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Abstract

This report describes a new parallel solver for linear systems of equations arising from the discretization
of certain elliptic partial differential equations. A domain decomposition procedure is generated making
use of the statistical solution of partial differential equations. The new solver is very well suited for
implementation on a loosely coupled parallel environment. An implementation and an analysis of the
algorithm proposed are described for the case a conjugate gradient solver is used on the subproblems.
- Numerical results confirm effectiveness of the procedure.

Keywords: domain decomposition methods, monte carlo solution of partial differential equations,
parallel solution of linear systems of equations, parallel conjugate gradient method.

Resumo Este relatério descreve um novo resolutor paralelizavel para sistemas de equagdes lineares ori-
undos da discretizagdo de certas equagdes diferenciais parciais eliticas. Um procedimento de decomposi¢io
de dominios é gerado a partir de uma estratégia estatistica de solugao local de equagdes diferenciais par-
ciais. O novo resolutor é bastante adequado para ambientes computacionais com paralelismo fracamente
acoplado. Implementagao e analise do algoritmo sdo apresentados para um caso em que um resolutor por
gradientes conjugados ¢ utilizado nos subproblemas.

Palavras-chave: métodos de decomposi¢ao de dominios, solugio por monte carlo de equac¢des difer-
enciais parciais, resolugao paralela de sistemnas de equagdes lineares, gradientes conjugados paralelos



1 Introduction

The interest in efficiently solving large scale sparse systems has led to many strategies, from iterative
methods such as Gauss-Jacobi, Gauss-Seidel, SOR, steepest descent, multigrid and conjugate gradient to
* direct ones like gaussian elimination, Crout-Banachiewicz LU decomposition or conjugate gradient (see ,e.g.,
[7I[LI5][4)). |
The main problem is to solve '
Hz=b, z,beRV | (1)

and H is an N x N positive definite matrix, in a convenient way for the specific application.

Conjugate gradient (CG) methods (see,e.g., [2] for a review) are an efficient tool for iterative solution of
large sparse sets of linear systems of equatjons since successive estimates of the solution vector are generated,
with non-decreasing number of significant digits at each step, in the absence of rounding errors.

Preconditioning is frequently a means of accelerating the cg method, causing a reduction in the number
of iterations performed, although the cost per iterative step is increased. Many preconditioning strategies
_ are available, including, e.g., incomplete factorization, polynomial [3].

Multigrid (mg) [13][10] methods form iterative procedures which are being widely used and exhibit
asymptotic convergence rates very convenient for large systems, although with higher costs per iteration.

The possibility of effectively using parallel architectures led to an increase in the search for efficient algo-
rithms. Some old algorithms were modified to the new environments, while parallelism-oriented algorithms .
are also being developed. Domain decomposition methods recently developed make use of such a concept,
being well suited for parallel computing.

Recalling that direct methods are not, in general, adequate for parallelization, one is left with the
iterative procedures, to try the real jump towards efficiency in parallel environments. Methods of mg type
are parallelizable in the interpolating and in the restriction operator implementations, although complete
parallelism between different level operations is not achievable. This is due to the need of one level’s result
in order to carry out the next level’s calculations. ‘Moreover, cg methods also present difficulties, since its
only improvement is achieved by parallelization of matrix-vector multiplications, that causes an increase in
message passings!, unless the configuration allows sharing of data (that is, strongly coupled multiprocessor
systems). ' ‘

Some successfull iniciatives were employed in preconditioning, that is, some pcg methods have shown to
be very adequate for parallel computation (see, e.g. [9],[8]), specially in strongly coupled environments.

The domain decomposition conjugate gradient (ddcg) method thus presented is a strategy which builds
an effective parallelization of any linear systems’ solver (here, cg method), once it is combined with a
statystical method in some subregions of the original computational domain, 2. The strategy then makes
use of a class of methods that allows the determination of local solutions of the boundary value problem
(bvp) independently from the other points. Additionally, this statystical method is intrinsically very well
suited for implementation on a distributed memory parallel computer, since communications between pairs
of processors are not so frequent relative to the amount of local computations.

This report is organized as follows: the new algorithm is presented for elliptic problems decomposed in
subregions. Next, a minimization procedure is used in the smaller problems. Then, a code is shown that
illustrates the main features of the new procedure when applied to a simple model problem. Moreover, two
approaches, the discrete and the continuous one, are introduced and analysed.

1Vectorization is naturally usable to fasten matrix-vector and vector-vector operations, accelerating cg procedures, but is
not the tool this report mairly intends to focus on.




2 Conjugate gradient and domain decomposition

2.1 Some aspects of the conjugate gradient method

_The conjugate gradient method [17] was proposed as a means to solve a minimization (or maximization)
problem for quadratic functionals of the form 2

f(z) = %a:‘Ha: - bz +e, : (2)

where H is positive (or negative) definite.

In the usual notation the gradient and the Hessian of f(m) are easily found to be g(z) = Hz — b and
H(z) = H, respectively. Thus, such quadratic functionals have constant Hessian.

A point # is a stationary point of f if the gradient vanishes at £, that is, if H2 ~b = 0. If H is
non-singular, & is uniquely determined by £ = H~b.

The method of steepest descent(sd), which brings the basic concepts to cg works through a sequence of
. iterative descent steps. The aim at each is to minimize the value of f(x) on the direction —Vf (the search
direction).

The algorithm cg is an extension of sd, and considers the possibility of combining the usual search
direction of SD with the value at the prev1ous step. Further details about cg methods can be found in
(17),[4]. .

In order to obtain a solution with the required accuracy, iterations of the type below are performed
Namely,

procedure conjugate gradient(cg) ‘
For k£ =0,1,... and z° chosen, set ¢° = Hz° - b, d° = —g° and
Tk = dk';f:k
gkl = gk 4 1 dF
g5t = gk 4 r HdF

k+1  k+1
B = g
dk+l = _gk+1 + ,Bkdk
End_For

End of cg.

Some remarks are necessary in order to highlight the importance of cg methods. The most valuable
properties found in these methods are the orthogonalities of two sets of vectors generated, namely g's and
d's, the first in euclidean and the second in energy norms. Moreover, it can be shown ({4]-App.A) that, for
any € > 0, if p(¢) is defined to be the smallest integer k such that

llz* — &l|ar < ellz® — 2|ln vz® € RV | (3)

O < G /KEImG) +1 @

where K (H) is the condition number i\xf for matrix H.

then

3For clarity one may ommit the symbol of transposition where no coafusion is possible



That is, cg method presents the finite termination property, in the absence of rounding errors, but
perhaps more importantly, low cost per iteration and strong dependence on initial estimate z°.
The low cost of each iteration is evident in the algorithm, where only one matrix-vector multiplication is
found inside the loop. The dependence on first estimate for z becomes particularly important in case K(H)
is not small. v

Asymptotic estimates for convergence rates are an important tool in the analysis of algorithms, and mg .
methods beat cg at this point. But the presence of so many desirable properties in cg methods explain the
continued interest in developing enhancements for it(see,e.g., [5]). As the convergence rate is not optimal
like in mg, some efforts are oriented towards reduction of K(H), via optimized numbering of discrete -
variables and the development of efficient preconditioners. Here it is claimed that domain decomposition is
an extremely convenient framework for the maintenance of cg methods as one of the most efficient tools in
the solution of discrete systems arising from a wide variety of partial differential equations, specially with
adequate use of vector and parallel processing.

]
2.2 The ddcg strategy
2.2.1 A simple model problem and discrete random walks

When the solution of a pde is required in few points of the domain, monte carlo methods can be employed
successfully. Here a small review of this concept is presented (for further details see,e.g. [16][12]) to set
notation and terminology.

Consider Laplace’s equation inside £ (unit square) with Dirichlet boundary data. That is

V=0, in Q : (5)
and
u=g(x),x€ 0. (6)
Noting that the simple five point discretization of the laplacian leads to
» Ui = % - (ig1,; + wicyj + uijp1 + uij—i) (§,5) an interior point
%i; = gij, gi; the solution at a boundary point (i,j), )

one can perform an analogy with a random walk starting at (i, 7). In fact suppose an award is given (value
9i,;) each time the walk is to start (and instantaneously end) at a boundary point (3, J). Moreover, for any
interior point let the score be given by an average of the neighboring values, that is,

R(A) = 7[R(B) + R(C) + R(D) + R(E)), (8)

=

where A ,B,C,D and E stand for (4,),(¢,5 - 1), (4,5 + 1),(: — 1,7) and (i + 1,7), respectively.

If a random walk is then performed departing from an interior point (¢,7), its trajectory will reach * -
the boundary point p; after a “tour” inside . One must keep track of this, because many trials must be
performed to have a good description of the average reward obtained at (4,5). Once a large number of |
random walks have reached their final values at the boundary, each boundary point p; was the stopping
place of a fraction Pa(p;) of the number of random walks generated. The approximate solution u(A) is then
given by , '

u(A) = g1Pa(p1) + 92Pa(p2) + - - - + gNpq Pa(PNg) (9)

The analogy can be extended to more complicated equations, including variable coefficient, inhomoge-
neous and evolutive problems. Such discrete random walks work well although they implicitly carry the

4



limitation imposed by discretization errors. In principle this is a point of improvement, namely statistically

solving for the local value using only the original operator without the intervenience of discretization.
Consider the presence of mixed Dirichlet-Neumann boundary conditions, that is, on a fraction of the

boundary it occurs the derivative condition gﬁ = 0. To illustrate the procedure to handle this difficulty-

(since only Dirichlet points end random walks), consider 7 = £, leading to

1
Ui 77 (Wit vimyg + e+ 1) - (10)
(i1, = Yim14) = 0 at a boundary point (i,7) (11)

2-Az

“where u;;}_l,j would represent a walk out of 2. That is, to take the derivative condition into account at these
boundary points the probability distribution is modified to

1 : |
' wij = (2 e i+ ) (12)

A similar procedure is employed in the case of other pde’s with mixed boundary conditions.

The accuracy of results obtained through the montecarlo method is highly dependent of the goodness
of the random number génerator (rng) employed, since at every step of every walk choices are randomly
performed. Correlated trajectories are not desired, so a carefull choice of rng is necessary.

2.2.2 The algorithm ddcg

Consider the unity square Q with boundary 9Q. If a linear system corresponding to, say, Laplace’s equation

“is to be solved and a five or-nine-point- discretization is performed, one obtains eq. (1) as the usual penta
or heptadiagonal forms. The next step now would be to employ a solver such as cg, pcg, mg, or any other
from such families of methods (e.g. orthomin, orthores, fas, etc.).

The strategy followed here is to postpone the construction of the linear system until a convenient domain
decomposition has been performed. This is done through line drawings that generate n,q4 balanced-size
domains. A natural decomposition based on discontinuities of coefficients may occur, and this can be
considered in the future. ‘

Once each small subproblem has its boundary values specified, it may be solved in a way analogous
to the global problem. To achieve this, ddcg determines the values at subdomains’ boundaries through a
completely parallelizable strategy, that is, montecarlo solution of the global partial differential equation in
selected points of the original domain. - :

In all subproblems a minimization procedure as cg is now employed. After convergence is reached in all
linear systems these results are brought together to generate the solution of the global problem.

Summarizing, the strategy reads

procedure domain decomposition conjugate gradient(ddcg)
1. form Dirichlet boundary condition where Neumann b.c. provided
2. draw lines which form the subdomains ,
3. obtain values for interior points to define subdomains’ boundaries
4. build local matrices
5. find all subdomain solutions

. 6. compose global solution
end of ddcg



Some aspects must be mentioned. First, the macro description of ddcg above allows several combinations
of numerical methods, especially for steps 3. and 5. Moreover, step 1. will not be obtained through
conventional solvers, since it is of the same kind of step 3.(thus both are analyzed together). Additionally
step 2. can be executed sequentially, and does not lead to heavy computation, the same being valid for step
6.

In order to take complete advantage of ddcg’s structure, a parallel computational environment is manda-
tory, since steps 1. and 3. are performed via parallelizable monte carlo method. Moreover, steps 4. and 5.
form a sequence to a subdomain. As step 4.’s termination is necessary for the solution of the smaller linear
system to be started, its execution precedes that of step 5., but referring to each subproblem separately. As
each subdomain refers now to an autonomous Dirichlet problem, they can all be handled simultaneously.

2.2.3 Analysis of the discrete version of ddcg

Let a partitioning procedure be implemented through multiple line drawings inside 2. Notice that no
restriction is imposed for these lines such as “they may not cross in an interior point...” or similar. In fact
these lines pass by Nsq; points, where the points of JQ are also included. If n, vertical and n; horizontal
lines are drawn with equal spacing, one has

n,d. = (nu + ]_) . (nh + 1) . (13)

subdomains are formed. Moreover, if n; and n, grid points are present in the two directions of the discrete -

problem, approximately
np-(ng—2)+n,-(ny—2) . - (14)

* values have to be determined in order to start the nsy local processes.
Under the simplifying assumption that it is always true that %ﬁl ~ 1, and also n, =~ ny & 4/Nq one
obtains

nsa & (1 + n4)?, , - (15)
and the number of interior points which form subdomain’s boundaries becomes .
Nanj ~ 2. (nhz-—l— 1) v Ngq (16)

~ 2-(vV/ned - Vo) | (17)

provided that ngq is at least of order 10. '
Considering the above result, one is left with the estimate

2'1"\/12,d'NQ . . (18)
p

for the execution of step 3. of ddcg, once p processors are available and 7 is the mean time for one point’s
execution. ' :
But it is well known that the discrete random walker takes on the average O(n2) (that is O(Ngq)) choice
of direction before it leaves the domain. Moreover, to achieve a standard deviation of O(h?), where A is.
the grid spacing in a uniform grid ( A '= @5), O(nl) (or equivalently O(NQ)) trials are necessary (see

Feynman, vol.I,sec.41-4). Thus one clearly obtains that 7 corresponds to O(n8) local choices of direction
within random walks. That is, expected computing time in step 3. of ddcg, in units of comparisons becomes

1/2. 7/2 .
~2- .’ﬁaé__;y_‘l_ (19)



local “where to move this time” comparisons.

In order to handle step 5. of ddcg, one considers the usual cost estimate for cg method (cf. section 2.1).
This can provide an estimate for the subproblem j of same structure as the global problem. Namely, for a
certain eq; > 0, if p(eq,) is defined to be the smallest integer kg, such that

"xﬁj “'iﬂjanj < EHZ%J' - iﬂj”Hnj ’ Vxﬂ, € RQ_, ’ (20)

(69,) \/I((HQJ)I'IZ(———)-*- 1 (21)

J
where K (Hg;) is the condition number %1"—] for matrix Hgq;.

then

In this simple model problem the ratio between the larger and the smaller eigenvalues is & Ng;, provided
that the mesh is not strongly asymetric. Consequently one has the bound

plea;) < g—[ln(%)]-Néj-l-l B (22)
= By 2y, [Ne | |
= GGl 30 41 (23)

for each subproblem. That implies a maximum global cost roughly given by

Ngd - P(fn,)<5 2 [in (—)] ‘/: (24)

But each cg iteration requires one matrix-vector and a vector-vector products, with 6- - N, floating point
operations. One finally gets as bound for step 5. (in units of multiplications):

a6 N, 29 < AL 2/ (25)

That is, considering the presence of p processors, and collecting these results concernmg steps3 and 5.
of ddcg, the total cost reads

7/2 3
2. \/7_";— +:3(€)\/h_3;Ng . (26)

elementary (comparison or multiplication) operatlons per processor.

The ddcg strategy can be conveniently implemented in any parallel configuration, but seems to be
especially well suited for hybrid configurations which provide numerous weakly coupled processors to handle
step3, and fewer more powerfull processors for step5. At first sight the cost seems to be prohibitive, but the
improvement given by the continuous random walker will decrease such estimate.

2.2.4 Continuous random walks and ddcg

Now a different strategy is developed. It does not require carrying the truncation error of the discrete
random walks. In this section the solution of a class of equations, namely the elliptic ones with constant
coefficients is considered. This is an important set, since any elliptic partial differential equation with
constant coefficients can be reduced, by suitable transformations [14], to theé canonical form

Viu—-Au=0, X constant. : (27)



The set considered is smaller than the one where the discrete strategy was used, but still very important.
Moreover, means of representig more general elliptic operators can be investigated. The preceding equation
will now be rewritten in polar coordinates, that is

1 1
Upy + ;_—'u, + ;‘—EuM —Au=0. (28)

Separating variables,
u(r,0) = R(r) - (), (29)

results in two ordinary differential equations (separation constant 3?), namely

R"(r) rR'(r)
2 2= 2
"R&n) T RD T A (30)
and : :
0"(6) + f%0(8) = 0. , (31)
The angular equation has solutions
O(8) = agcos[B0] + bgsin[B60] = 0, (32)

where ag and bg are independent of 6.
Requiring ©(#) to be periodic in 27, so that u(r,8) be single valued results in

B = n = integer. (33)

Thus the radial equation becomes

R"(r) + %R'(T‘) + (=2 - I:;) R(r)=0. (34)

This is Bessel’s equation, with solutions I,(A/2r) and K,(A'/2r). The tequirement that u(r,8) be finite
when r is zero discards K, because of its singularity at zero. Thus the solution u becomes

u(r,0) = ag Io(ar) + i I.(ar)(ancos[nb] + b, sin[nd])sin[B6] = 0, (35)

n=1

where a = A1/2,
Integrating the previous equation over 4 results in

‘/:1r u(r,0)d0 = 2rag Iy(ar) . (36)

Note that u(0,8) = u(0) is independent of @ if u is to be single valued at r equal to zero. Setting r to zero
and noting I5(0) = 1 results in

. ap = uo, (37)
that, substituted in the preceding equation yields

1 1
u(0 )‘ Io(ar)2x Jo

u(r, 9)de, (38)



or, changing variables to ¥ = it (in case A< 0 ),

1 1

u(0) = Jo('yr)ﬂ

27
/0 u(r, 6)do. | (39)

As expected, both preceding equations can be interpreted in the monte carlo framework as follows. The
value of u is the average value at a circle of radius = multiplied by a factor 1/Io(ar), depending only on
r. Thus u at the center of the circle can be computed by randomly sampling u/Ip(ar) on the circle. That
is, a particle takes a random jump to a point P(f) on the circle, and the statistical weight is multiplied by
w = 1/Ip(ar). The wu(P(f)) becomes one particle’s estimate of u(0).

Including a more general situation in the above procedure one has: Let a particle take a random jump
from the point Py where the value u(FPp) is to be determined, to a point P; on the largest circle entirely
contained inside Q, with radius ro. If Py lies “on” (within some small ¢ of) the boundary 9, the value
u(Py)/Io(aro) is taken as one particle’s estimate of u(Fp). However, in general P; will not lie on 99, so that
u(Py) has to be estimated. In this case the procedure is repeated for Py, that is, a point P, is sampled on the
circle of biggest radius, r2, lying entirely inside  and centered on P;. And u(P2)/Io(ar;) is the estimate
of u(P;) and hence, u(P;)/(fo(are)lo(ary)) is an estimate of u(P;).Once P; is on 8, the one particle’s
estimate is obtained, otherwise u(P) will be determined in the same fashion.

Finally, each trajectory generated by the “walk on biggest circles” described above will give a sequence
of points Py,--, P, (P, lies on the boundary). Then the corresponding one trajectory’s estimate will be
given by '

u(Py)
To(aro) - - - Io(arn)
After enough random trajectories are generated, the average of the “one trajectory” estimates will give a

good description of u(Fp). Some numeric data concerning the continuous version are presented in this text,
and encourages further developments.

(40)

3 Codes and Numerical Tests

3.1 Code for the Model Problem

A description of the code is presented, and implementation choices are addressed.

program ddcg
init_routine
for node at subdomain boundaries do
mcar._routine (node,aux)
value — aux
end_for
for all domains (i) do
solve_routine (i)
place_values (i)
end._for
fprints
end_ddcg



At init, the algorithm performs the subdivision of  in domain subregions. Next, the grid pomts on those
lines at the boundary of subdomains have their values determined through mcar_routine, where continuous
(or discrete) random walks are employed, with the aid of a random number generator (IMSL’s ggubs). This
choice is motivated by the efficiency and long period of the pseudorandom numbers offered by such routine,
together with its uniform distribution of values.

Following ddcg, solve_routine (in this implementation cg method is employed, and a Gauss—Sexdel version
is also available) is performed to all subdomains, and the values thus obtained have to be placed correctly
at the original problem. The step place_values stands for such part, in which one bus is employed and frees
the corresponding processor for other tasks.

3.2 Numerical Tests

In this section the effectiveness and efficiency of ddcg are addressed. The computational environment is a
sequential one, so a normalization will be employed when required.
The first example chosen is the simple equation oo, or simply

V-[@C + DVC]=0. (41)
Consider @ and D constants. Boundary conditions can be chosen that determine the solution
C=e%.e7Y, (42)

once 2D = uy + uy and D =1 = u; = uy.

In the following tables resulting values for selected pomts in  are presented as a function of the number
of trials, by means of the application of the continuous discrete-version of DDCG. Such points are used for
they represent the alternatives of distances to the boundary. As a rule, the generation of random number
sequences could be considered apart from the computational cost, since millions of numbers can be stored to
avoid spending this computing time during execution of the algorithm. In all sxmulatlons reported, however,
the generation of random numbers is performed within the computation.

As a standard the values for the bi-dimensional example are:

ntrials 1000
Ny = Ny 65
€PSmec 0.1 % Az = 0.0015625
epsgc 0.001
Nsybdomains 4

In table 1 some results are listed, which illustrate the behavior of the ddcg solver, showing the final
values obtained after a complete ddcg cycle at selected points.

10



o
1
~~
D [ ]

2
I
g —

nirials | Result | Cost(s)
1.0+ 102 | 0.33932 40.2
5.0%10% | 0.36198 93.4
1.0+ 10% | 0.36684 | 159.5
5.0%10% | 0.36757 | 686.9
1.0+ 10" | 0.36909 | 1365.3
oo (exact) | 0.36788
PB=01-%.1) 1.0+ 107 | 0.26482 40.2
, 5.0 10 | 0.26492 93.4

1.0+ 10% [ 0.26505 | 159.5
5.0%10% | 0.26494 | 686.9
1.0« 10* | 0.26498 | 1365.3
oo (exact) |{ 0.26497
Pa=(1-2,1-4) | 1.0x10% [0.16314 | 40.2
5.0 %102 | 0.16328 93.4
1.0+ 10° | 0.16332 | 159.5
5.0+ 10° | 0.16325| 686.9
1.0+ 107 | 0.16325 | 1365.3
oo (exact) | 0.16325

Table 1 - Numerical tests of effectiveness of ddcg
as a function of number of random walks for
Nq = 4225 and n,g = 4

Next, the whole procedure ddcg is tested for selected points in a similar fashion, expressing results as
a function of the number of subdomains. The best combination of number of random walks for each case
(according to table 1) is adopted. Such results are shown in table 2. Namely, P; is chosen near the boundary
of  in both dimensions, P; near  in only one direction and near the center of the other coordinate, and
Py is at the center of 2. In all these tests the required precision in the conjugate gradient procedure is 10~
(giving an averaged maximum of 10~* per component of the gradient).

11



Nsd Result | Cost(s)
= (%, %) 1 0.36788 40.2
2 0.36684 104.0
4 0.36684 159.9
8 0.36684 285.7
16 0.36684 406.4
32 0.36684 | 654.3
64 0.36684 882.4
co(exact) | 0.36783
— 6%1’%) 1 0.26497 40.2
2 0.26499 | 104.0
4 0.26505 159.9
8 0.26487 285.7
16 0.26497 406.4
32 0.26524 654.3
64 0.26497 882.4
oo(exact) | 0.26497
(1- —6171’ 1- 611) 1 0.16325 40.2
2 | 0.16331 104.0
4 0.16332 159.9
8 0.16330 285.7 |
16 0.16337 406.4
32 0.16324 654.3
64 0.16328 882.4
oo(exact) | 0.16325

Nq = 4225 and ntrials = 108

number_of_processors | cost(s)
1 49.4

2 51.99

4 39.98
8 35.7

16 25.40

32 20.45

.64 13.79

that correspond to the solution z

12

Table 2 - Numerical tests of effectiveness for‘dd.cg
as a function of number of subdomains for

Now a convenient scaling is performed, in order to allow a comparison with other algorithms. By virtue
of the structure of ddcg, message passings are neglected at this point. On true parallel environments one
will measure how accurate this approximation (ddcg’s speedup= 1) is.

Consider now the discrete case, for which the same equation is chosen, but with boundary conditions
— y2. Moreover, the number of grid points is 1089, 4 subdomains are
used, with eps within conjugate gradient being 103. Some typical results read. as in table 3:




P =(3,1) ntrials Result | Cost(s)
' 1.0+ 102 | 0.01204 52.0
5.0%10% | —0.01673 | 214.8
1.0%10% | 0.00102 | 414.2
5.0%10° | 0.00452 | 2075.3
oo (exact) | 0.00000 _
P=0-%1) 1.0%10% | 0.65710 52.0
5.0%10% | 0.69311 214.8
1.0%10% | 0.68972 | 414.2
5.0%10% | 0.68757 | 2075.3
oo (exact) | 0.68848
d Py=(1-3;,1-3;)| 1.0%10% | 0.00009 | 52.0
5.0 102 | —0.00006 | 214.8
1.0%10° | 0.00006 414.2
5.0% 10 | 0.00003 | 2075.3
oo (exact) | 0.00000

Table 3 - Numerical tests of effectiveness for the discrete version of ddcg

After one notes the innadequacy of the discrete scheme, consider again the continuous case, but on a
three dimensional domain. The results reported here refer to a 132 grid, 8 subdomains, eps = 103 within the
conjugate gradient method, and epsnc = 0.1 * Az = 0.00833 for the montecarlo step. The model equation
is the same adopted for the continuous 2-dimensional problem above, thus corresponding to the solution
e % .e7¥.e"%, These results are summarized in table 4, that is,

Cost(s)

P =1 ntrials | Result.
1.0+ 10% | 0.06375 61.8
5.0« 102 | 0.06391 | 256.2
1.0+ 10° | 0.06389 | 500.1
4.0 10% | 0.06392 [ 1952.7

: oo (exact) | 0.06393
Pp=(1-1,3.1—7) | 1.0x10% [0.10515] 61.8
5.0 % 102 [ 0.10550 | 256.2
1.0+10% | 0.10487 | 500.1
4.0%10° | 0.10570 | 1952.7

oo (exact) | 0.10540
P=(11-L) 1.0 102 | 0.24086 61.8
5.0 10% | 0.22429 | 256.2
1.0+ 10° | 0.21913] 500.1
4.0 10% | 0.22263 | 1952.7

oo (exact) | 0.22313

Table 4 - Numerical tests of effectiveness for 3-dimensional ddcg
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4 Concluding Remarks

4.1 Sources. of Errors

The limitation of working out the discrete procedure after a discretization has taken place leads to the
usual truncation error. In the example presented, the five point formula adopted carries an error of O(h?).
To overcome this a mesh refinement would be required, followed by a restart, at an excessive cost. The
truncation error does not exist in the continuous case.

Some variation reduction techniques can also be tried in order to make the local solution of the problem
in interior points cheaper. The usual bound for 1 — d discrete random walks, which is the basis of the whole
analysis, is too poor to allow an implementation competitive with conventional solvers.

Another kind. of error (sampling) is due to the fact that a statistical strategy is performed at several
internal points. But the correct value would appear after infinite samples have been used. A feasable
computing time, together with a required accuracy can delimit this part, as a real time decision.

Use of a poor random number generator can cause correlation between different trajectories (random
walks), thus affecting local results. In the results reported, however, this was not observed.

4.2 Efficiency and effectiveness

As evidenced in the numerical results, the efficiency of the procedure is not high for the discrete case. In the
continuous one there is an improvement, since the dependence of the number of random jumps is smoother
as a function of'the total number of grid points in such case than it is for the discrete one.

The effectiveness of the procedure is clear from numeric data as well as from the theoretical analysis,
in both discrete and continuous situations. The discrete version does not benefit from the exact local
calculatlon, due to the truncation error. In practice, only the continuous implementations are recomended.

A remarkable property is the complete parallelizability of ddcg, in particular when a loosely coupled
environment is considered. This case is particularly interesting, since the cost involved in the development
of the hardware is orders of magnitude lower than the strongly coupled “supercomputer” environments.
Moreover, the advent of applicative softwares for such cheaper environments leads to smaller global cost of
computations, even when computing time is slightly higher.

A very important aspect is that the average number of jumps depends only (for a given €) on the
dimensionality of the domain, in the continuous method. Thus the increase is from 2 (exact) in 1-dimensional
to 5 in the 2-dimensional case and to 11 in the 3-d one. That is, the number of grid points affects the total
computing time as O(Naﬂ ) But at this point one recalls that the number of internal boundaries’ grid
points are the defining parameters together with monte carlo’s €. Moreover, as previously described, the
number of points to calculate through monte carlo depend on the total number of grid points as O(N}).
But this means that, what one in fact has is a means with cost O(NQ) that decomposes the domain and
prepares nyq subproblems that do not depend on each other. That is, consider using a spectral or multigrid
method for solving all subproblems. In such case the classs of methods reported here shows an
asymptotic rate of convergence competitive with multigrid methods, with complete (neglecting
message passings) parallelizability in loosely coupled parallel (not massively,i.e., number of processors
0(10%)) environments. :

The extension of the “walk on biggest circles” concept to non constant coefficients and to equations with
a non constant source term, such as Poisson’s equation [11], are under mvestlgatxon, but does not affect the
favorable properties obtained.
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