|

Monogrofics em Ciéncia da Computacdo
ne 25/92

TOOL: a Short Description

Sérgio E. R. Carvalho

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22454-970
RIO DE JANEIRO - BRASIL



PUC RIO - DEPARTAMENTO DE INFORMATICA

Monografias em Ciéncia da Computagdo, N° 25/92
Editor: Carlos J. P. Lucena Julho, 1992

TOOL: a Short Description *

Sérgio E. R. Carvalho

* This work has been sponsored by the Secretaria de Ciéncia e
Tecnologia da Presidéncia da Republica Federativa do Brasil.



TOOL: A Short Description.

Sergio E. R. Carvalho
(PUC Rio-BR, Depto. Informatica)

PUCRiolInf-MCC25/92

Abstract: TOOL is a programming system designed to simplify the task of building
sapplication programs running on graphical user interface platforms. The current version
runs above Microsoft Windows. In this report the programming language component of the
system is summarized. This is an object and event oriented language, designed to be easily
understood by conventional language programmers.

Resumo: TOOL ¢ um sistema de programagao projetado para simplificar o
desenvolvimento de programas construidos sobre plataformas oferecendo interfaces
gréficas. A versao corrente funciona sobre Microsoft Windows. Neste relatério a
linguagem de programagao do sistema € sumariamente apresentada. Esta linguagem €
orientada a objetos ¢ eventos € foi construida para ser facilmente entendida por
programadores convencionas. :

Palavras-chave: interfaces graficas, orientagao a objetos, eventos.



TOOL: A SHORT DESCRIPTION

S. Carvalho
INTRODUCTION

Software development platforms for the construction of applications driven by
graphical interfaces are becoming increasingly popular (Windows for DOS and MOTIF for
Unix are examples). Application users benefit considerably from this technique: for example,
the fact that application interfaces tend to be similar speeds up the learning process, allowing

users more productivity in less time.

What is nice for users, however, is not necessarily so for programmers. The task of
developing a Windows application in C, for example, has been recognized as at leabt
non-trivial. For this reason new programming systems for Windows-like platforms are being
developed and marketed tdday. All support graphical user interfaces and most advertise object
orientation, a definitive trend for the 90's. We can roughly classify most of these new systems

in two categories, described in some detail below:

. common knowledge seckers;
. new paradigm advertisers.

In the first category we place those systems developed as extensions to well-known
programming languages, notably C and Pascal. Most conventional or procedural languages,
however, have not been originally designed to accommodate asynchronism, or event-driven
programming, essential to graphical user interfaces. As a result, when using one such
. l&nguagé}%tb"’c"onstruct‘an application for a modern software platform, one usually has to learn a

new, large and unstructured set of functions, in order to code message passing. Moreover, one



frequently has to cope with inelegant syntactic and semantic langnage extensions, which often

violate original design principles.

In the second category we place those systems emphasizing a Smalltalk:}ikg approach
to object orientation, and even a Smalltalk-like syntax, both unfamiliar to most programmers
today. As aresull, procedural language programmers trying to embrace object orientation
often feel alienated, thus failing to benefit from the obvious advantages offered by

Windows-like platforms.

Neither approach seems adequate to us. What seems to be needed are new languages,
certainly built for the resources an;i needs of today (thus including object and event orientation
for example), and yet positively utilizing the extensive body of programming knowledge
existing today (thus welcoming all conventional language programmers). In this paper one
such language, TOOL, will be presented. TOOL accommodates, through object orientation,
also the message passﬁg and procedural paradigms. In classes, the main language construct,
both the synchronous (procedural) and the asynchronous (event-driven) behavior of objects

may be specified.

TOOL is actually an object and event oriented programming system, consisting
basically of a programming language, an optimizing compiler, a library system, and an abstract
machine to allow portability through different environments. The current version of the system

is implemented as a software layer above Microsoft Windows.

Our main goal, when designing TOOL, was to simplify the task of building application
programs using the extensive facilities provided by Windows and similar environments. To
accomplish this, considerable effort has gone into the design of programming languzigc
constructs that, besides implementing modern software features such as object orientation,
‘message passing, and graphical user interfaces, seem also familiar to conventional language

programmers. Thus, TOOL classes are presented as type extensions; message passing, as a



special case of the familiar procedure call; polymorphism, simply as an ability objects have of

changing classes at execution time.

“The main features of the TOOL programming language are presented next. The TOOL
programming units are classes, for modelling objects and other classes; methods, to implement
synchronous object behavior; message handlers, to implement asynchronous behavior.

Methods and handlers are located within classes.

CLASSES

Classes are the meeting grounds for all properties associated with the objects they

model. Classes can be basic, conventional, or extended.

A collection of basic classes is supplied with the system. They include implementations
for INTEGER, REAL, CHARACTER, BOOLEAN, and STRING. Conventional classes are not
significantly different from classes found in conventional object oriented languages, and are
discussed next. Extended classes model message passing and receiving objects, and are

presented at the end of this paper.

. Conventional classes may contain an inheritance clause, an object representation

section, a class representation section, class constants and methods.

Inheritance n TOOL is simple, establishing both a type-subtype relationship and also
visibility regions. Thus, if Bis a subclass of A, every B object is also an A object and may
appear wherever an A object is expected; and every A attribute is visible in B, perhaps with

vqualification, if a same name attribute 1s declared in B. A class and its descendants constitute a

Samily.



In the object representation section the data structure for class objects is declared. This
is basically a record consisting of object and structure declarations. Unless declared as public,
representation components are only visible inside their f:"imily. For every component an initial
value is given: either explicitly, or transitively obtained by default (every basic:class in TOOL
has an initial value for its objects). The ordered collection of such initial component values is a

constant value of the class.

In the class representation section the data structure for the class itself is declared.
Class representation components (objects and structures) are only visible inside their family

and can be used as common storage among objects of the class.

Special values for class objects may be declared in the class constants section. A
constant object declaration associates a name with a (multiple) value. Such values may be

assigned to and compared with variable objects of the class.

Methods are active program units-used in the implementation of synchronous operations

on objects. They correspond to the notions of procedures and functions in conventional

languages.

OBJECTS

Objects are instances of basic, conventional or extended classes. Objects can be
declared in the object and class representation sections of a class declaration, as

method/handler parameters, as method results, and as locals to methods/handlers.

At declaration (always required) an object is associated with a base class, and is
modelled by this class. At declaration, a discipline is also attached to objects. This discipline
affects both the lifetime and the class flexibility of objects. The possible disciplines are

automatic, dynamic and polymorphic.



The automatic (default) discipline is that of langnages hike Pascal: space for the object’s
data structure is allocated on the execution stack, and the object’s lifetime 1s that of the

enclosed method/handler, or, for object components, that of the parent object.

Objects with the dynamic discipline have their lifetimes controlled by the programmer,
through the application of built-in methods for creation and disposal. In addition, a set of
special methods to safely control dynamic objects exists in the language, avoiding dangling
references and simplifying garbage collection. In all other respects dynamic objects behave

exactly like automatic objects.

The hifetime of polymorphic objects is also programmer controlled. Unlike automatic
and dynamic objects, however, they have the ability of changing classes during execution. The
set of possible new classes for such objects 1s the object’s family. Polymorphism results from
the application of a special method to a polymorphic object. The method's argument must be
an already created dynamic or polymorphic object of the receiving object’s family, After the
. rﬁcthod's application, the receiving object shares the representation of the argument, and is of

the same class as the argument,

Basic class objects are always automatic. Extended class objects cannot be automatic.

Any discipline is suitable for conventional class objects.

STRUCTURES

Object strﬁctures can be constructed with the array, dynamic array and union
mechanisms. Constructors are merely compositions of objects; they are not classes. Structures
may aﬁpear in the object and class representation sections of a class declaration. They may
also be Lo%ai]y declared in methods and handlers. They may not, however, appear as

parameters or results in method or handler mterfaces.



Arrays are hom ogeneous fixed-size compositions. Access to array components is done
by indexing the array’s name with integer expressions. Array components can be of any class
and have any suitable discipline. Dynamic arrays are created during execution, where special
methods are able to set and then get dimension limits. Unions are probably hctéti(;ge‘ﬁcous
compositions where all elements share the same memory positions. Union elements (basic

class objects or one dimensional arrays thereof) are accessed with dot notation.

METHODS

Methods have a signature, local declarations and statements. The signature ofa
method, besides the method’s name, optionally contains the specification of parameters, ofa
result object, and of a method attribute. Attributes exist for in-line code expansion, for private

methods, and for methods which cannot be fully declared in a class, but only in its subclasses.

Parameters and arguments corrcépond according to position, family, mode and '
discipline. Parameters can be objects or merely argument identifiers. Object parameters
correspond through the assignm ent of a value (input, output or both). Object parameters can
have any suitable discipline. Dynamic and polymorphic parameters are automatically created
by the system.

The method's result is locally expressed with the declaration of an object, which can
receive values during the method's execution. The last such value is the result of the method's

application. Any suitable discipline can be attached to the result object.

Methods can be redeclared in subclasses. In this case the same signature is required.
Methods are applied to receiving objects, specially designated in method body statements.
Receiving object components are accessed with dot notation from this special designator. The

components of other local objects of the same class are also directly accessed with dot notation



from their names. Components of other class objects, unless declared public in the declarations

of those classes, are not visible inside the method.

A set of built-in methods is available in any class: for objcét ¢reation and disposal, and
for polymorphic transformation, for example. Certain built-in methods can only be applied to
objects satisfying a certain declared diso‘ipline. Examples include creation/disposal methods,
applica.blle to dynamic or polymorphic objecté only, and the polymorphic transformation

method.

STATEMENIS

A small and conventional looking set of statements is available in TOOL: assignment,
selection, repetition, application (of methods and handlers), and termination (of loops, methods

and handlers).

In an assignment a left hand side object receives a value that is either obtained from an
expression or is the value of an object (variable or constant). In all cases the right hand side
value must be of the left hand side declaration class (or desoendant.thereof). Only common

declaration class fields are updated.

Selection is expressed by conventional if ... {elsif ...} [else ...] , and case ... {when ...}

[else ...} statements.

A single loop statement is used to specify repetition. The execution of this statement
can be controlled by conditional exit and repeat statements placed anywhere in the loop's body.
The exit statement terminates-the loop's execution, transferring control to the statement
immedia}géﬁ]‘y"’followiﬁg the loop. The repeat statement terminates a loop iteration, transferring

control to the beginning of the loop’s body.



Application statements force operators (methods and handlers) on receiving objects.
For readability, class names may qualify operator names. Gbject returning methods, when
applied, produce object values to be used in expressions. “Handlers do not produce values. A
conditional return/quit statement may be used in method/handler bodies to abriiptly terminate

execution.

EXTENDED CLASSES

Extended classes model objects capable of responding to asynchronous calls. This
modelling is done at a very high level, taking full advantage of the class mechanism: TOOL

programmers are not-concerned with message queues, for example.

To encompass message passing, extended classes contain, besides the sections existing
in conventional classes, a messages section and the declaration of message handlers. In the
messages section, the signatures of all messages sent from-extended class objects to their
owners (the objects that created them) are given. Message signatures have a name, an optional
set of parameters, and an optional tag. This tag allows programmers to directly relate messages

and their handlers.

Handler declarations contain a signature, an optional message related tag, local
declarations and statements. Handler signatures contain a message identification clause and an
optional sender identification clause. The message identification, always required, identifics a
message that objects of the extended class being declared can respond to, by creating the

corresponding handler environment and by executing its statements.

The sender identification, when present, indicates a set of owned objects that are
possible senders of the message to be handled, and which will cause this same message.
handling. All objects in this clause must be modelled by the same extended class. Handlers

without a sender identification clause treat messages originating from non-owned objects.



Handler applications are syntactically similar to method applications. The semantics
differ, however: handlers do not return to the calling environment, they just eventually quit

executing; handler parameters are input only, and handlers do not return values.

In order to generalize the passing of a message from an object to its owner, a generic
owner identifier exists in the language. In this way the behavior of objects can be specified

independently of the context in which they are placed, truly favoring encapsulation,

A PROGRAM

A TOOL program is a sequence of one or more conventional and/or extended classes.
Some extended class in the sequence must be identified as the main class (this is done through
the program construction interface, a Windows application supporting the construction,
compilation, linking and execution of TOOL programs). The main c¢lass must contain a method
called Main. Execution starts with the application of Main to an extended object of the main

class, automatically created by the system.



