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Abstract

This paper presents a formal specification for a hierarchy of types similar to the Collection
hierarchy presented by the Smalltalk language. The specification method is an extension
of VDM that supports inheritance of specifications, with the property that subtypes are
behavior compatible with their parents. This formalism gives us a clear concept of behavior
compatibility, that is used to justify cur hierarchy structure and to compare inheritance of
specifications, adopted here, with inheritance of implementations, adopted in Smalltalk.

Keywords: Formal Specifications, VDM, Object Oriented Programming, Inheritance.

Resumo

Este artigo apresenta uma especificacdo formal para uma hierarquia de tipos semelhante
a hierarquia “Collection” apresentada pela linguagem Smalltalk. O método de especificagao
¢ uma extensio de VDM com suporte a heranca de especificacdes, com a propriedade de
subtipos terem sempre comportamento compativel com seus supertipos. Este formalismo nos
dé um conceito preciso de compatibilidade de comportamento, que é usado para justificar
nossa estrutura hierdrquica e para comparar heranca de especificagdes, empregada no artigo,
com heranca de implementactes, adotada em Smalltalk.

Palavras-chave: Especificagbes Formais, VDM, Programagdo Orientada a Objetos, He-
ranca.
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Abstract

This paper presents a formal specification for a hiérarchy of types similar to the Collection
hierarchy presented by the Smalltalk language. The specification method is an extension of
VDM that supports inheritance of specifications, with the property that subtypes are behavior
compatible with their parents. This formalism gives us a clear concept of behavior compatibility,
that is used to justify our hierarchy structure and to compare inheritance of specifications,
adopted here, with inheritance of implementations, adopted in Smalltalk.

Keywords: Formal Specifications, VDM, Object Oriented Programming, Inheritance.

1 Introduction

Among the new concepts introduced by object-oriented languages, maybe the most important one is
the concept of inheritance, and the associate notion of subclass (or subtype). Many authors consider
inheritance as the distinction mark of object-oriented programming, and is common the “equation”
Objects = AbstractDataTypes+ Inheritance (e.g. [1]). On the other hand, inheritance is also a very
controversial subject. There is nothing near a consensus about the meaning of inheritance, and is
usually impossible to map type hierarchies written in an object-oriented language into a different
language.

One of the sources of such diversity is the choice between multiple and single inheritance. In a
hierarchy with multiple inheritance, a type can inherit properties from many different supertypes,
while in a single hierarchy every type has at most one parent. Although single inheritance puts an
artificial constrain in a type hierarchy, it is sometimes preferred because it avoids many conceptual
difficulties posed by multiple inheritance, and also allows more efficient implementations.

Another reason for the diversity of inheritance concepts are the different degrees of compatibility
between parents and children that a hierarchy may impose. Wegner & Zdonick [2] classifies the
following compatibility levels, in order of increasing congruence: - : .

cancel compatibility: A child has no commitment with its parents’ definitions, and is able to
redefine or even eliminate any inherited operation.

name compatibility: A child must have at least all operations defined for its parents, or opera-
tions with the same names. Apart the names, there is no other commitment between those
operations.

*on leave at the University of Waterloo (from Mar, 91 to Feb, 92).



signature compatibility: A child must have at least all operations defined for its parents, and
each child operation must have a type compatible with the type specified by the parent.

behavior compatibility: A child must have at least all operations defined for its parents, and
the operations must have compatible behaviors.

Of course, the third criterion needs a concept of type, and it only can be applied in typed lan-
guages, while the forth criterion needs a clear definition of behavior in order to define “compatible
behaviors”.

In this paper, we present a formal definition for behavior compatibility, in the framework of VDM
specifications [3]. We propose an extension to the specification language that allows inheritance-
of specifications, and we prove that, in our system, every type is behavior compatible with its
parents, in the sense that it is a valid representation for them. Using this language, we specify
a hierarchy of collections, inspired by the hierarchy Collection of the Smalltalk language [4]. We
argue that behavior compatibility can be a powerful (and rigorous) mechanism to structure types.
Also we show that, with proper design, behavior compatibility can be very flexible, and even allows
cancellation of inherited operations.

The rest of the paper is organized as follows. The next section presents our extensions of
VDM to support inheritance of specifications, and proves a lemma that relates it with behavior
compatibility. Section 3 describes the collection classes in Smalltalk, and discusses some issues
related with their formalization. In section 4 we show the formal specification for the hierarchy of
collections. Section 5 discusses some problems arisen by multiple inheritance. Finally, section 6
draws some conclusions.

2 Inheritance of Speciﬁcationé

In order to talk about behavior compatibility, we first need a clear concept of behavior. In this
work we adopt a formal specification of a type as the main description of its behavior. The
specification language we use is VDM, and we follow the specification method described in [3], with
some extensions to support inheritance of specifications!. In this context, we say that a type S is
behavior compatible with a type P if S is a valid representation of P.

In order to support inheritance, we adopted a more object-oriented syntax, that groups together
the type declaration and all its operations. So, instead of writing in the usual way:

P f1:T1

where

inv-P(mk-P(f1,...)) & invP

O (...)
ext extOy
pre preUy
post postO,

1The rationale for these extensions is presented in [5] and [6].



we are gbing to use the following notation:

Specification P
ST

mv-P & invP

Operation O; (...)
ext exiOy
pre preO;
post postO,

End P

The main extension to the language is a notation to declare a type as a heir of other types. We
do this in a way such that a heir is always behavior compatible with its parents. Suppose we have
the following specification:

Specification S
Subtype of Py
rename O}, as NO}, , 0}, as NOL,,...
redefine 0}(11, O,%d,;, e
Subtype of P,
rename 07, as NO2, , 02, as NOZ, ...

redefine Ofdl, OfdQ, e

;T

313

inv-S & nus
Operation 05 (...)
ext  extOf

pre preOf

post postO;
Operation 05 (...)
ext extO3

pre preO3
post postO3

End §

The above specification declares S as a subtype of P;; P;, in turn, is called a supertype of S. The
following rules give the meaning of the above specification:



1. The actual fields of S are the join of all the fields from Py, ..., and S. If fields from different
specifications have the same name and the same type (textually equal), then they are merged
in one field. If fields from different specifications have the same name but different types,
then there is an error condition (i.e. the meaning of the declaration is undefined).

2. The actual invariant of S is inv-P] A ... A invS. The definition of inv-P/ is as follows:
tnv-P{: S — B
inv-Pl(s) & inv-Pi(projp,(s))
where:
projp; : S — P;
projp,(mk-S(..., ff5,..)) & mk-Pi(f%,..)

that is, projp, is the orthogonal projection from S to P; (remember that, by rule 1, S has all
the fields from P;).

Notice that we use invS (without an hyphen) to denote the textual invariant, as written in
the specification, while inv-S denotes the final logical function that results from the above
operation. The same distinction applies to pre- and post-conditions.

3
between them is that the latter applies to S, and so it must “throw off” some fields. Notice

that invS can refer to the fields inherited from other specifications.

It is easy to verify that inv-P; and inv-P! can be textually identical; the only difference

3. The operations of P; are inserted into S in the following way: first, the operations Olnysem
are renamed as NO}, ,.... Then, from this set, the operations 0}, - - are removed. The re-
maining operations are included in § with unmodified external lists, pre- and post-conditions.
If operations inherited from different parents have the same name and the same definition
(textually equal), then they are merged. If operations from different parents have the same

name but different definitions, then there is an error condition.

4. For each operation in the redefinition list (i.e., each O;'d],) there must be an operation O
with the same name and same parameter list; this operation redefines Ojdj (each declaration

0} can redefine more than one inherited operation). Suppose that an operation O; redefines
the operations Oy, Of,,... , inherited from the specifications Py, Py, ... . Then, its actual
specification is a combination of its textual specification and the specifications of all O,
according to the following rules:

(a) The external list of Of is the join of its textual external list (ez¢tOf) with the external
lists of Of,. The list eztOf can not include fields inherited from any specification Py;.
Intuitively, this is justified by the fact that an operation must have a behavior compatible
with the operations it redefines. If the inherited definition asserts that some fields are
not modified (by their absence in the external list), the new operation must keep this
assertion.

(b) The actual pre-condition of Of is
preOf V pre-O} V...
Again, we have that
pre-O,’c', :S—-B
pre-O,'c',(‘s) A pre-Oki(projp,i(s))



where Py, is the specification from where Oy, is inherited.
We assume that when an operation is a redefinition, then the absence of an explicit
pre-condition stands for false, instead of the usual true, so that the actual pre-condition
simplifies to the conjunction of the inherited conditions.
(c¢) The post-condition of Of is
postOf A (pre-Of = post-Op JA ...
As expected, the definition of posi- O,’Ci is as follows:
post-Op : SX5—B
post-Oii(?,s) AN post~0ki(pmjp,‘("§'),projpli(s))

* Notice that, to avoid inconsistencies between postOf and the inherited behavior we need
the condition over external lists (rule 4a). Otherwise, the implicit requirement about
unchanged variables could be contradicted by postO3.

The other operations of S, which are not redefining any inherited operation, are left un-
changed. '

5. All opéra,tions in S must falfill the satisfiability proof obligation. This must be checked even
for the inherited operations, because the new invariant can nullify this property.

Now, we can state the important property of the above definition.

Lemma: Apart from renames, a subtype S of a type P is a valid representation for the type P,
that is, it satisfies the following properties:

1. there is a retrieve function from S to P,
2. 5 has all operations that P has, and

3. the operations in S model the correspondent operations in P.
Proof:

1. The obvious choice for a retrieve function from S to P is the orthogonal projection function
projp. This function is total, as by rule 2 we can deduce that, for all s € §, inv-5(s) +
inv-P(projp(s)). ’ ' :

A subtle point here is the adequacy criterion®. Technically, our retrieve function can be not
onto, because the invariant of S can put stronger restrictions over the fields of P. This fact
corresponds to situations where a type has a level of indeterminacy that is reduced by a
subtype. In a typical hierarchy this is very common, as many specifications are declared as
generalizations of existing types, with a high degree of indeterminacy®. So, in our framework

. it is not worth pursuing adequacy. Instead, we will use the more general proof rules for
operation modeling, that relies on a relation between abstraction and representation. The
obvious choice for such relation is:

relp: Px S — B

relp(p,s) & p = projp(s)

2This criterion states that a representation function must be onto, i.e., for each P value there must be at least
one S value representing it.
3 A good example is the type Collection, the root of the hierarchy presented in the next section.



from relp(‘p, 5) A pre-Op('p) A post-Os('s , )

1 projp(s) € P total-projp
2 relp(projp(s), s) relp-defn(A-E(h))

3 oo A (pre-Op(F) = post-Op(s,8))A ... post-Og-defn( A-E(h))
4 P = projp(F) relp-defn(A-E(h))
5 pre-Op(projp(s)) A-E(h),4
6 pre-05(737) _ pre-Op-defn(5)
7 post-05('s, s) = -E(A-E(3),6)
8 post-Op(projp('s), projp(s)) post-Op-defn(7)
9 post-Op(‘p, projp(s)) A relp(projp(s), s) - ANI(8,2)4
infer Ap € P - post-Op('p, p) A relp(p, s) 3-1(1,9)

Figure 1: proof of the result rule

2. The operations of P that do not appear in the redefinition list are straightly included in S
(rule 3); the operations in the redefinition list are explicitly declared in S (rule 4).

3. The operations of P that do not appear in the redefinition list are textually identical in S
and P, and so are valid models. Let us see the redefined operations. Suppose the operation
Os tedefines an operation Op. The general proof obligations for operation modeling are:

o Vs€ S,p € P-relp(p,s) A pre-Op(p) = pre-Os(s)

e V5,5€8,peP-
relp(‘p, 5 ) Apre-Op(‘p ) Apost-Os('s,s) = Ip € P-post-Op(‘p , p)Arelp(p, )

The first proof obligation is trivial, if we remember that the retrieve function is the orthogonal
projection and that pre-Og has the form ...V pre-Op V ... (rule 4). A proof of the second
one is presented in figure 1. '

This lemma assures that a subtype, in our specification language, is always behavior compatible
with its supertypes. More specifically, we have a “is-a” relationship between them. Every object
of a given type (that is, that satisfies a given specification) also belongs to all supertypes of that
type.

It is important to note the difference between a subtype and an implementation. In the definition
of subtypes we said nothing about initial states. The lemma tells us about the behavior of existing
objects, but not about the creation of objects. In the specification of a subtype, one can stretch
the invariant, narrowing the range of initial states. For instance, one can define a subtype Square
of a type Rectangle, stating in the invariant the equality of width and height. On the other hand,
it is obvious that Square is not a good implementation for generic rectangles.

However, it is not possible to build subtypes in unrestricted ways: the ultimate restriction for
the range of admissible subtypes is posed by rule 5. It is not possible to stretch a post-condition
more than allowed by the satisfiability criterion. Moreover, one can not put a new invariant that
conflicts with the inherited post-conditions. So, the limits to modify a type are given not only by
its model, but also by its operations. As an example, we can return to the type Rectangle. If the



Collection
Bag
IndezedCollection
FizedSizeCollection
Array
ByteArray
Interval
String
Symbol
OrderedCollection
SortedCollection
Set
Dictionary
IdentityDictionary

Figure 2: The Smalltalk hierarchy of collections

type is immutable, then a subtype Square only restricts the range of initial states, and is correct.
However, if Rectangle has an operation like SET. WIDTH, that changes the width for an arbitrary
value and does not modify the height, than this operation would be unsatisfiable under the Square
invariant. In that case, Square would not be a valid subtype of Rectangle.

3 Smalltalk Hierarchy x Formal Hierarchy

The Smalltalk library is organized as a hierarchy of classes, rooted in the class Object. All classes
representing collections of objects, like sets and bags, are united in a subtree under the class
Collection. :

Before going on, it is important to notice that Smalltalk implements what we call inheritance of
implementations. This means that the inheritance mechanism has no relationship with a concept of
subtype or with the polymorphism of the language; instead, it is solely a mechanism for code reuse.
As a consequence, Smalltalk presents only name compatibility between subclasses; moreover, as an
operation can be redefined to rise an error if called, the language actually allows cancel compatibility.
Implementation aspects, together with the restriction of single inheritance, guides the organization
of the Smalltalk library hierarchy. The position of a class inside the hjerarchy is mainly dictated
by where it can reuse more code.

On the other hand, the formal hierarchy we are going to present is based on inheritance of spec-
ifications, that is, behavior compatibility. Moreover, our formal system allows multiple inheritance.
So, it is expected that we have to modify the original hierarchy to fit the formal specification.
Nevertheless, the final hierarchy encompasses all interesting classes under a root Collection, and it
is rather similar to the Smalltalk structure.

The primary members of the Collection class hierarchy in Smalltalk? are shown in figure 2.
The Collection class defines the basic functionality for all collections. Bag, Set, and Array have
the expected meanings. IndezedCollection introduces operations for indexing elements by their
positions inside the collection, and so introduces an order among the elements. FizedSizeCollection -
comprises the collections that have their size specified at creation time, while an OrderedCollection

*We are following the library presented in [7).



allows insertion of elements at both ends, growing as needed. The classes ByteArray, String, and
Symbol are all special implementations for arrays, optimized to handle integers and characters;
from a specification point of view they are similar to Array, and so we will not consider them here.
Class Interval implements immutable sequence of integers in arithmetic progression. Dictionary
corresponds to generic symbol tables, while IdentityDictionary differs from its parent only in the
way it does key comparison, and will not be considered here, either.

In order to match the Collection tree with a formal hierarchy, and also to make use of multiple
inheritance, we made the following modifications. First, as already explained, we removed the
classes ByteArray, String, Symbol, and IdentityDictionary. On the other hand, we introduced the
types Stack, Queue and DoubleQueue, mainly because we think no paper about abstract data types
is complete without a stack®.

The operation to remove a generic element poses some difficulties. Not all collections allow the
deletion of a generic element: for instance, in a stack one can only remove the element at the top.
We solved this point with multiple inheritance. We declared the remove operation in a subtype
of Collection, called RemovableCollection. Any type that needs the operation can inherit it, while
keeping all other parents. .

The other changes were all in the IndezedCollection subtree. From a behavior perspective,
many ordered collections are not compatible with an indexing specification. For instance, a sorted
collection does not have an operation to put an arbitrary element in an fixed position — Smalltalk
uses cancel compatibility to achieve that. Stacks and queues do not allow access to arbitrary
elements, either. So, we declared SortedCollection as a sibling of IndezedCollection, and created
a new type above them. As this new type encompasses all kinds of collections with an internal
order, we took the name OrderedCollection for it, renaming the old OrderedCollection as List in
our hierarchy. Finally, we took advantage of multiple inheritance to put FizedSizeCollection as a
direct child of Collection; making it a sibling of OrderedCollection. Then, an array can be declared
as an indexed collection with a fixed size, inheriting both behaviors. '

4 The Specification of The Collection Hierarchy

In this section we present a formal specification for a hierarchy of collections, using the method

presented in section 2.
The root of the hierarchy is the type Collection (figure 3). That specification uses two auxiliary

functions:
mpe (T 2 Ny) x T — N

mpc(m,e) 2 if e € domm then m(e) else 0

bag-size : T —+ N3 —» N
bag-size(m) A > m(i)

iedomm

Both operate over bags, implemented as a map that gives, for each element in the bag, its number
of occurrences. mipc gives the number of occurrences of a given element inside a bag, and bag-size
returns the total number of elements in a bag.

The basic structure of a collection is a bag, stored in the field contents. Other options would be
a set or a sequence. A set would not allow us to define a generic INSERT operation, as one would

51t is amazing that the Smalltalk library does not include a class Stack. Maybe more amazing is the fact that it
does not need stacks.



Specification - Collection.
contents: T = Ny
‘mazSize: N
Operation INSERT (e: T)
ext  wr contents: T — Ny
rd mazSize: N
pre bag-size(conients) < mazSize

post e € dom contents A mpc(contents, e) > mpc(contents, e) A
(Ve € T-z # e = (mpc(contents,z) = mpc(conlents, z)))

Operation CONTAINS (e: T) b:B

ext rd contents: T — Ny

post b = (e € dom contents)
Operation IS-EMPTY () b:B

ext rd contents: T —» Ny

post b = (bag-size( contents) = 0)

Operation GET_-ELEMENT () e: T

ext rd contents: T 2 Ny

pre bag-size(contents) > 0

post e € dom contents

Operation SIZE () s:N

ext rd contents: T —» Ny

post s = bag-size(contents)
End Collection

Figure 3: Collection



Specification RemovableCollection
Subtype of Collection

Operation REMOVE (e: T)
ext - wr contents: T —» Ny
pre mpc(contents,e) > 0

post (Vo € T -z # e = (mpc(contents,z) = mpc(contents,z})) A
_ mpc(contents, e) = mpc(contents, e) — 1
End RemovableCollection

Figure 4: RemovableCollection

be able to deduce that the size of a collection does not change after the insertion of an already
present element, an obviously false statement for generic collections. A sequence would be too
biased for non-ordered collections, like sets. The other field of the type Collection is its maximum
size.

Notice that, although we define a maximum size, we do not set an invariant to assure it.
The check is made only in the pre-condition of the insertion operation. In this way, we can define
unbounded collections just weakening this pre-condition to true. We do not do that in this hierarchy,
because ultimately all real collections are bounded, and any program that uses a collection must
be able to treat an overflow in a sensible way.

From the operations of Collection, the only one a little more complex is INSERT We must
make sure that its specification is flexible enough to allow redefinitions for all kinds of collections,
but at the same time captures all the commonality of insert operations. The pre-condition only
checks the available space. The post-condition has three terms: the first one asserts the presence
of the inserted element in the final collection; the second asserts that the number of such elements
does not decrease; and the third part assures that the operation does not affect other elements.

Not all collections support a generic remove operation, that is, one that can remove an arbi-
trary element. So we define this operation in a separate type, called RemovableCollection (fig-
ure 4). RemovableCollection inherits all operations frem the basic collection, and adds the oper-
ation REMOVE. The pre-condition asserts the presence of the element to be removed, and the
post-condition states that the number of such elements is decremented by 1 after the operation.

Both Collection and RemovableCollection are examples of what is called an abstract class in the
Smalltalk terminology. They are not intended to have implementations, but rather to be used as
supertypes for other types. Using them we can define the first two concrete classes of our hierarchy:
Set and Bag (figure 5). Both are subtypes of RemovableCollection, as they allow the deletion of
any contained element. For the type Set, the only modification is a stronger invariant, disallowing
repetitions. For bags, the invariant is correct, but we must redefine the operation INSERT to make
sure it always inserts one and only one element. Notice that the redefinition only specifies this new
property, that is joined with the inherited properties according to the rules of section 2.

Our next specification is another abstract class, that encompasses all collections with an internal -
order for its elements (figure 6). To keep track of this order, we use a sequence, called order; the
invariant assures the sequence and the bag (contents) have the same elements. The auxiliary
function seg-count counts the number of occurrences of a given element inside a sequence.

10 -



Specification Set

Subtype of RemovableCollection

inv-Set 2 Vo € dom contents - contents(z) = 1
End Set

Specification Bag
Subtype of RemovableCollection
redefine INSERT
Operation INSERT (e: T)
post mpc(contents, e) = mpc(contents, e) + 1
End Bag '

Figure 5: Sets and Bags

Specification OrderedCollection
Subtype of Collection
rename GET-ELEMENT as GET.FIRST
redefine GET-FIRST,INSERT

order: T*
inv-OrderedCollection 2 Yz € T - seq-count(order,z) = mpc(contents, z)
Operation GET_FIRST () e: T

ext rd order: T*
post & = hd order

Operation INSERT (e: T)
ext wr order: T*

pre false

post true

End OrderedCollection

Figure 6: OrderedCollection

11



Specification Stack
Subtype of OrderedCollection
rename GET_FIRST as TOP,INSERT as PUSH
redefine PUSH

Operation PUSH (e: T)
post order = [e] " order

Operation POP () e: T
ext wr order: T*

wr contents: T = Ny
pre lenorder > 0

PSS

post order = tlorder A e = hd order
End Stack

Figure 7: Stack

seq-count : T* X T' — N

seg-count(s,z) A if s =[] then O else
if 2 = hd s then seg-count(tls,z) -+ 1 else seg-count(tls, z)

There is a little trick in the redefinition of INSERT. To keep the invariant, INSERT must
modify the field order according to contents. But where to put the new element depends on the
kind of collection. A stack may need to insert the new element at the beginning of the sequence,
while a queue would insert at the end. So, the redefinition of INSERT declares order in its external
list to allow the maintenance of the invariant, but does not strengthen the post-condition; this is
left for the subtypes. The redefinition of GET-ELEMENT to GET-FIRST is done because the
latter seems to be more useful (but not available in unordered collections).

The simplest subtypes of OrderedCollection are Stack (figure 7) and Queue (figure 8). Each
one redefines INSERT in order to specify the position of the inserted element, at the beginning
(Stacks) or at the end (Queues) of the sequence. Also, each one specifies a particular operation to
remove elements (POP and REMOVE). As they do not allow the deletion of a generic element,
they can not inherit this operation from RemovableCollection.

Using stacks and queues, it is trivial to declare a double queue (figure 9). We only need to add
one new operation, to remove elements from the end. Notice the use of the redefinition and rename
facilities to join two inherited operations (POP and REMOVE) into one (REMOVE_FIRST).

Another useful subtype of OrderedCollection is SortedCollection (figure 10). For this type we
assume that the basic type T has a total order, given by the infix function “<7”. The specification
joins the basic properties from OrderedCollection with other properties from Bag, adding an in-
variant stating that the elements inside order must be sorted. From Bag comes the restriction that
INSERT adds only one element to the collection. This property and the invariant are enough to
completely specify the insertion; the redefinition is used again only to join both definitions (in this
case we have not needed to rename them, as they already had the same name). SortedCollection
also has a REMOVE operation, inherited from Bag. The redeclaration allows the operation to
modify the field order. Again, the invariant is enough to ensure that this field is modified in the

12



Specification Queue
Subtype of OrderedCollection
redefine INSERT

Operation INSERT (e: T)
post order = order " [e]
Operation REMOVE_FIRST () e: T
ext - wr order: T*
wi contents: T — Ny
pre len order > 0
post order = tl order A e = hd order
End Queue

Figure 8: Queue

Specification DoubleQueue
Subtype of Queue
rename INSERT as INSERT-LAST
redefine REMOVE_FIRST
Subtype of Stack
rename PUSH as INSERT-FIRST, POP as REMOVE_FIRST
redefine REMOVE_FIRST

Operation REMOVE_FIRST () e: T
pre false
post true

Operation REMOVE_LAST () e: T

ext wr contents: T —+ N
wr order: T*
pre lenorder > 0

post order = order ™ [e]
End DoubleQueue

Figure 9: DoubleQueue

13



Specification SortedCollection
Subtype of OrderedCollection
redefine INSERT
Subtype of Bag
redefine INSERT , REMOVE

inv-SortedCollection 2 Vi,j € indsorder-i <j = c(i) <r c(j)
Operation INSERT (e: T)

pre false
. post true

Operation REMOVE (e: T)
ext wr order: T*

pre false

post true

End SortedCollection

Figure 10: SortedCollection

proper way.

Tndexed collections are specified at figure 11. The main operations are AT, to access an element
- by its index (i.e., its position within the sequence), and PUT, to modify the element at a given
position. Both operations check at the pre-condition that the index is inside the bounds of the
sequence. The post-condition of PUT must assure that only the specified position is modified,
without disturbing the other elements in the sequence.

A generic list structure can be defined only combining predefined behaviors — see figure 12.
Such structure supports insertion and deletion at both ends (from type DoubleQueue), general
indexing facilities (from IndezedCollection), and a remove operation (from RemovableCollection).

In order to specify a common array, we need a trick. At a first glance, arrays could not be
a subtype of collection, because there is no way to insert an element into an array, but only to
change elements: an array does not have “empty slots”. However, we can disallow the INSERT
operation and still keep behavior compatibility with collections. This is done in the specification
FizedSizeCollection (figure 13), simply stating in the invariant that such collections are always full,
and so the pre-condition for an insertion can never be satisfied! Now, an array is just an indexed
collection with a fixed size, and its specification is shown in figure 14. Notice that a type invariant
must be true at the initial state of an object, but our specification does not define how to achieve
this (and does not need to). A typical implementation may fill new arrays with an invalid or neutral
initial value.

The specification for intervals is shown in figure 15. As a subtype of FizedSizeCollection, it
has an invalid INSERT operation. The invariant states that the sequence must be an arithmetic
progression. The type T must be N, Z or R, but our language does not have a notation for this
restriction. This specification describes a very unusual kind of collection, and it is defined here only
because it is present in the Smalltalk hierarchy.

Our last specification is a dictionary, or a symbol-table (figure 16). Following the Smalltalk
hierarchy, we declared it as a subtype of Set. The key to keep a compatible behavior is to identify
the set with the keys in the dictionary. We rename most operations to reflect this concept. The
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Specification IndezedCollection

Subtype of OrderedCollection

Operation AT (i:N) e: T

‘ext rd order: T*

pre ¢ € inds order

post e = order(i)

Operation PUT (i:N,e: T)

ext wr order: T*

wr contents: T = Nj

pre i € inds order

‘post len order = len order A order(i) = e AVj € indsorder - j # i = order(j) = ,O_TEC—?(])
End IndezedCollection :

Figure 11: IndexedCollection

Specification List
Subtype of DoubleQueue
Subtype of IndezedCollection
Subtype of RemovableCollection

End List-
Figure 12: List

Specification FizedSizeCollection
Subtype of Collection

inv-FizedSizeCollection 2 bag-size(contents) = mazSize
End FizedSizeCollection

Figure 13: FixedSizeCollection
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Specification Array
Subtype of FizedSizeCollection
Subtype of IndezedCollection

End Array

Figure 14: Array

Specification Interval
Subtype of FizedSizeCollection
Subtype of OrderedCollection

inv-Interval 2 3Ja,r € R-Vi € indsorder - order(i)=i*r+a
Operation AT (i:N)e: T
ext rd order: T*
pre 1 € inds order
post e = order(1)
End Interval

Figure 15: Interval
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Specification Dictionary
Subtype of Set
rename INSERT as INSERT-KEY , CONTAINS as CONTAINS.KEY
redefine INSERT-KEY , REMOVE
values: T =5 V
inv-Dictionary 2 dom values = dom contents
Operation INSERT_KEY (e:T)
ext wroalues: T 25V
pre false
post true
Operation REMOVE (e: T)
ext wrvalues: T =5 V
pre false
post true
Operation SET_VALUE (e: T,v: V)
ext wr contents: T —» N,
wr values: T = V
rd maxSize: N _
pre bag-size(contents) < mazSize V e € dom contents

post values = values | {e — v}

Operation GET_VALUE (e:T) v: V
ext rd values: T 2> V
pre e € dom values
post v = values(e)
End Dictionary

Figure 16: Dictionary
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new field, values, tracks the relationship between keys and values, and the invariant assures our
identification between sets and keys. Notice that we could get a much simpler specification using
only the field value, without any inheritance, but the point here is to show that a dictionary can
be (formally) defined as a subtype of sets, according to the Smalltalk hierarchy.

5 Some Difficulties with Multiple Inheritance

Whenever a system allows multiple inheritance, it arises the possibility of different kinds of conflicts
among the heritage. Object Oriented programming languages have introduced many mechanisms
to cope with these conflicts, ranging from single inheritance (e.g. Smalltalk [4]) to some scheme of
priorities (e.g. Common Lisp [8]) to facilities for renaming and redefining (Eiffel [9]). Obviously,
single inheritance is not a solution to multiple inheritance. The scheme of priorities adopted by
some languages can lead to unexpected results in more intricate hierarchies. Moreover, although
some systems allow some form of control over the solution (for instance, by means of changing
the order of the subtype declarations), such control is very restricted. So we have adopted here
a solution based on explicit statements to avoid conflicts, the renames and redefines declarations.
Nevertheless, it is important to keep in mind the drawbacks of those solutions.

Redefinition is a very powerful mechanism to enhance the flexibility of inheritance, even in a
system with single inheritance. In our system, the semantics of redefinitions is given in such a
way that subtypes are always consistent with their parents. But we still can have some problems.
Suppose we try to define a new specification, which is a subtype of both Stack and Queue (pages 12
and 13). This will lead us to an unfeasible specification, as the post-conditions from both INSERT
operations are incompatible. The strange thing is that these operations were originally the same,
the INSERT operation from type Collection, that being inherited through two different pathes

became incompatible.

The mechanism for renaming has more problems. The main use for renaming is to avoid name
clashes between operations inherited from different parents. This is a very important facility in
order to be able to join specifications written by different groups. However, the facility is not
compatible with the notion of subtyping (remember that in the lemma of section 2 we did not
consider renamings). A partial solution, adopted by the programming language Eiffel, is to keep
track of the renames when viewing a type as a supertype. For example, if a variable of type
Collection contains a Stack, when we refer to the operation INSERT the system automatically
translate it to a reference to the operation PUSH. However, such solution does not work sometimes.
Referring again to the above example, if the variable contains a DoubleQueue, the same reference to
the operation INSERT can be translated to INSERT.FIRST or INSERT-LAST, giving different
results.

6 Conclusions

We have presented a formal definition for behavior compatibility. We have extended the VDM
notation to support inheritance of specifications, in a way that an heir is always behavior compatible
with its ancestors. Based on this extension, we have built a hierarchy of collections, resembling
the tree of collection classes in the Smalltalk library. Our hierarchy uses multiple inheritance, and
follows a strict “is-a” discipline: an implementation always satisfies the formal specifications of all
supertypes of its basic type.

We argue that behavior compatibility is not too restrict, mainly when a language supports
separate hierarchies for types and implementations (like Duo-Talk [10] and O=M {11]). In the
implementation tree, parents can be chosen according to a criterion of code reuse. On the other
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hand, the specification hierarchy must be based strictly in behavior considerations; this gives an
objective criterion to organize the hierarchy and permits the use of formal methods for reasoning
about programs with inheritance.

A key point in our method is the use of a specification language that supports indeterminacy,
like VDM. This feature allows definitions of very general types-in the first levels of a hierarchy;
these types specify only what is known or needed at that level. Then subtypes can be defined
narrowing the range of indeterminacy of the inherited behavior, while adding new behaviors (in the
form of new fields and new operations). As we have shown in the collection example, this method
presents great flexibility, and in some cases a proper design can even cancel inherited operations.
Moreover, the method allows reuse of specifications, as shown in the definitions of Array and List
— both types only combine inherited specifications to define their behavior.

A point we have neglected in our work is iteration. Collections in Smalltalk offer a variety of
methods to-iterate over their elements. However, all those methods are based on block parameters,
i.e., the iterator method receives as a parameter the operation to be performed over the elements
of the collection. Qur specification language does not support this kind of second order functions,
and so we have not included those operations in the formal specifications. In [5] we propose the
use of iterator objects® to cope with iterations without needing second order facilities, and we also
show how to include such mechanisms in a formal specification for ordered collections.
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