Monografias em Ciéncia da Computagdo
ne 23/92

Exception Handling in Object Oriented
Languages: a Proposal

Sérgio E. R. Carvalho

Departamento de Informdtica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22454-970
RIO DE JANEIRO - BRASIL



PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computac&o, N° 23/92
Editor: Carlos J. P. Lucena » ’ Juho, 1992

Exception Handling in Object Oriented Languages:
¢ Proposal *

Sérgio E. R. Carvalho

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.



=XCEPTION HANDLING IN OBJECT ORIENTED
LANGUAGES: A PROPOSAL

Sergio Carvalho S
Departamento de Informatica, Pontificia Umversidade Catélica, Riode Janeiro.

Resumo

Um mecanismo para o tratamento de excegdes em linguagens orientadas a objetos ¢
apresentado. Inicialmente o modelo de lingnagem adotado ¢ descrito, particularmente o
conceito de "classe”. O tratamento proposto combina com naturalidade a seméntica de
classes escolhida com a semantica de excegdes adotada em algumas linguagens de
programagio convencionais. A familiaridade obtida € importante fator na aceitagéo de
orientagiio a objetos por programadores convencionais.

Abstract

A mechanism for exception handling in object oriented languages 1s proposed.
Initially the language model chosen is described, particularly its "class” concept. The
proposed mechanism combines naturally the semantics of classes with the semantics of
exceptions in conventional languages. The resulting familiarity is important to
conventional programmers trying to embrace object orientation.

Keywords
object orientation, exception handling, class.



FYCERTION HANDLING M OBJECT ORIENTED
LARNCUAGES: & FROPOSAL

1. Introduction

The object oriented approach for the construction of software systems is
becoming increasingly popular. Correspondingly, pure object oriented
languages are being designed and implemented, as for example Eiffel
[Meyer 88] and Trellis [Schaffert 86]. Also, old conventional languages, for
example C and Pascal, are being (inelegantly 7) adapted to accomodate
object orientation. Whatever the case may be, the class concept is central to
the design of object oriented languages. Several interpretations can be given
to this concept. Once a class interpretation is chosen, other features can be
designed to fit: inheritance, polymorphism, and exception handling, for '
example. In section 2 we present a view of classes. This view strongly
inderlines the design of the exception handling mechanism described in
section 3. In section 4 we present our conclusions.

E A View of Classes

For the purposes of this report, we adopt Wegner's view that a class is
basically an implementation of an abstract data type affected by inheritance
[Wegner 86]. In more detail:

¢ aclass is a passive syntactic structure encapsulating the definition of
both the data structure and the operations applicable to the instances
{objects) it models;

¢ anew class may be derived from (may inherit properties of) other
already existing classes.

This "static” or "passive” view of classes is extremely convenient for the
popularity and ease of use of new object oriented languages: classes can thus
be viewed as mere extensions of types, a familiar concept to conventional
language programmers. Another advantage of classes as static structures
modelling objects is the strong typing that can be obtained: language
compilers can generate efficient, optimized code by discovering, each time a
strongly bound object is used, to which class it belongs. Also, in this view,



classes can be designed, compiled and tested separately, and can then be
stored in libraries for further reuse.

To consolidate this view, the following skeletal definition of class is
suggested: ‘

class class-name

inherits class-name,...
exports fields,... operations,...
imports class-name,... .
structure

field,...
Eehaviar

operation,...

end class ...

The inherits, exports and imports clauses constitute the class interface.
The exports clause lists the fields and operations visible outside the class.
In the imports clause we declsre all external classes used to model, for
example, structure fields or-local operation objects.

In the structure section, we define the field composition necessary to
describe the state of a class object. This composition is like that found in
conventional language records, but here inheritance also plays a part: the
data structure for objects of class A is found by adding to the fields declared
in class A the fields found in the declarations of all superclasses of A, listed
in class A's inheritance clause, and so transitively on. This is usually
accompanied by disambiguating rules, applied when a same name field
appears in more than one class in this inheritance chain.

Access to object fields is in general restricted to the class operations
defined in the behavior section (below). In this way an abstract view of the
class is presented to users, who can then affect the state of an object solely
through class operations.

In the behavior section we declare all operations applicable to the
modelled objects. Typically, the semantic of these operations is either that
' of straight procedure calls, as in Pascal, or that of remote procedure calls,

where for example the operation to be executed next is chosen according to
some queuing policy. :

In fact, operations of different natures may be needed in the behavior
sections of class declarations. This is the case of object oriented languages
designed to support the construction of graphical user interface applications,

2



where the user may asynchronously interfere with the execution by, for
example, pressing a button, or by selecting a menu option. On the graphical
development platforms existing today (Windows for DOS and MOTIF for
UNIX, for ezample), one such asynchronous action causes a message to be
queued up, and, eventually, causes the execution of some associated
operation to implement the user's wishes.

To represent operations of different natures in the behavior section of
class declarations, different active units should be available in the language.
A few can be named:

¢ procedure-like units, seizing control when called, and relinquishing it
upon termination;

¢ message handling units, invoked when the correspondlng message is
removed from the system's queue;

¢ iterators (as in CLU), designed to provide, one at a time, a series of
values for a given object, typically to control a loop statement,

The above units differ in such aspects as local environment life cycle,
entry points and return addresses. Local environments are created and
deleted for procedure like units and for message handlers; iterator
environments are retained between consecutive value producing cycles.
Return addresses are kept for procedure-like units, but not for message
handlers; for iterators, both a yielding address (where the value nroduced is
used) and a resume address (where the execution of the iterator contmues)
must be Pr eserved.

Operations of all kinds are applicable to receiving objects of the
corresponding class, actually special parameters to the operation.

Besides modelling the state and behavior of objects, as shown above,
classes may contain other convenient features. As an example, one may
consider the existence of class environments, actually static data structures
visible to all class operations, and belonging to the class itself, not to each of
its objects. _

The syntactic and semantic class structures described above suffice to

model the exception handling features proposed in the next section. '

3. E}i@@ptidn Haﬁd!ing and Object Orientation

In section 2 above we presented a short description of a convenient class
mechanism. In this section we discuss exception handling for that particular
model. We do not propose to discuss exception handling in detail; for this

3



the user is referred to [Christian 82], [Goodenough 75], [Levin 77], [Yemini
85]. Cur objective, instead, is to homogeneously combine into the object
oriented environment described above adequate exception handling
features. We begin by presenting the foundations upon which our proposed
mechanism is built,

3.1 Foundstions

First we aggree (as is usual in conventional languages) that the
occurrence of an exception in some active unit U must cause the
termination of 1J (unable to fulfill its contract, in the EIFELL metaphor
[Meyer 82]). However, we also accept that this termination may be preceded
by the execution of a last wishes section of code (a local handler), where local
actions can be taken, still in the environment of the terminating unit, to flag
down or cancel the exception raised. Exceptions, in this proposal, can thus
be viewed also as control structures (actually labels), causing, when raised,
control transfers to local handlers [Levin 77], [Cheriton 86]. In this
metaphor, the concept of exception is overloaded: exceptions indicate not
only abnormal situations, but also infrequent (but entirely normal)
situations.

Omne can state, as an advantage of having local handlers for infrequent
situations, the ability that programmers then have of placing "off-line" rarely
used sections of code in their algorithms, consequently increasing their
overall clarity. Another reason for the use of local handlers is that there may
be exceptions for which, independently of the calling unit, the same
tregtment is acceptable - one might as well specily its handling locally.

The idea of local handling, as stated, is that found in Ada [Ichbiah 79].
We shall see shortly that the class mechanism in object oriented languages
provides a natural and welcome extension to this concept.

Second, should there be no local handler, we aggree, as is the case in
CLU [Liskov 79], that it is the responsibility of the calling unit to deal with
the exception (dynamic scoping), as opposed to a static scoping structure,
where an exception raised in U is propagated to the unit immediately
enclosing U. In other words, a caling unit should be prepared to deal with
both the normal and the possible abnormal behaviors of a called unit.
Again the class structure modifies this idea somewhat (section 3.2).

As stated above, these foundations are supported, in full or in part, by
well-kmown conventional languages, notably CLU and Ada. They have
been chosen as the basis of our proposal also due to this familiarity - we
want object oriented languages that conventional programmers can use
without undue difficulties.



3.2 & Basic architesture

Our task is to combine the foundations above with the new dimensions
introduced in languages by object orientation. With respect to exception
handling, we distinguish, in object orientation:

¢ the class structure, a static feature enclosing the definition of object
behavior and created with the use of inheritance;

¢ the powerful semantics of object behavior, in which active units
(methods, iterators, message handlers, and so forth) are applied to
receiving objects. :

Our reasoning begins as follows. Exceptions occur at run time, when
some active unit is being executed; in object oriented terminology, when an
active unit is being applied to some object. If we suppose the existence of
local handlers, they are to be placed within these active units. To visualize
this situation, consider the skeletal declarations below, for classes C (lines
1-6) and A (lines 7-11).

1 clazs C

2 method M

3 A x
begin

4 | E<R()

5 end method

6 end class



1 class A

8 method R(...)
begin

9 raise e

10 end method

11 end class

- In class C a method M is declared (lines 2-5). In this method a local -
object x of class A is declared (line 3), and method Ris applied to = (line 4.

This application is correct, since R is part of the behavior of ¥, specified in
class A (lines 8-10).

Consider also that, during the execution of R on &, the exception e is

_ explicitly raised (line 9). As stated above, what happens next depends on the
existence of a local (within R) handler for e, If this handler exists, its code is
executed, the exception e is flagged down, and R terminates normally. The
following syntactic model could be used to express this situation, for
whatever operation:

operation name (parameters)
local declaration,...

begin
statement,... (including raise)
exception

when ezc-name,... then statement,... (including raise}

end exception
end operation

In this model, the exception...end exception clause, a multi-way
selection statement, is placed off-line, indicating that control reaches this
clause only if a raise statement (raise exc-name) is executed.



Should there be no local handler for a raised exception, the raising unit
should terminate without last wishes, according to the foundations
described above. It is here, however, that the class mechanism in object
orientation may play a significant role. We propose to use the class '
structure to hold yet another kind of operation: one responsible for the
handling of an exception for which no local handler was defined in the
raising unit.

The class could thus be seen as another scope for "local” handling - "local”
in the sense that flagging down the exception would still be done before the
exception is propagated to the caller, as our basic model indicates. (In the
following, we shall continue to use "local handler” to indicate a handler
located within the raising unit, and "class handler” to indicate the new
construct being proposed.)

We illustrate by expanding class A in the example above:

[l

7 class A -«
method R({...)
begin
9 ‘ raise e
10 end me—thod
12 ;;{ception handler for e
13 | end h":a.ndlér

11 end class

In the example, the class exception handler for e (lines 12-13) would be
automatically invdked if e is raised and no local handler for e exists. By
"automatically invoked" we mean automatically applied to the object
receiving R in the first place (% in the example). If we use self to designate
the receiving object, the raise statement in line @ would have the same

7



effect as self <- e. In fact the explicit application self <- e should be also
valid as a statement, ranking with method applications, for example.

In this model, we consider the class handlers as being part of the
definition of object behavior; active units applicable to self, the object which
received the operation in which the exception was raised - the object for
which abnormal behavior was detected. . o

We note at once that the semantic of method application is not an
adequate substitute for the invocation of a class handler: applying a method
to self, in order to treat off-line some abnormal behavior, would require the
saving of a return address (that of the statement immediately following the
application), to be used after the method is executed; whereas, in our basic
model, the raising unit must terminate after the last wishes specified in the
esception handler are executed.

Class handlers can be used to "factor out" handling common to a set of
active units in a class; for example, common actions to be taken when array

bounds are violated, the array being part of the data structure for the objects
of the class. o

It should be noted that the referencing environment in which a class
handler executes does not contain the environment of the raising unit. A
class handler can only reference (besides its local entities, of course) the
entities available in the class itself (data to be shared among objects, for
~ instance) and global data, if present. In this sense a local handler has more
referencing power than a class handler; we are trading this power for
economy of code (factoring out exception handling) and software
reutilization (see remarks on inheritance below).

With respect to inheritance, class handlers behave exactly like other class
units: an ezception raised in some unit R for which no local handler is
specified may find its handler in the class immediately containing R, or in
any of its superclasses (we suppose simple inheritance in our object oriented
model). An exception e is propagated to the caller {or the unit which
contains the initial application of R) only if, for the entire length of the
inheritance chain, no class handler is found for e. Also, the redefinition
rules of the language should be applied to class handlers; and class handlers
should have their definitions deferred, when convenient.

Jith respect to visibility, class handlers should not be exported from the
class. The behavior they specify for class objects can only be invoked
internally; class handlers are, by default, private.

We conclude this section on a basic model for exception handling in
object oriented languages by summarizing the several handling semantics
described above. We suppose the operation application

® <~ R(...)



and distinguish four cases:

¢ no exception is raised in R's code: R terminates normally.

¢ an exception is raised within R, and there is a local handler for e: the
handler code is executed in R's referencing environment, the exception
is cancelled, R terminates and control resumes normally.

¢ an exception is raised within R, there is no local handler for e, but a
class handler for e is found somewhere in the inheritance chain: the
handler code is executed in the class' referencing environment, the
exception is cancelled, R terminates and control resumes normally.

¢ an exception is raised within R, and there is neither a local nor a class
handler for the exception: R terminates abnormally, and, for units
expecting a return from R, the exception is propagated to that unit (the
one containing the application statement x <- R(...)). More on
propagation on section 3.3 below,

Essentially what we are proposing is a combination of static and dynamic
scoping rules for the handling of exceptions. We aggree dynamic rules are
preferable; however, the class structure and the accompanying inheritance
mechanism provide natural grounds for static scoping as well, This is
convenient since, from the point of view of classes and inheritance, class
handlers require no additional semantics from that already in existence for
methods, for example.

mn g

3.3 Excephion propagalion

In the model described above, the operation U issuing an application
statement g < R(...) in which an esception occurred may receive an
exception back - an indication that, for some reason, the expected behavior
was not possible for the receiving object x. This happens, as seen, when no
local or class handler was found for the exception raised. In this section we
discuss the handling of a propagated exception.

We begin by recognizing that the operations which are liable to receive
an exception back are exactly those which expect to regain control after the
application statement has been normally executed. This includes methods
and iterators, for example, but it is not the case of message handlers: once a
messagel§sent to an object, the handling of that message is done
- asynchronously with the ezecution of the unit sending the message, which
does not expect to hear from the message handler - does not care whether
the message was handled normally or abniormally. Clearly, for such units,



propagation is not adequate: once an exception occurs, only local or class
handling is feasible.

Another initial consideration regarding the handling of propagated
exceptions is their outside visibility. As opposéd to locally treated
exceptions, which are naturally private to a class, propagated exceptions
must be visible outside the class, since they will receive outside handling,.
Even though compilers would not need explicit visibility declarations (every
exception raised in an operation and not handled either locally or in its class

is exported), for readability purposes information on exported exceptions
should be provided.

One way to accomplish this is to add exception names to the exports list
of a class:

class class-name

exports field,... operation,... exception-name,...

end class

Another way to export an exception, more precise but perhaps less
readable, would be to attach the name of the exception to the operation
where it is raised. The exception could thus be considered as a part of the
operation's signature {actually as a sort of qualifier to the operation, and
bound to it), and the class exports clause could be left as before. A syntactic
skeleton for this solution is offered:

operation name (parameters)
exception exception-name,...
local declaration,...
begin
statement,...
exception
local handler,...
end exception

end operation

To conclude this section on exception propagation, we suggest yet
another level for exception handling - statement level handlers. In section

10



3.2 above local and class handlers were described. In both cases the actions
there specified were taken immediately before the raising operation was
terminated. We could add another dimension to exception handling by
attaching to application statements

object =<- operation {(arguments); |
a statement level handler, as for example in
object «<- operation {arguments)
exception |

when exception-name,... then statement,...
end exception;

The purpose of a statement level handler would be to preserve the
environment in which the application statement was issued: if the applied
operation zends back an exception, and if a statement level handler exists for
it, then its actions are executed, the exception is cancelled, and the
statement following the enlarged application statement is executed next.
This contrasts with the exception handling semantics adopted when no
statement level handler is present: last wishes for the environment where
the application statement was issued, should @ local or class handler exist for
the received exception; exception propagation otherwise.

4. Conclusions

We propose an exception handling mechanism for object oriented
langzuages. We initially define the kind of language we are concerned with:
one that could be considered as an extension of a conventional language; one
that could be easier for real-life programmers to embrace.

We adopt well-kmown, conventional semantics for important issues in
exception handling: the termination of the raising unit, with or without last
wishes; and the dynamic propagation of exceptions not locally treated. We
then recognize the important role that the class construct plays in object
oriented languages. We suggest that a degree of static scoping could be
naturally absorbed by this construct, and propose syntax and semantics to
match. Ke¢to the extensions proposed is the realization that abnormal
behavior, expressed by exceptions and handlers, is still behavior, and hence

fits elegantly in the class construct.

11



Bibliography

[Cheriton 86] Cheriton, David.

Making Exceptions Simplify the Rule (and Justify their Handling ) “Proc.
IFIP Congress 86, Dublin, Ireland, 1986.

[Cristian 82} Cristian, Flaviu.

Exception Handling and Software Fault Tclerance IEEE Transactions On
Comphlifers, 31(6) 531-540, jun 82.

[Goodenough T5] Goodenough, J. B.

Ereeption Handlm :Issues and a Proposed Notation. Conim, ACM, 18(2)
dec 15,

[Ichbiah 79] Ichbiah, J. et alli

Rationale for the Dezign of the Ada Programming I.anéuage. ACM Sigplan
Notice 5, 14(6), jun 79,

{Levin 77} Levin, Roy.

Program Structures for E}chptional Condition Handling., PhD Thesis,
Carnegie_mellon University, jun 77.

[Liskov 79] Liskov, B., Snyder, A.

Exception Handling in CLU. IEEFE Transactions on Software Enginesring
SE-5(6) 546-558, nov 19

[Meyer 88] Meyer, B.

Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs,
NJ, 88,

[Schaffert 86] Schaffert, C. et alii
An Introduction to Trellis/Owl. Proc. OOPSLA 86, sep 86.



[Wegner 86] Wegner, P.

Classification in Object Oriented Systems. SIGPLAN Notices, v21l #10, oct
86.

[Yemini 85] Yemini, §., Berry, D.

A Modular Verifiable Exception Handling Mechanism. ACAM Transactions
on Programming Languages and Systems , 7(2) 214-243, apr 85.

13



