lp.' Then
res=1;a ;S; lpsz (1a ;S; lps_)(_:(la ;t; lp).

Proof. We have

res=(1y; tid)es=(Ly; ti I)e(Lyis; 1)

and(la ;E; lp)°(18 ;S 1p)=(1a ;t; lp)

uff(la HEY lp)g(la ;s 1p)

QED .
A further special case of intersection elimination is delat with in the next corollary,
which deals with "rectangular” relations.
Corollary 5.2 Given arelation 1, the following are equivalent:
a)r=1, ;00; 1p

b)res= 18 Y 1p for every relation s

c)r=r;00;T1
Proof.

(a=>b) Clearly(la ;S lp);v(l ;oo 1p)

(b=>c) Takes=oo
(c=a) ricoir=lyjeo; Iiooilyiee; L=yl

QED

More generally, one can always eliminate intersection, because it can be defined in
terms of fork and equality fiiter, as shown in the next result.
Theorem 5.3  Given relations rand S, we have
@) res=(rVs);2 and
b) rV s=(rVoo)e(ooV s)=(r;I1)e (s;1).

Proof.
a) Foranyu,ve U, we have from the definitions
u(rV s); 2 v iff u (rVs)yw=+z and w * 2 2 v, for some

w,ze U,iffurw, usz and w = v =z, for some w,z e U, iff
urv and usviffu re sv.
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b) Forany u, v, w € U, we have from the definitions
u(rVoe)e(ocVs)vaew iffu(rVoe)vsw and
u(e Vvrwiffurv vyuocovandusviffu(rVs)vsw.

QED

The preceding theorem also shows that fork can be defined in terms of intersection
and projections, thereby establishing a tight connection between intersection and fork.
Thus, if one wishes to eliminate intersection from the specification language, then one
must eliminate fork as well, since one wishes to retain the equality filter. This would
decrease the expressive power of the specification language, in that one cannot have
existential quantifiers (see the definition of fork in 3.2.2).

5.2 THE ALGEBRA OF FILTERS

Our calculus is based on binary relations of input-output pairs as a single unifying
concept. But, we often have to deal with sets, rather than relations. In order to handle
sets in this framework, we represent them by binary relations. For this purpose, several
resonable alternatives are available, for instance by resorting to the partiality of the
representing relation, one of them being the conditions of [Hoa86]. For our goals of
program derivation, however, another representation seems to be more convenient,
namely representing a set by the identity over it.

By a filter we mean any subrelation of the identity relation 1. So, a filter is a
reltivized identity: it acts identically on certain objects and filters out other objects,
thereby representing its domain. Thus, subsets of the universe can be represented by
their filters. In other words, we have a bijection I between the power-set F%(U) of U

and the set 9 U) of filters over U, defined by assigning to ACU the filter 1 A

Itis interestin'g to notice that the set of filters forms a Boolean algebra (having as
least element the null relation 0 and as largest element the identity relation I), which is
isomorphic to the power-set of U under the above bijection. Indeed, the following

rules are useful for calculating with filters

1AuB=1A+1B, lA_mB=1A°1B’ 1K=1"1A
and 1 =1, 1o=0'

Moreover, for the relative operations we have

1A;1B=1A01B, and 1A=1A.
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5.3. SPECIFYING SETS

As mentioned in 4.2, the axiom of separation is a very powerful and usual manner
of specifying a subset of a given set. We shall now examine how we can take
advantage of this specification tool and how we.can derive programs for testing
membership in sets so defined. .

The situation is as follows. Given a set A and a formula @, the Axiom of Separation
yields the set B ={u e A:¢(u)}, consisting of those elements u of A that satisfy @(u).
We wish to specify this subset B of A. A usual manner of specifying a subset is by
means of a membership test that receives as input an element of A, and outputs T or F
according to whether or not the input belongs to B. Another manner, which is very
convenient for derivations, especially in intermediate steps, is by means of a filter.
5.3.1 Specifying Sets by Filters

Given a set S, by the filter over S we mean the filter 18’ which, on iput u, outputs
u itself iff u belongs to S, otherwise no output is produced. In this sense, the filter
over set S does represent it as a binary relation.

We wish to derive a specifation for the filter over the set

B={x:xe Anrg(x)}

from the, assumed available, following two filters:

1, = {[u,u]e URU:u eA} |
1(p ={[u,ule U® U:¢(u)}

We clearly have, for any object x of our universe:
xIpx¢3xeBe xeAA o(x)

XlBX x1 x

Hence
lB =1 " ° 1(p

5.3.2 Specifying Sets by Tests

By the characteristic predicate for B as a subset of A we mean the predicate that tests
which members of A belong to B. We shall denote this predicate by Ba. So:
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Tif xeB

BA(X):{FifxeBAxeA

Let us define the following relations, which will be useful for several purposes,

true = {(u,b)zue Uab= T}

false={(u,byueunb= F}

Thus, we can write

Ba=1Ip j ﬁue+1A_B ; false

But, dually

B-A={x:xe AaxgB}={x:xe A r=p(x)}

-and
Ia-p=la*ly

Thus, we obtain, with the alternative notation iﬁ'"for Ba(x),

Ip=Ig j true+ I, ; false

B =
5.3.3 Specifying Sets by Fixpoints

Another convenient way of specifying a set is by means of a function whose set of
fixpoints is exactly the desired set. An example illustrating the usefulness of such
specifications is provided in 6.1 by the derivation of palindrome, where the
specification already happens to provide such a function.

Without loss of generality, we restrict ourselves to considering formulas. Given a
formula ¢, we wish to define a function ®:U—->U such that

®(u) =u iff @(u) holds. We shall now see in general how such a function can be
specified from a given (specification for) formula @. . |
First, notice the following property of our structured universe: for every u € U,
u#u, u] Thus, if we define ®:U—> U by

O(u) = u if ¢(u) holds:
() =11u, u] if o(x) does not hold

we see that if has the required property: ®(u)=u iff p(u) holds. ,
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It remains to see how a specification for function ® can be obtained form one for
formula @.

But, recal that the characteristic predicate for ¢ outputs T iff @(u) holds. Then, we
see that we have

<I>=(1V1(p ; J.T); H1+(1V1(p ; IF)’ In, ; 2

where 1T and JF are the filters over the Boolean values.

This is a specification for our function @ in terms of the characteristic predicate for
0, and a specification for the latter can be obtained from Iy and 1, as already seen.
We can now employ such a function ®@:U — U, with ®(u) = u iff ¢(u) holds, in

order to provide alternative specifications for the filter and the characteristic predicate of
a subset. For

Bz{u:ue Ang(u)}
={u:ue AA®(u)=u}, then

I=1, ¢®
Iy _p=10®=1, ¢(2;1)

We can now can eliminate ¢ by means of Theorem 5.3, and obtain

=1, 00=2;(1, ®®);3 and | (14)
1, _p=1, (@i 1)=2;(1, ®(®;7)); 2 bu,

Ba=1Ip / tTue+1A__B ; false, so,

Ba= A7 2;(1A®(D);(§ ; tme+1Vf;fa£se]

Vv

g

since

z;_(,lA®(<1>;I));é=1 s2;(10(®;1)); 2
= A;z;(1®d>);(1®1);2
. ——

(a)
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6. SOME DERIVATION RATIONALES

In this section we wish to employ the machinery presented so far to illustrate how
one can express and use some rationales in program derivation. We do this by means of
an illustrative example and the analysis of a simple strategy, namely trivialization.

6.1, AN EXAMPLE: PALINDROME

We shall now derive a program for testing whether a given listis a palindrome: a
program for the characteristic predicate of the palindromes.
The specification of palindrome as a subset of the set of lists is

pa[ = {x xe L AXx= i}, where X denotes the reversal of x

and its characteristic prédicate is
. Tifxe pal
pal(x)=
Fifxe L Ax¢ pal
Now, let rev be the relation defined, as in 4.1, by xrevy <> y =X.

Then we can write

lpa[ =1L,, ° 1oy

As we already know from 5.3.2, we can derive from here the following expressions
for pZz[ (x),
pal = Lo i 'tme+1L*_Pa[ ; false

1.

L_pa[=1L. °rev

pZz[:(lL, orgv) ; tme+(1L, 0}25) ; false

But, rev is functional (i.e., deterministic) and total from lists to lists (i.e., it has all

lists in its domain and range, which can be written algebraically as
rev=_1L.;rev;1L,). Thus,we can write rev=1L, ;rev;lL,-—-l Lirey ;1; 1L,,then

1 ,O(rev;f;l ,)=;1 ,O(Tez/;f)

1L°—pu[ > L L

So, in view of (14), we can now write
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pZz[= 1.;2; (1®7ev) ; 1,
which, by using the decomposition 1L‘ = lL1 + 1 1> Wecan trivialize as follows

e

2; (1®rev); 1

P“[=1L1im+¥L~ ,
(a)

_LI;

Let us now continue with the derivation of part (a) as follows

il

1, 2; (1®rev) ; 1

Y 1. . (1Vrev); i %))

.
=2 s 1)V (2, rev)| 1

1L‘—L1

V(1

s}

(b)

; rev) ;1

In order to continue with part (b), we introduce theeureka

- | "
1,. 3 =(Ad Vind Vst) ; (hd V md V bst)

dc;ip- Temb-

A graphic representation, as in the diagram in figure 2, can clarify the goal envisioned

in our eureka.

demp

Figure 2: The goal of the eureka.

Now, we can proceed with (b), by writing

1, i rev=(hd Vind Vist); (hd Vmd Vist) ; rev a7
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A resonable subgoal at this point would be moving rev to the right over rcmb. For
this purpose, we need properties of rev allowing its promotion to the left of remb. The

required properties are clearly similar to the axioms of our theory of rev in 4.1:
1,.. Ll;rev'ﬁt[=1,L];[st, 1. 4i1ev; st=1 hd and
L.Ll,mzf rev=1, 1,rev,mcf.

But, if we take a closer look at figure 2, we immediately see that we may have a

Ln L] I

problem in indicating the correct connections. In other words,we wish to combine the

three required properties so that we can write
((1@ 1L‘—Ll)® 1) ; recmb ; rev = ' | . (18)

((1® 1. L1)® 1) i (Tt V (T 7 7¢0))VIT4g) 5 recmb

But, from the nesting of parentheses in the term involving only identites, we see that
the extraction functions Tlfy, Tlmg and Jlzs involve certain amount of
deparenthesizing To see how they can be constructed, let us analyze the diagram in

figure 3.

Figure 3: Connecting term for the eureka.
From this diagram it is easy to see that the required expressions for the extraction

functions are as follows (we shall reexamine this construction in a general setting later
onin 8.2):
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Mae=11; 1L
Mg =117 1L,
e =11,

Hence, the explicit form of (18) will be

((1 ® l.ff-r}

((1®1L‘-L1)®1) ; ((HZV((HI i L) s rev))V(Hl ; H1)) ; remb

)®1) ; remb ; rev = (19)

We should recognize here that is not very comfortable to be forced to deal with this
LISP-like parenthetization. So, we will assume the nesting of the terms over identities
in (18) (see also. the diagram in figure 3) as canonical, in which case we will leave
implicit the parentheses in fork and direct product terms. Thus, we write (18) in the
simpler form

(1@ 1, ,9 1) ; recmb ; Tev = (20)

v(1® 1. 4 ®1) i (Tt V g 7 1ev V Tag) 3 recmb

Now, by unfolding (19) into (17) and (17) and (16) into (15), we obtain

1. 15 2;(1®rev); i=[((ﬁth1me[s’t); (ﬁt[-szfVBt)]V
|

(W Vo 65) 5 (T ¥ Tt 5 720V Tlsc) <;2zf,;;;sz:)ﬂ,. ;

But the very goal of the extraction functions is the following, easily verified,
property: ' '

(AL V md V [st) ; (Tt V img 5 70V Tge) = (5t V md ; rev V Ad)

So,

1. ,i2;(1®rew); 1=

((ﬁcf Vmd V(st)V (st Vind; rev'V hd )) ; (remb ® remb) ; 1

® lL‘—Ll

property of lists;: for all aj,ase CAXy,Xp€ LF

Now, let us call, eql = ; iandsme=(1.®1.); 1. Then, the
q c

lL‘ -L1
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x1 eqlxy A ay smce ap &> cons(ay, x1) = cons(az, X2)
can be written in a relational form as:
(sme® eql) jand=2;t;(cns ® cns) ; eql

where tis the connecting term for taking care of formal noise introduced above. As it
is shown in the diagram in figure 4, it is very easy to generalize this property to maich
our case. In this diagram we use the symbol @ for elements of C, the symbol E& for
elements of £*—£} and the symbol € for the sort Boolean.

B remb 2 }—smc
o
& m
}eq[—@ — . Deq[ and—<e
e aad=
o

Figure 4: Equality of decomposed lists.

If we use, for the sake of clarity, the two-dimensional notation, we can write this

property as follows

[(I1, 5 T14 VL 5 T14) 7 sme

remb v
® |, eq[= (Hl i Im VIL 7 Hm); eg[ i and
remb \

,_(H1 s I VIL H[)I’ Stic |

Now, for any pair of relations p and g, we have

[(pi T4V q: Tlg) i sme

o remb \%
(pVaq)i| ©® |iegl={(pi MImVq; lm): eql |; and
remb Y,

_(p;‘ M Vy: 1) ; sme |

But, notice that demp ; T4 =hd, demp ; Tl =md and demp ; T1f = [st. Thus
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(Ad Vist) ; sme
\%

pal =|(md Vnd ; rev) ; eql | ; and

, \%

(Lt VAdL) ; sme

-ZLa_L] l'

Now, it is easy to see (as we shall examine more generally in 8.2) that
lst Vhd =(hd Vist) ; (I1, VIT,), and from the general property of filters over

equality (I, VIL); I=(II,VIL,)s I=1 (see 7.3 below), we have
(Hz VHI) ; smc=(H1VH2) ; sme = smc. So

(Ad Vist) ; sme
\%
1, i pal=|(md Vimd; rev) ; eql | ; and
\Y%
] (Ad YV st) ; sme ]

Now, by applying, the property of aa(bab)=aab (which we write relationally as
(pVqVq); and =(pVq); and), we can write

(hd Vist) ; Asmc

1, 7 pal= \% ; and
md; (1Vrev) ; eql
\_.__.....\:..__.__/
i pal

Therefore, we obtain

(fd Vist) ; sme
pal=1,;true+1, ;; \% ; and
md ; p:z[

as an expression for a (recursive) program for palindrome.
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6.2. TRIVIALIZATION

The idea behind trivialization is restricting the problem to a set of inputs where one
already knows its behavior. We shal now briefly examine this idea in general in the
context of deriving a characteristic predicate for a subset B of a given set A. In view of
the above results in 5.3.3, we may assume that the condition for membership of an

element of A in B is given by a function ®.
Consider aset Pc A, where I, ; @ =1 (known and acceptable). In other words,

we already have an acceptable program for the pre-restriction to the subset P.

Then, we can decompose
Ba=Ip / BatIp_g i Ba

Ip i Ba=1pJ (lAe(D) i true+1p ; (lAe-Ci)-)‘;faI:se

But, as in 5.3.3, we have

Iy i (1Aocb)=(1P ; <I>)o1A =rel,

Ip i (1A°5)= Ip i ;1 91A=(1:; I)olA
T

Hence, we can write
Ip ; BA=(’C°1A); true>+((’c; _1_)0 A);fa[se

Finally, by reusing (14), we can arrive at

I 5 Ba=1, i (1V7); 1

In particular, in case 1, (1 ~ FI)-) =0, we have

Ip ; BA=(zo1A); truse.

7. INTERNALIZATION OF RELATIONS

A test over a relation is meant to check whether an input-output pair belongs to the
relation. In other words, it is supposed to receive x and y as inputs, and output T or F
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accordingly. In view of our universe strucutre, we can code up the input-output pair as
[x,y]. In addition, we can internalize a relation by means of its filter, which turns out
to be quite useful for derivation purposes. A filter (relativized identity), as already seen,
represents :the set of objects that exhibit a given property. As auxiliary tools, as well as
alternative internalizations, we also introduce semi-filters over relations.

7.1. SEMI-FILTERS AND FILTERS OVER RELATIONS

Given a relation 1, by its semi-filter-to-domain we mean the relation

7= {([x,y], x):xr y} (19)

Notice that Ran(r) = Dom(r). (20)

Given a relation 7, we analogously define its semi-filier-to-range as the relation

r= {([x, yly)yxr y} (21)
Notice that Ran(r) = Ran(r). (22)
Notice also that [x,y]e Dom(7) ¢ [x,y] e Dom(7) ¢ x7y. (23)

Let us now write relational expressions for each semi-filter. It is clear that

~ve

F= {(x,[x,y]):xr y}. Thus, 7 = 1V7, and 7 = 1Vr (24)
Analogbusly,
7= {(y,[x, ﬂ):xry}. Thué, 7= ?Vl, and 7 = g\'ﬁ (25)

Now, given a relation 7; we define its filter as £he relation
F= {<[x, yl{x y]>:xr y} (26)

Now, we can express the filters of a relation in terms of each one of its semi-filiers:

F:(F; ?)»1:(?; '?)01 27)
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7.2. TESTS OVER RELATIONS

Let us define test over the relation ras the relation
F={([x,y],b>:(b=T<——>xry)A(b=F<—-)xfy)} | (28)
Notice that, in view of (5), we can write,

7= {([x,y],b):(b =T & [x,y] e Dom(F)) a (b =F o [xy]e Q)om(}: ))} 29)

It is easy to see that, for every relation r, Dom(r; true)=Dom(r; false)=
Dom(r), Ran(r; true)= Ran(true) and Ran(r; false) = Ran(false). So, we can
write the following, nondeterministic, relational expression for the filter

P=(F+7) ; truet(F+7) 7 false : (30)

And, since Fe7 =0 and 7 o7 =0, any one of the following expressions can be

used as a relational definition for 7

F=7; true+}:;fa£se 31
P true+F s false | 32)
F=7; trué+?; False (33)
F=F; true+t; false (34)

7.3. FILTERS AND TESTS OVER EQUALITY

Let us now specialize the preceding development to the quite important case of
equality. We shall construct the filter and test for “equality”, i.e., for the relation 1.

Since 1=1,in view of (34) we can write,

I=1Vi=1=2 ‘ (35)

- Analogously, recalling that @ = 1, we can write,

~ e ere o~~~

p=1Vp and p=pV1 36)

which are evidently not equal.



In vic::w of (30), we can write the following relational expression for the test over
equality:

i=1; true+(+ ) ; false | (37)

And, since {20 % =0, any of the following expressions can be used as a relational
definition for 1,

i=1; true+{ ; false (39)
i=1; true+{ ; false (40)
We shall generally use

~ e~

1=2; true+1V1; false

Notice that any one of the above expressions gives the expected behavior of the
equality test. Namely

»[x,y]iT G X=y
[x.yJIF &> x=y

7.4. RETRIEVING THE RELATION

We have seen how a relation can be internalized by means of its semi-filters and
filier. Now, let us show how one can recover the relation from its internalized versions.

First, consider the case of retrieving a relation from its semi-filter to domain. We
have ~

F=1Vr=2;(1®r1).

Thus, we are looking for some relation s such that #;s =r. So, it would be natural
to proceed as in the reversal example. We shall, however, illustrate how one can
proceed by some simple algebraic manipulations.
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F=coof (by intersection elimination, Theorem 5.3)

=2;|®|; 2 ‘ (by property of identity)
T
1 s o]
=2;] ® |;2 (bydistributivity property)
| 77 1] '
17 oo
=2;|®|;|®|; 2 (by definition)
| T | 1
— s J o
z i
-7; 11,
Now, the case of retrieving a relation from its semi-filter to range is similar. We
have
T 1;r
T=rec0 =2;1®|;2=2;| ® |;2
0o o ; 1
1 T
=2;|®l;|e|;2 =17
oo 1

Finally, the case of retrieving a relation from its filter is now quite simple. We can
easily derive r=J1, ; 7; II,.

8. OVERCOMING THE NESTING "FORMAL NOISE"

We have already mentioned that our formalism is no exception, in that it has a
considerable amount of drudgery to be taken care of. In the preceding sections, we
have illustrated how one can cope with it, once one gets the knack of it. We shall now
indicate how a reasonable amount of this "formal noise" can be overcome in a general
manner, which is amc;nable to automation, so that one can let the system take care of
these matters. We shall now indicate the general treatment of sort information, and
connecting (or rearranging) terms. Both matters have already been hinted at in the
précéding developments, the former at several places and the latter during the derivation
of palindrome in 6.1.
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8.1 SORTS, TYPES AND CONDITIONS

We shall now show how one can use the input sorts of a relational term to predict
some information concerning its output Sorts.

Consider the following situation, similar to the one encoutered in deriving reversal in
4.1.

st

Figure 5: Program segment for list reversal.

We have the following relational expression for this program segment

(st (hd

\% 1%

rev=1,+1, ,;|\md;rev|; rricf
\ Bd ) st

Now, consider some sort information 1, say = is the set of all lists containing only

characters. We can pre-restrict our program segment to this set by pre-multiplying its
expression by the corresponding identity filter 1. We thus obtain

[ ( [Ist 3 ([ﬁlf-1
| v v
L1, +1, ,i|mdirev|; mzf
v v

I \ Bl ) st )|

We can now propagate this pre-restriction to the right by means of the following
steps. '
First, we obtain
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(e ()

1% Y

Lilytlgil. qi md ;rev |;| md
v \Y

\ Ghd )\ tst )

by applying the fact that 1 ; (p+q)= (%( ip+L i q).
Now, since lx; 1,=1,; 1X and lx;lL,_L1 =1L,_L1 ; 1X,we obtain

O e\ ()
| % v
1yidg+1. 4ilg) md jrev || md
v \Y

\ Bd ) \ st

Similarly, we can replace

(e (4 (1t ) (6d
v v % v

1. ;| md jrev |;|md | by | 1o ;md jrev|;| md
v V| Vv %

\ L ) Ot ) L 1 i hd \ st )

Now, since (hd, md and [[st are assumed to be known, we can get some

information about their outputs over set . In our specific example, we can write
I s st =lst ; 1o, Iz ;md =md ; I and Ig j thd = [hd ; 1. Hence we can now

replace
(1t ) (M1, )
\% \%
1 ;md jrev| by |md ;I ;rev
\% \%
\ IgiMd ) (| Md ;1

/

By proceeding in a similar manner, we can arrive at replacing
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(1 e | (fhd i () (4
v \Y \ ®| |V
1o imd jrev|;\md | by |md jrev ;| Iz |;| md
v Y v ||V
\ Lid ) st \ Bd ) \L) \tst)
Eventually, we manage to replace the original expression by
( [L-gt [ﬁdj\—1
v v
1,41, qi|mdirev|; md ||; 1
v v
bhd ) \ st )

Thus, we can propagate the given input sorts as pre-restriction to any point in the
diagram and obtain some information concerning the output sorts, in this case we can
actuallly determine them.

The promotion of pre-retrictions and post-restrictions over the operations can be
carried out by means of the following set of rules.

Rules for promoting restrictions

Prerestrictions Post-restrictions
P Icip P P
Lol +|=| + + =+ ]I
q N q; Iy q
, p) [P Pily) (p
(lxo Y); o |= © . ={ o ;(1X01Y)
q I, iq q; 1y, q
1X;0:0 0;1X=0
I i (o-p)=(1g i) =1 i p) | (=o=p)i L =(s2¢)~(p
I, ;p=p iff p=pily,
p) (7P Pil) (p) (%
\Y% (Iye1y);| V= V =V ]| ®
q 1, i q q';IY q 1,
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Loy (p) (IxiP pile) (p) (X
® ® [;|V|=] ® ® |=(®|;|®
I, ) \q 1,74 q; 1y q) \1Iy
Loip) (p
v V o |=|V]i(ge1y) i
Ivip) (4
~ 1X ~
2 ® |;2=2;(1 1)
Iy

The propagation of information about the restrictin rests on the above distributivity
rules. The crucial step is propagating the pre-condition over the basic relations, when
we need some commutativity property. The more information we are able to give
concerning the sort of its outputs,' the better. In our preceding example, the equations
Iy ; st = lst ; Iy, Iy j md = md ; Iy and Iy ; (hd = [hd ; 1y do provide quite
accurate information about the outputs, even though there is room for some
improvement.

Now, consider another pre-condition I, say E is the set of all lists containing

character a. We start from

[ e (]
' Y %
I if1,+1,. ,i|md;rev|; md
v 4
\ Bd ) \ s

and proceed as in the previous example, until we replace

% Notice that these rules do not necessarily give information concerning the domain or
range of the relations involved. Thus, they do not conflict with the results in theorem
4.4 and remark 4.5 in [Hae91], which show that one cannot determine terminating

pre-restrictions independently of their respective programs.
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(e \ (R 1 it ) (R
\% % \% %

1o i\ md jrev|;|md | by |1z ;md jrev|; md
v Y \% v

\ d ) \tse | Lifd ) st

Then, we can get only some information about the outputs of fid, mdand [st over
the set . We can only write I- Ust=1,, I; md= 1, and 12 ; (hd = Iy,
where 1Y + 1Z + 1V = 15 . Hence, we can now replace

(1. ;0st ( st 1,
A% ‘ \%
1 imd jrev| by rmf;lz,‘rev
\ \%
1. ; lhd :
\ B | Bty )

By proceeding in a similar manner, we eventually manage to replace the original

expression by

i (e (Bd)]
vV ||V

1,+1, 47 md ;rev | ;| md ’(1M°1N°1P)
v \%

i \ B ) st )

together with some information relating 1, lN, and lp‘, to I-.

We can now indicate in general terms when we can propagate conditions without
losing information. We wish to distinguish between our two examples above. For this
purpose, let us agree to call input sort for a basic relation 1, afilter I, that commutes

with 7; in the sense that there exists a term lc( such thatr=r; 1 (r1)° We now

r.1y) e(r, Iy

call an input sort for a relational term ta filter I, that is an input sort for every basic

relation roccurring in £. We then see that, given an an input sort lx for a relational ‘
term ¢, we can determine its output sort, i. . a relational term 15(:, 1,) such

thal lM, Y lP t = t; lc(t,lx).
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In constrast, for an arbitrary pre-condition Iy, we may have to be content with
determining some post-restrictions Iy I, ..., Ip together with a relational term

i(1

M7 - " 1P’ 1X) giving some some information relating_ 1., lN, and 1, to 1X

8.2 CONNECTING TERMS

Consider the following situation, similar to the one encoutered in deriving

palindrome in 6.1.

— dem

dem

—_

Connecting term

~ " Figure 6: Connecting term for rearrangement.

Here one has a program segment, consisting of two demp's, which outputs a
composite object s = [[[a, m],z],[[(x, u],(:)]]. One wishes to rearrange this composite
objectinto t = [[a,oc],[m,u]] so as to feed it into the final program segment, consisting

of smc and eql.

Ideally, one should not bother about such details. One would like to indicate the
connecting lines, say by clicking at both extremes, and proceed with the derivation. For
this purpose, the system should be able compute a connecting term from the available
information: what is connected to what. '

We shall now indicate how this can be done.

The structure of the first object is a tree like
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Figure 7: Strucure of the term to be rearranged.

Thus, it is easy to write expressions for each one of its leaves:

ITy

a:Ha(S)=H1iH1;Hl
m =[Im(s) =T s I/ Iz
o a:Ha(S)=H2}H1;H1
e = HH(S)z LI I

Figure 8: Extracting the components of a structured object.

The structure of the second object looks like

Figure 9: Strucure of the rearranged term.

Now, we can write it in terms of the first object, by putting together the components
a, m, o, and p into the desired template, as follows
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t= [[Ha(s BINIE [H m\S (S)”

It is not difficult to see how one can generalize the above construction. Indeed, given
any composite object s, with a tree-like structure, one can write a term [Ty, (s),
consisting of a composition of projections, to extract its kth leaf. On the other hand,
given any composite object t, with a tree-like structure, where the desried content of
each leaf is indicated, one can write a term K(t) that constructs the result of inserting
this information into its desired place.

One way to formalize the above construction by employing variables to refer to the
leaves of such trees. First, recall that our universe U is structured by the pair-
constructing operation * with u # v = [u, v]. Thus, the structure of each object can
be represented by a term constructed form (distinct) variables and the operation symbol
*, 1. €., an element of the corresponding free term algebra. For instance, the structure
of our above objects would be as follows: s represented by

(((Xl * X2) * Xs) ((X4 * Xs) * Xs)) and t by ((X1 * Xz) (Xs * X4))

Now, given such a term s, with m distinct variables without repeated occurrences,
and an index k with k between 1 and m, we can write a term []y, (s), consisting of a
composition of projections, that extracts of the kth leaf of any object with this structure.
More precisely, the denotation of J]y, (s) is the relation

{<S Ilulf"';ukr-"/um

Here, s [uy,-. sty uy] is the value of the term s when its variables X;,..., Xy ... Xp,

,uk> TUyp e Ug e, U € ‘U}

are assigned the values u,,...,u,,...up, respecti;/ely.
We can thus put s into a standard form (xl*...*(xk*...*(...*xm)...)...), by defining
the relation JI(s) = (HX1 (S)V...V_(HXk (s)V... V(.. VIIxy (s)))), whose denotation

is
{(s“ul,...,uk,...um|

On the other hand, consider a term t(x- yeeer X

,(ul**(uk**(*um))» Uy, Uy e Uy € ’U}

in
been replaced by x; ,...,X; , respectively, in order to indicate "what is connected to

) whose variables X, ,...,X, have

what". We can now write a term K(t), which puts the values into their places within s.
More precisely, the denotation of K(t) is the relation

..,ujn">:ul,...,uk,...bum € ‘U}
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Finally, the desired connecting term can be wrtten as P(s) = I1(s) ; K(t). This term

indeed constructs the term t from the term s, in the sense that its denotation is

{(sﬂul,...,uk,...um",tl

uh""’uinl'> PUpyeee, Uy e Uy, € ‘U}

Therefore, such a connecting term can always be automatically constructed‘,‘fClearly,'
more cfficient algorithms for this task can easily be.devised for implementation
purposes. '

9. CONCLUSIONS

We have reported on an on-going research effort in using an extended version of
Tarski's calculus of binary relations for formal program construction. This paper
shows that this calculus is adequate for this task.

The expressive power of our extended calculus renders it appi‘opriate for expressing,
and reasoning about, programs, as well as strategies and design decisions.
Furthermore, the fact that it is based on the single unifying concept of input-output
relations over structured universes makes it a truly coherent tool for covering the entire
derivation spectrum, from specifications, where expressiveness and ease of expression
is important, to programs, where efficiént executionis'the objective.’

This paper has illustrated three main points: the distinction among specification and
programming languages and derivation formalisms; that formal specifcation and
program construction can, and probably should, be distributed and intertwined along
the process; and finally how derivation insights and rationales can be captured within
our formalism with the goal of providing machine support for clerical symbolic
manipulations.

‘ We have illustrasted that filters (relativized identities) are very useful for deriving
programs, as well as for representing sets as binary relations. In 5.3 we have derived
some results concernig the specification of sets. In section 7 we have taken one step
further and internalized relations by coding input-output pairs. In addition, we have
constructed filters and tests over relations and showed how to derive the latter from the
former, which appears to be an important rationale. Also, this internalization paves the
way for internalizing higher-order concepts.

As regards the automation of clerical symbolic manipulations, we have dealt with
two special cases: the "formal noise" of connecting terms and the propagation of
restrictions. The latter is a generalization of the usual concept of invariants, an
interesting special case being that of types. This has connections, desrving further
study, with the view of types as retracts [Sco76].
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We are using the results of this paper as a basis for an implementation of our

calculus on Mathematica ™, with the aim of building an experimental environment for

formal program construction.
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